UP

Uncertain Trends in Major Upwelling Ecosystems

Salvador E. Lluch-Cota (Mexico), Ove Hoegh-Guldberg (Australia), David Karl (USA), Hans O. Pörtner (Germany), Svein Sundby (Norway), Jean-Pierre Gattuso (France)

Upwelling is the vertical transport of cold, dense, nutrient-rich, relatively low-pH and often oxygen-poor waters to the euphotic zone where light is abundant. These conditions trigger high levels of primary production and a high biomass of benthic and pelagic organisms. The driving forces of upwelling include wind stress and the interaction of ocean currents with bottom topography. Upwelling intensity also depends on water column stratification. The major upwelling systems of the planet, the Equatorial Upwelling System (EUS; Section 30.5.2, Figure 30.1A) and the Eastern Boundary Upwelling Ecosystems (EBUE; Section 30.5.5, Figure 30.1A), represent only 10% of the ocean surface but contribute nearly 25% to global fish production (Figure 30.1B, Table SM30.1).

Marine ecosystems associated with upwelling systems can be influenced by a range of "bottom-up" trophic mechanisms, with upwelling, transport, and chlorophyll concentrations showing strong seasonal and interannual couplings and variability. These, in turn, influence trophic transfer up the food chain, affecting zooplankton, foraging fish, seabirds, and marine mammals.

There is considerable speculation as to how upwelling systems might change in a warming and acidifying ocean. Globally, the heat gain of the surface ocean has increased stratification by 4% (WGI Sections 3.2, 3.3, 3.8), which means that more wind energy is needed to bring deep waters to the surface. It is as yet unclear to what extent wind stress can offset the increased stratification, owing to the uncertainty in wind speed trends (WGI Section 3.4.4). In the tropics, observations of reductions in trade winds over several decades contrast more recent evidence indicating their strengthening since the late 1990s (WGI Section 3.4.4). Observations and modeling efforts in fact show diverging trends in coastal upwelling at the eastern boundaries of the Pacific and the Atlantic. Bakun (1990) proposed that the difference in rates of heat gain between land and ocean causes an increase in the pressure gradient, which results in increased alongshore winds and leads to intensified offshore transport of surface water through Ekman pumping and the upwelling of nutrient-rich, cold waters (Figure CC-UP). Some regional records support this hypothesis; others do not. There is considerable variability in warming and cooling trends over the past decades both within and among systems, making it difficult to predict changes in the intensity of all Eastern EBUEs (Section 30.5.5).

Understanding whether upwelling and climate change will impact resident biota in an additive, synergistic, or antagonistic manner is important for projections of how ecological goods and services provided for human society will change. Even though upwellings may prove more resilient to climate change than other ocean ecosystems because of their ability to function under extremely variable conditions (Capone and Hutchins, 2013), consequences of their shifts

are highly relevant because these systems provide a significant portion of global primary productivity and fishery catch (Figure 30.1 A, B; Table SM30.1). Increased upwelling would enhance fisheries yields. However, the export of organic material from surface to deeper layers of the ocean may increase and stimulate its decomposition by microbial activity, thereby enhancing oxygen depletion and CO₂ enrichment in deeper water layers. Once this water returns to the surface through upwelling, benthic and pelagic coastal communities will be exposed to acidified and deoxygenated water which may combine with anthropogenic impact to negatively affect marine biota and ecosystem structure of the upper ocean (*high confidence*; Sections 6.3.2, 6.3.3, 30.3.2.2, 30.3.2.3). Extreme hypoxia may result in abnormal mortalities of fishes and invertebrates (Keller et al., 2010), reduce fisheries' catch potential, and impact aquaculture in coastal areas (Barton et al., 2012; see also Sections 5.4.3.3, 6.3.3, 6.4.1, 30.5.1.1.2, 30.5.5.1.3). Shifts in upwelling also coincide with an apparent increase in the frequency of submarine eruptions of methane and hydrogen sulfide gas, caused by enhanced formation and sinking of phytoplankton biomass to the hypoxic or anoxic sea floor. This combination of factors has been implicated in the extensive mortality of coastal fishes and invertebrates (Bakun and Weeks, 2004; Bakun et al., 2010), resulting in significant reductions in fishing productivity, such as Cape hake (*Merluccius capensis*), Namibia's most valuable fishery (Hamukuaya et al., 1998).

Reduced upwelling would also reduce the productivity of important pelagic fisheries, such as for sardines, anchovies and mackerel, with major consequences for the economies of several countries (Section 6.4.1, Chapter 7, Figure 30.1A, B, Table S30.1). However, under projected scenarios of reduced upward supply of nutrients due to stratification of the open ocean, upwelling of both nutrients and trace elements may become increasingly important to maintaining upper ocean nutrient and trace metal inventories. It has been suggested that upwelling areas may also increase nutrient content and productivity under enhanced stratification, and that upwelled and partially denitrified waters containing excess phosphate may select for N_2 -fixing microorganisms (Deutsch et al., 2007; Deutsch and Weber, 2012), but field observations of N_2 fixation in these regions have not supported these predictions (Fernandez et al., 2011; Franz et al., 2012). The role of this process in global primary production thus needs to be validated (*low confidence*).

The central question therefore is whether or not upwelling will intensify, and if so, whether the effects of intensified upwelling on O_2 and CO_2 inventories will outweigh its benefits for primary production and associated fisheries and aquaculture (*low confidence*). In any case increasing atmospheric CO_2 concentrations will equilibrate with upwelling waters that may cause them to become more corrosive, depending on pCO_2 of the upwelled water, and potentially increasingly impact the biota of EBUEs.

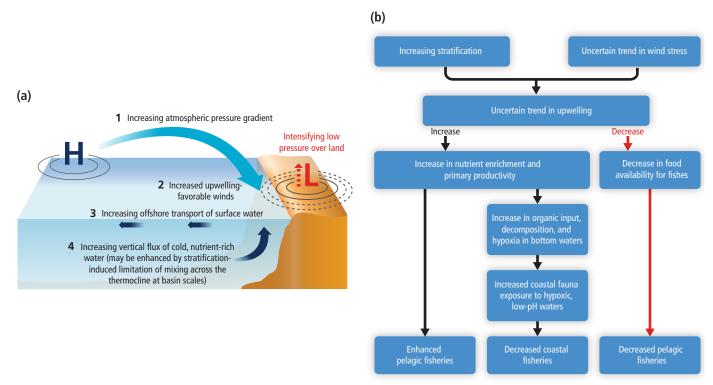


Figure UP-1 | (a) Hypothetic mechanism of increasing coastal wind—driven upwelling at Equatorial and Eastern Boundary upwelling systems (EUS, EBUE, Figure 30-1), where differential warming rates between land and ocean results in increased land—ocean (1) pressure gradients that produce (2) stronger alongshore winds and (3) offshore movement of surface water through Ekman transport, and (4) increased upwelling of deep cold nutrient rich waters to replace it. (b) Potential consequences of climate change in upwelling systems. Increasing stratification and uncertainty in wind stress trends result in uncertain trends in upwelling. Increasing upwelling may result in higher input of nutrients to the euphotic zone, and increased primary production, which in turn may enhance pelagic fisheries, but also decrease coastal fisheries due to an increased exposure of coastal fauna to hypoxic, low pH waters. Decreased upwelling may result in lower primary production in these systems with direct impacts on pelagic fisheries productivity.

References

Bakun, A., 1990: Global climate change and intensification of coastal ocean upwelling. Science, 247(4939), 198-201.

Bakun, A. and S.J. Weeks, 2004: Greenhouse gas buildup, sardines, submarine eruptions and the possibility of abrupt degradation of intense marine upwelling ecosystems. *Ecology Letters*, **7(11)**, 1015-1023.

Bakun, A., D. B. Field, A. N. A. Redondo-Rodriguez, and S. J. Weeks, 2010: Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. *Global Change Biology* 16:1213-1228.

Barton, A., B. Hales, G.G. Waldbusser, C. Langdon, and R.A. Feely, 2012: The Pacific oyster, *Crassostrea gigas*, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects. *Limnology and Oceanography*, 57(3), 698-710.

Capone, D.G. and D.A. Hutchins, 2013: Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nature Geoscience, 6(9) 711-717.

Deutsch, C. and T. Weber, 2012: Nutrient ratios as a tracer and driver of ocean biogeochemistry. Annual Review of Marine Science, 4, 113-141.

Deutsch, C., J.L. Sarmiento, D.M. Sigman, N. Gruber, and J.P. Dunne, 2007: Spatial coupling of nitrogen inputs and losses in the ocean. *Nature*, 445(7124), 163-167.

Fernandez, C., L. Farías, and O. Ulloa, 2011: Nitrogen fixation in denitrified marine waters. PLoS ONE, 6(6), e20539, doi:10.1371/journal.pone.0020539.

Franz, J., G. Krahmann, G. Lavik, P. Grasse, T. Dittmar, and U. Riebesell, 2012: Dynamics and stoichiometry of nutrients and phytoplankton in waters influenced by the oxygen minimum zone in the eastern tropical Pacific. Deep-Sea Research Part I: Oceanographic Research Papers, 62, 20-31.

Hamukuaya, H., M.J. O'Toole, and P.M.J. Woodhead, 1998: Observations of severe hypoxia and offshore displacement of Cape hake over the Namibian shelf in 1994. South African Journal of Marine Science, 19(1), 57-59.

Keller, A.A., V. Simon, F. Chan, W.W. Wakefield, M.E. Clarke, J.A. Barth, D. Kamikawa and E.L. Fruh, 2010: Demersal fish and invertebrate biomass in relation to an offshore hypoxic zone along the US West Coast. Fisheries Oceanography, 19, 76-87.

This cross-chapter box should be cited as:

Lluch-Cota, S.E., O. Hoegh-Guldberg, D. Karl, H.-O. Pörtner, S. Sundby, and J.-P. Gattuso, 2014: Cross-chapter box on uncertain trends in major upwelling ecosystems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 149-151.