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Abstract. Observations along the southwestern Atlantic

WOCE A17 line made during the Dutch GEOTRACES-

NL programme (2010–2011) were compared with histor-

ical data from 1994 to quantify the changes in the an-

thropogenic component of the total pool of dissolved inor-

ganic carbon (1Cant). Application of the extended multi-

linear regression (eMLR) method shows that the 1Cant from

1994 to 2011 has largely remained confined to the upper

1000 dbar. The greatest changes occur in the upper 200 dbar

in the Subantarctic Zone (SAZ), where a maximum in-

crease of 37 µmol kg−1 is found. South Atlantic Central Wa-

ter (SACW) experienced the highest rate of increase in Cant,

at 0.99± 0.14 µmol kg−1 yr−1, resulting in a maximum rate

of decrease in pH of 0.0016 yr−1. The highest rates of acidi-

fication relative to1Cant, however, were found in Subantarc-

tic Mode Water (SAMW) and Antarctic Intermediate Water

(AAIW). The low buffering capacity of SAMW and AAIW

combined with their relatively high rates of Cant increase

of 0.53± 0.11 and 0.36± 0.06 µmol kg−1 yr−1, respectively,

has lead to rapid acidification in the SAZ, and will continue

to do so whilst simultaneously reducing the chemical buffer-

ing capacity of this significant CO2 sink.

1 Introduction

The Atlantic Ocean contains the largest store of anthro-

pogenic carbon (Cant) of all the world’s oceans, accounting

for approximately 38 % of the total Cant inventory (Sabine et

al., 2004). Within the Atlantic, the North Atlantic has been

found to be responsible for the majority of the uptake of

Cant, due to the formation of North Atlantic Deep Water

(NADW; Lee et al., 2003; Sabine et al., 2004). However, a

recent Atlantic Basin inventory analysis indicates that in the

past decade the South Atlantic has been more effective at

sequestering Cant (Wanninkhof et al., 2010) than the North

Atlantic. These authors calculated a rate of increase in the

North Atlantic inventory of 1.9 Pg C decade−1, whereas the

South Atlantic inventory grew at a rate of 3.0 Pg C decade−1.

Calculations by Ríos et al. (2012) indicate that the south-

western Atlantic Ocean dominates the South Atlantic sink

of Cant, with a storage rate of 0.25± 0.035 Pg C decade−1.

Quantifying the exact rate of increase in anthropogenic car-

bon in ocean waters is inherently problematic due to the

highly variable nature of dissolved inorganic carbon (DIC)

within the ocean and the relatively small fraction of total DIC

that the anthropogenic component represents (∼ 3 %; Ríos et

al., 2010). In the past decade, a number of methods for calcu-

lating the increase in Cant (1Cant) between reoccupation of

ocean transects have been developed (TrOCA, φC0
T, eMLR).

Despite the differing approaches and assumptions, there is

overall coherence in the determinations of the anthropogenic
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component of inorganic carbon in the Atlantic Ocean (Lee et

al., 2003; Vázquez-Rodríguez et al., 2009a; Peng and Wan-

ninkhof, 2010; Wanninkhof et al., 2010).

The southwestern Atlantic has been occupied several times

over the past 20 years, and several techniques to determine

Cant have been applied to the WOCE ’94 A17 transect by

Ríos et al. (2010). These methods included 1C* (Gruber

et al., 1996), TrOCA (Tracer combining Oxygen, inorganic

Carbon and total Alkalinity; Touratier et al., 2007), φCT◦

(Vázquez-Rodríguez et al., 2009a), and TTD (transit time

distributions; Waugh et al., 2006) and showed general con-

formity in the distribution of Cant. The presence of the west-

ern boundary current in the South Atlantic Ocean means that

the Cant signal penetrates deeper and is larger in the west-

ern half of the basin compared to the eastern half (Wan-

ninkhof et al., 2010; Ríos et al., 2010; Vázquez-Rodríguez

et al., 2009a). Similarly, Murata et al. (2008) show that the

Cant signal in Subantarctic Mode Water (SAMW) can be

∼ 7 µmol kg−1 higher west of 15◦W compared to the east.

Mode and intermediate water formation constitute a major

pathway of Cant into the South Atlantic Ocean interior (Mc-

Neil et al., 2001; Sabine et al., 2004). The SAMW is formed

in the Subantarctic Zone (SAZ), between the Subtropical

Front (STF) and Subantarctic Front (SAF), where a calcu-

lated anthropogenic CO2 uptake of 0.07–0.08 PgC yr−1 oc-

curs (Sabine et al., 1999; McNeil et al., 2001). A total CO2

sink of 1.1 Pg C yr−1 was calculated by McNeil et al. (2007)

for the SAZ, making it the largest CO2 sink in the Southern

Ocean and a significant sink for anthropogenic atmospheric

CO2.

The increase in DIC that results from the uptake of an-

thropogenic CO2 from the atmosphere leads to increasing

proton, bicarbonate ion and carbon dioxide concentrations

([H+], [HCO−3 ], [CO2]) and decreasing carbonate concen-

trations ([CO2−
3 ]), a process referred to as ocean acidifica-

tion. Sabine et al. (2004) state that approximately 50 % of

the total amount of Cant in the world’s oceans resides in the

upper 400 m. The associated decrease in pH has been cal-

culated as 0.1 pH units in the surface ocean relative to pre-

industrial times (Orr et al., 2005) and is ongoing. In the

North Atlantic Ocean, observations have found acidification

rates of 0.0016± 0.0001 and 0.0012± 0.002 yr−1 for Sub-

arctic Intermediate Water (SAIW) and Subpolar Mode Wa-

ter (SPMW), respectively (Vázquez-Rodríguez et al., 2012).

Data from the European Time Series in the Canary Islands

(ESTOC) station show significantly higher rates of pH de-

crease in surface waters of 0.0017± 0.0004 yr−1 for the time

period 1995 to 2004, with notable influence from regional

climatic forcing (Santana-Casiano et al., 2007). Acidification

rates that deviate from the rate that is expected from Cant in-

creases alone have been observed in upper Labrador Sea Wa-

ter (uLSW), SAIW, and eastern North Atlantic Central Water

(eNACW; Vázquez-Rodríguez et al., 2012). These variations

have been attributed to a combination of climatic and biolog-

ical effects. The greater sensitivity of some water masses to

acidification has been well documented by González-Dávila

et al. (2011) through the application of the buffering fac-

tors described by Egleston et al. (2010). González-Dávila et

al. (2011) highlighted waters originating at high latitudes as

particularly sensitive to increases in the concentration of dis-

solved CO2 ([CO2 (aq)]), in particular Antarctic Intermediate

Water (AAIW) and upper Circumpolar Deep Water (uCDW)

due to low ratios of total alkalinity (AT) to DIC.

A number of the biological consequences of ocean acidi-

fication are related to the changes in carbonate, and thus cal-

cium carbonate (CaCO3), ion concentration. Carbonate ions

are used by marine calcifying organisms to form both vari-

eties of calcium carbonate: aragonite (e.g. by pteropods) and

calcite (e.g. by coccolithophores and foraminifera). Arag-

onite is the less metastable form of CaCO3 resulting in a

saturation horizon (�Ar =1) approximately 2 km shallower

than that of calcite in the South Atlantic Ocean, below which

depth the CaCO3 present will be in dissolved form. A number

of experiments have observed shell dissolution in pteropods

incubated at elevated partial pressure of CO2 (pCO2) (Orr et

al., 2005; Lischka et al., 2011) associated with a lowering of

the aragonite saturation state. Recently similar results have

been observed in situ in the Southern Ocean (Bednaršek et

al., 2012), indicating that species are already being affected

by Cant accumulation. Organisms that use aragonite are thus

much more vulnerable to decreases in [CO2−
3 ] driven from

the surface increase in [CO2].

This study examines the increase in Cant in the southwest-

ern Atlantic Ocean between two occupations of the WOCE

A17 line, which took place in 1994 and 2010/2011. We cal-

culate the changes in Cant (1Cant) in the different water

masses and subsequently examine the pH changes driven

by the invasion of anthropogenic carbon between WOCE

‘94 A17 and GEOTRACES-NL (2010/2011). These results

are furthermore put into context with regard to the differing

buffering capacities of individual water masses.

2 Data

The two data sets used in this study are the results from the

CO2 survey data from the WOCE ‘94 A17 section (public

data at http://cdiac.ornl.gov/oceans/woce_a17c.html) and the

Dutch West Atlantic GEOTRACES programme, completed

in 2011 (GEOTRACES-NL, 2010/2011; public data avail-

able at http://www.bodc.ac.uk/geotraces/data/idp2014/). The

respective stations from the two campaigns are shown in

Fig. 1. The GEOTRACES-NL (2010/2011) section was car-

ried out in two parts. The shown stations north of the Equator

were occupied in July 2010 by the Dutch RV Pelagia (ex-

pedition 64PE321: from Hamilton, Bermuda, to Fortaleza,

Brazil), and the Southern Hemisphere was sampled during

March 2011 by the British RRS James Cook (JC057: from

Punta Arenas, Chile, to Las Palmas, Gran Canaria).
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Figure 1. Stations where DIC and AT samples were taken from

both cruises (black represents the WOCE ‘94 A17 stations; red rep-

resents the GEOTRACES-NL (2010/2011) expeditions).

2.1 WOCE ’94 A17 measurements

The WOCE ’94 A17 section was similarly carried out in aus-

tral autumn, and these data have undergone rigorous qual-

ity control (Key et al., 2010). The data report is avail-

able from http://cdiac.ornl.gov/oceans/ndp_084/ (Ríos et al.,

2005), where an offset of−8 µmol kg−1 in the total alkalinity

(AT) data has been reported and corrected for in this study.

From this data set, only the stations where data for both AT

and DIC are available were used. This resulted in a total of 59

stations and 1683 data points. For a detailed analysis of the

WOCE occupation we refer the reader to Ríos et al. (2010).

2.2 GEOTRACES-NL (2010/2011) measurements

2.2.1 Dissolved inorganic carbon and total alkalinity

During the GEOTRACES-NL (2010/2011) cruises, for mea-

surements of DIC and AT, water samples of 600 mL were

collected from throughout the water column from 24 Niskin

samplers mounted on a CTD rosette, following standard op-

erating procedures (Dickson et al., 2007). At least two dupli-

cates samples from different parts of the profile were col-

lected at each station. Samples were simultaneously anal-

ysed immediately after collection on a VINDTA 3C (Ver-

satile INstrument for the Determination of Total Alkalin-
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Figure 2. The residuals of the MLR fits of the (a) WOCE ’94 A17

and (b) GEOTRACES-NL (2010/2011) data sets.

ity; Marianda, Kiel) system. This system determines DIC

by coulometric titration using a coulometer (Johnson et al.,

1987) and determines AT by potentiometric titration with

0.1 M hydrochloric acid (Mintrop et al., 2000). Quality con-

trol was performed through regular measurements of certi-

fied reference material (CRM, batch #100) supplied by An-

drew Dickson at Scripps Institute of Oceanography (San

Diego, California). Based on the measurements performed

on the CRM throughout both cruises, DIC was measured

with a precision of ±1.0 µmol kg−1 and the precision of AT

was ±1.1 µmol kg−1.

2.2.2 Ancillary parameters

Dissolved oxygen samples were collected from a minimum

of three depths throughout the water column for CTD sensor

calibration. Inorganic nutrients (PO4, Si(OH)4, NO3) were

analysed following the methods of Grasshoff et al. (1983).

In every run, a control and a naturally sterilized reference

nutrient sample (RMNS, Kanso, Japan) were measured for

validation. Precision was estimated to be ±0.01, 0.2 and

0.2 µmol L−1 for PO4, Si(OH)4 and NO3, respectively. Val-

ues of salinity are reported on the practical salinity scale.

2.2.3 pH calculations

From DIC, AT and supplementary data (salinity, tempera-

ture, pressure, Si(OH)4, PO4), pH, and pCO2 were also cal-

culated in situ for both data sets using CO2_SYS (Lewis

and Wallace, 1998) adapted for MATLAB (van Heuven,

2011a), applying the acid dissociation constants of Mehrbach

et al. (1973), refitted by Dickson and Millero (1987), and

the KSO4 constant of Dickson (1990). Identical calculations

were carried out on AT and DIC data from both the WOCE

’94 A17 and GEOTRACES-NL (2010/2011) data sets, with

the resulting pH reported on the total pH scale.
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2.3 Consistency between data sets

In a later section, we employ the extended multi-linear re-

gression (eMLR) method (Wallace, 1995; Friis et al., 2005)

to infer 1Cant between the two cruises. The eMLR method

considers various biogeochemical properties (in this case

salinity, DIC, NO3, Si(OH)4 and apparent oxygen utiliza-

tion (AOU= [O2]sat–[O2]obs)) and is particularly sensitive to

large-scale (“secular”) changes in the distributions of these

properties, as well as to analytical biases in their measure-

ment. In order to assess the magnitude and distributions

of these changes, we gridded the values of salinity, DIC,

NO3, Si(OH)4 and AOU of each data set, and the grid-

ded WOCE data set was subtracted from the GEOTRACES

grid. Grid spacing was every 2◦ of latitude, with 80 lay-

ers in the vertical direction, with increased density towards

the surface. In the lower Circumpolar Deep Water (lCDW;

conceivably the most stable water mass in the section), the

differences average −0.01± 0.015 (salinity), −4.2± 12.1

(DIC), −1.92± 0.78 (NO3), −5.05± 3.3 (Si(OH)4) and

−3.13± 3.9 µmol kg−1 (AOU).

By limiting the comparison to just lCDW, the number of

data points available is limited; as such, we further performed

a more robust crossover analysis of the GEOTRACES

2010/2011 data set with data from the CARINA database

(CARINA Group, 2009; Tanhua, 2010). This was done for

all the tracers used at depths deeper than 3000m. We find an

offset of+1± 0.8 % for NO3,−1± 0.5 % for dissolved oxy-

gen, −0.004± 0.001 for salinity, −1± 0.3 % for Si(OH)4,

+1.17± 2.8 µmol kg−1 for DIC, and +5.3± 4.4 µmol kg−1

for AT. These values are all within the threshold values of

the CARINA synthesis (Key et al., 2010); thus no corrections

were applied to our data.

3 Methods

3.1 eMLR and Cant calculations

There are two general carbon data-based approaches for

studying the increasing oceanic Cant. The first approach uses

back-calculation techniques to obtain an estimate of pre-

industrial DIC concentration against which to compare cur-

rent measurements. Methods from the second approach aim

to determine the part of change in DIC between two specific

time periods that is attributable to anthropogenic invasion.

One example of each approach is employed in this study:

eMLR (Friis et al., 2005) and φCT (Vázquez-Rodríguez et

al., 2009a, b). Various comparison and evaluations of these

and other methods are available in the literature (Levine et

al., 2008; Yool et al., 2010; van Heuven et al., 2011b; Sabine

and Tanhua, 2010).

3.1.1 1Cant from eMLR

The multi-linear regression approach to estimating anthro-

pogenic CO2 invasion was introduced by Wallace (1995). It

involves using a number of biogeochemical properties that

are known to be related to DIC to fit a model of the observed

DIC. As the relationships between DIC and these properties

are expected not to change over time, the same statistical re-

lationships can be applied to a second data set of later date.

Differences between the thus “predicted” DIC and the ob-

served DIC are attributed to the invasion of anthropogenic

CO2. In the extended version (eMLR) developed by Friis et

al. (2005), which is applied here, the DIC from two data sets

is fitted to the same selection of properties from both data

sets, and the difference between parameter coefficients is as-

sumed to be predictive of the difference in Cant between the

two cruises:

1CeMLR
ant = DICMLR2, t2

−DICMLR1, t1 (1)

= (a2− a1)+ (b2− b1)SiO2 t2+ (c2− c1)NO3 t2

+ (d2− d1)AOUt2+ (e2− e1)St2+ (f2− f1)Tt2

+ (g2− g1)Pt2.

(2)

Following Eq. (2), we apply the back-calculation technique

as the DIC data from the more recent GEOTRACES-NL

(2010/2011) cruise demonstrate a greater precision. The

properties used to predict DIC in the WOCE ’94 data set

result in an R2 value of 0.97 and a root-mean-square er-

ror (RMSE) of 10.7 µmol kg−1. For the GEOTRACES-NL

(2010/2011) data set aR2 of 0.98 was obtained and an RMSE

of 9.9 µmol kg−1 (Fig. 2).

The eMLR regressions were applied along isopycnal in-

tervals, as the preferred method of water movement from

the surface into the ocean interior is along surfaces of con-

stant density. It thus follows that waters occupying the same

density band share a common formation history and can be

described by a single equation. Isopycnal bands were cho-

sen based on temperature–salinity plots of the water masses

and the amount of data occupying each interval. The co-

efficients and accompanying statistics from each isopycnal

interval are displayed in Table 1a and b for the 1994 and

2010/2011 regressions, respectively. The residuals of each

fit are shown in Fig. 2, with the 2011 data set showing an

average of 2.1 µmol kg−1 in the more stable deeper waters

(> 2000 dbar). In comparison, the WOCE ’94 A17 data set

shows a deep-water (> 2000 dbar) column average residual

of 3.17 µmol kg−1, which we attribute to less precise mea-

surements in the earlier data set. Pressure was included in

the regression to avoid skewing (over depth) of the residuals

of the MLR by the relatively large amount of samples located

towards the surface, as mentioned by Hauck et al. (2010).

Biogeosciences, 12, 1387–1401, 2015 www.biogeosciences.net/12/1387/2015/
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Table 1a. Calculated coefficients for the performed multi linear regressions for each density interval using the (a) GEOTRACES-NL

(2010/2011) data set and (b) WOCE ’94 A17 data set. Differences between the coefficients were calculated following Eq. (2).

Min Max Mean layer a Si(OH)4 NO3 Sal Theta AOU Pressure RMSE R2 n

density density depth (m)

Sigma-theta

20.0 23.5 31 131 1.61 33.91 56.25 −4.78 −0.08 0.208 7.6 0.98 90

23.5 24.5 50 656 −1.73 14.13 42.36 −5.56 0.35 −0.011 6.3 0.95 73

24.5 25.0 53 152 −23.36 17.86 60.70 −11.33 0.22 −0.262 5.0 0.99 23

25.0 25.4 57 711 −7.00 2.69 41.06 −5.12 0.83 −0.094 5.5 0.99 45

25.4 26.2 107 1577 −4.99 1.85 14.10 −0.08 0.74 0.008 3.8 0.99 84

26.2 26.4 160 1206 −0.35 1.36 26.14 −3.38 0.57 −0.017 2.1 1.00 45

26.4 26.6 196 825 −0.35 3.68 36.18 −2.15 0.23 0.003 2.4 1.00 72

26.6 26.8 259 1249 −0.42 2.77 24.17 −1.56 0.33 −0.004 1.7 1.00 67

26.8 27.0 310 1116 −0.33 2.22 28.72 −3.30 0.37 −0.012 1.6 1.00 109

27.0 27.2 431 1366 0.97 4.33 18.81 3.61 0.06 −0.002 1.1 1.00 112

27.2 27.4 672 601 0.45 3.58 42.68 −3.07 0.16 −0.004 2.1 0.99 96

27.4 27.5 991 2575 0.77 −0.38 −13.66 −3.01 0.72 0.006 1.4 0.98 42

2σ

27.5 36.7 1108 2056 0.65 −2.40 3.57 −8.06 0.88 −0.005 1.5 0.99 40

36.7 36.8 1279 1471 0.88 −3.58 20.18 −7.86 1.05 0.003 1.0 1.00 44

36.8 36.9 1531 4683 1.43 −2.57 −74.16 17.14 0.45 0.003 1.2 1.00 58

36.9 36.9 1614 4840 1.12 −2.24 −77.82 10.87 0.45 0.001 1.2 1.00 31

36.9 37.0 1946 7686 1.50 −4.85 −158.89 19.19 0.45 0.003 2.3 1.00 109

37.0 37.1 2586 6937 0.90 −3.65 −137.01 8.11 0.63 0.002 0.7 1.00 71

4σ

37.1 45.9 3050 1808 0.35 0.79 10.42 −15.68 0.42 −0.005 0.7 0.99 174

45.9 46.0 3730 3087 0.29 −0.49 −27.18 −8.62 0.75 0.001 1.2 1.00 122

46.0 46.0 4195 −14016 0.43 3.45 460.19 −21.03 1.04 0.005 1.4 1.00 43

46.0 46.1 4582 −6879 0.40 −0.61 258.02 23.20 1.15 0.005 1.0 0.99 68

46.1 60.0 5108 42132 −0.63 −0.99 −1154.59 28.25 1.85 0.011 1.1 0.89 62

3.1.2 Cant from φCT
◦

The φCT
◦ method is a back-calculation approach that uses

stoichiometric ratios from biogeochemical processes to ac-

count for the addition of DIC in the water column resulting

from organic matter remineralization and calcium carbon-

ate dissolution since the time of water formation (Vázquez-

Rodríguez, 2008; Vázquez-Rodríguez et al. 2009a). It is

based on the general principle of “preformed DIC” (or CT
◦)

of Brewer (1978) and1C* of Gruber et al. (1996). The main

advantage of this method is that it considers the non-steady

state of AT and pCO2 in the subsurface reference layer.

3.2 Buffer factors

The Revelle factor was originally described by Revelle and

Suess (1957) and quantified the attenuated response of in-

creasing DIC impacted by increasing pCO2, or vice versa.

This work has been built upon by Egleston et al. (2010), who

outlined six expressions that define how [CO2], [H+], and

�Ar or �Ca are impacted by changes in DIC or AT.

The following three expressions for the buffer factors

relating to DIC were applied to the GEOTRACES-NL

(2010/2011) and WOCE ’94 A17 southwestern Atlantic sec-

tions (Eqs. 3–4 and 6–7 are taken from Egleston et al., 2010;

however, Eqs. 5 and 8 are taken from Álvarez et al., 2014,

who identified and corrected a typo in the definitions of Egle-

ston et al., 2010).

www.biogeosciences.net/12/1387/2015/ Biogeosciences, 12, 1387–1401, 2015
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Table 1b. Continued.

Min Max Mean layer a Si(OH)4 NO3 Sal Theta AOU Pressure RMSE R2 n

density density depth (m)

Sigma-theta

20.0 23.5 31 263 7.28 −96.35 43.77 5.95 −0.20 −0.047 8.6 0.92 42

23.5 24.5 50 466 −8.70 29.32 44.65 −1.93 0.50 0.024 8.4 0.93 150

24.5 25.0 53 1052 −0.11 5.00 28.96 −2.49 0.45 0.107 2.9 0.99 56

25.0 25.4 57 1259 −3.68 2.04 22.21 −0.65 0.62 0.212 6.4 0.95 57

25.4 26.2 107 974 1.55 2.21 31.43 −2.76 0.53 0.061 6.8 0.98 137

26.2 26.4 160 1097 0.62 2.93 27.82 −1.96 0.43 0.008 3.8 0.99 75

26.4 26.6 196 964 0.58 3.55 31.36 −1.47 0.29 0.015 3.4 0.99 89

26.6 26.8 259 1326 0.88 4.27 19.87 1.84 0.17 0.005 2.5 1.00 104

26.8 27.0 310 1405 1.00 3.92 17.82 1.83 0.18 −0.001 2.5 1.00 150

27.0 27.2 431 1448 0.84 3.36 17.21 0.64 0.22 −0.004 3.5 0.99 197

27.2 27.4 672 1331 0.66 2.29 21.80 −2.33 0.32 −0.004 3.4 0.99 272

27.4 27.5 991 1109 0.76 1.39 28.96 −3.64 0.37 −0.004 4.2 0.75 74

2σ

27.5 36.7 1108 1915 0.41 1.44 5.68 −3.05 0.37 0.005 2.0 0.98 90

36.7 36.8 1279 1272 0.53 0.47 25.06 −8.77 0.55 −0.002 1.7 1.00 32

36.8 36.9 1531 1473 0.76 1.57 18.17 −0.31 0.30 −0.003 5.3 0.98 105

36.9 36.9 1614 3278 0.82 1.18 −33.66 4.65 0.20 −0.002 2.8 0.99 94

36.9 37.0 1946 4372 0.76 1.43 −65.08 5.14 0.11 0.001 2.2 1.00 226

37.0 37.1 2586 3899 0.36 1.15 −51.16 −1.59 0.43 0.002 1.9 1.00 194

4σ

37.1 45.9 3050 1335 0.53 2.11 21.83 −2.35 0.29 0.002 1.7 0.98 145

45.9 46.0 3730 3036 0.64 1.53 −27.11 4.95 0.21 0.003 1.8 1.00 268

46.0 46.0 4195 8008 0.09 1.73 −168.68 −0.95 0.23 0.003 2.6 0.99 75

46.0 46.1 4582 810 0.06 0.32 38.12 −13.29 0.77 0.005 3.0 0.60 165

46.1 60.0 5108 −5867 0.00 0.30 230.89 −27.07 0.80 0.003 1.2 0.74 108

γDIC= DIC−AlkC
2/S, (3)

βDIC= DIC× S−AlkC
2/AlkC, (4)

ωDIC= DIC−{AlkC · (2 · [CO2] + [HCO−3 ])/P }t, (5)

where DIC= [CO2] + [HCO−3 ] + [CO2−
3 ], (6)

AlkC = [HCO−3 ] + 2[CO2−
3 ], (7)

P = [HCO−3 ] − {[H
+
][B(OH)−4 ]/Khb+ [H+]}

− [H+] + [OH−], (8)

S = [HCO−3 ] + 4[CO2−
3 ] + [H

+
] + [OH−]

+ {[H+][B(OH)−4 ]/Khb+ [H+]} (9)

and � refers to the saturation state of sea water with re-

spect to aragonite or calcite. These equations quantify the

resistance to change of [CO2] (γDIC), [H+](βDIC) and

�(ωDIC) in a water mass to changes in DIC. The concentra-

tions used for the calculations were obtained from CO2SYS

(Lewis and Wallace, 1998, adapted for MATLAB by van

Heuven, 2011a) using the same input conditions as previ-

ously mentioned (Sect. 2.2.3).

4 Hydrography of the South Atlantic Ocean

The distributions of potential temperature, salinity, AOU, sil-

icate, AT and DIC of the GEOTRACES-NL (2010/2011)

section are shown in Fig. 3. The large water masses have

been described elsewhere (Mémery et al., 2000; Ríos et al.,

2010; Wanninkhof et al., 2010); thus the treatment is rela-

tively concise here. Located deeper than 4500 dbar through-

out the section is Antarctic Bottom Water (AABW), charac-

teristic in its high DIC and AOU. Values for DIC in this wa-

ter mass range from 2243 to 2267 µmol kg−1, and AOU val-

ues occupy a narrow band between 111 and 128 µmol kg−1.

The DIC maximum (2267 µmol kg−1) and potential tempera-

ture minimum (−0.16 ◦C) are both found in this water mass,

which also shows the deep-water (> 1000 dbar)AT maximum

(2369 µmol kg−1). These characteristics are all representa-

tive of the old age of the water mass and are caused by the

large amount of organic matter remineralization which has

taken place within it. The AABW can most easily be dis-

tinguished from the overlying lower Circumpolar Deep Wa-

ter (lCDW) by the high silicate concentrations, which reach

values greater than 120 umol kg−1 in AABW. Silicate con-
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centrations in the deep waters (> 4000 dbar) demonstrate a

strong covariance with AT (R2
= 0.95), which has been pre-

viously noted and stems from the simultaneous dissolution

of opaline and calcium carbonate shells from the hard tissue

of organisms (Pérez et al., 2002).

The lCDW has a core at approximately 3500 dbar at

50◦ S, above which it merges into uCDW, with its respec-

tive core identified by an oxygen minimum at approximately

1500 m (Mémery et al., 2000). Both branches of CDW dis-

play properties similar to that of AABW, as they repre-

sent a mixture of AABW and Weddell Sea Deep Water

(Wong et al., 1999; Orsi et al., 1999). The uCDW and

lCDW share isopycnals with upper North Atlantic Deep

Water (uNADW) and lower North Atlantic Deep Water

(lNADW), respectively, in the northern half of the section

(Fig. 3a). The uCDW and uNADW occupy the density

band between σθ > 27.4 and σ3 < 41.47, with the front be-

tween the two water masses found at approximately 26◦ N

(Mémery et al., 2000). The NADW has been more re-

cently ventilated than CDW and is thus distinguished by

lower AOU values of ∼ 60 µmol kg−1 and DIC values lower

than 2200 µmol kg−1. The deeper lNADW can be separated

from uNADW through higher silicate values, which rise to

40 µmol kg−1, whereas uNADW has maximum silicate con-

centrations of 20 µmol kg−1 (Fig. 3d). TheAT values are also

lower (∼ 20 µmol kg−1) in uNADW compared to lNADW.

The AAIW enters the section at 200 dbar just south of

48◦ S, identifiable as a tongue of water with very low salinity

and AT (34.05 and 2275 µmol kg−1, respectively, Fig. 3b).

The AAIW lies above uCDW and below SAMW (Peter-

son and Whitworth, 1989). This water mass is carried north-

ward at intermediate depths between σθ > 27.1 and σθ < 27.4

(Ríos et al., 2012) from south of the SAF. In the south-

western Atlantic Ocean, AAIW extends further north than

in other oceans, due to the western boundary current along

the coast of South America (Talley, 1996). The AAIW is a

relatively young water mass and has AOU values compa-

rable to NADW (∼ 50–100 µmol kg−1); however, it can be

distinguished from uNADW, in its northward reaches, by its

elevated silicate concentrations. Situated above the AAIW,

the SAMW is often considered a component of the AAIW

(McCartney, 1977). This water mass can be easily identi-

fied by the tracer Si*= [Si(OH)4]–[NO−3 ], which has values

from −10 to −15 µmol kg−1 in regions of SAMW forma-

tion (Sarmiento et al., 2004). The SAMW formation region

is located just south of 47◦ S in SAZ, north of the SAF (Mc-

Cartney, 1977), where deep winter mixing forms this high-

oxygen water mass.

We locate the STF at ∼ 41◦ S, where there is a steep

gradient in salinity in the surface 200 dbar. North of the

STF, in the surface, and extending northward to a den-

sity of σθ< 26.5 kg m−3, is South Atlantic Central Water

(SACW; Ríos et al., 2012), heavily depleted in silicate and

with elevated salinity and AT. Against this background,

the two Amazon plumes are very distinct at 5 and 15◦ N,

with salinity values of 34.11 and 32.3 and AT values of

2265 and 2157 µmol kg−1, respectively. The maximum val-

ues of both salinity and AT correspond to SACW in the

subtropics (17◦ S), reaching absolute maxima of 37.5 and

2456 µmol kg−1, respectively, at 50 dbar depth. The subtrop-

ical part of the SACW that features high salinity and AT is

often referred to as the Salinity Maximum Water (SMW). In

this study we make no distinction between SMW and SACW.

5 Results and discussion

5.1 Anthropogenic carbon in the southwestern Atlantic

Ocean

The distribution of Cant in 2011, calculated using the φCT
◦

method (Vázquez-Rodríguez, 2009a), and the calculated in-

crease in Cant (1Cant) from 1994 to 2011, obtained from

an eMLR analysis, are shown in Fig. 4a and b, respec-

tively. Both distributions show good consistency with pre-

vious studies (Ríos et al., 2010, 2012; Wanninkhof et al.,

2010) and are not dissimilar from each other, with areas of

high Cant also demonstrating the highest1Cant from 1994 to

2010/2011. The total Cant (Fig. 4a) values show an increase

in the surface waters compared to that of Ríos et al. (2010),

calculated from the WOCE ’94 A17 data set, which is consis-

tent with the calculated 1Cant presented here (Fig. 4b). The

general pattern is that, from 1994 to 2011, the most evident

increase in Cant occurred in the upper 1000 dbar, particularly

in the southern half of the section, with the 1Cant increasing

towards the surface. The atmosphere is the main source of

Cant to the ocean; thus it follows that the waters most recently

in contact with the atmosphere will show the greatest 1Cant.

Within the surface waters (< 100 dbar) of the section the

1Cant gradually decreases northwards in a linear relationship

with latitude (R2
=−0.74) to a concentration of 0 µmol kg−1

just north of the Equator (∼ 5◦ N). Despite containing large

quantities of Cant (Fig. 4a), low1Cant values (< 5 µmol kg−1)

have been previously noted in the tropical Atlantic region, to

a depth of 200 dbar, similar to that observed here (Schnei-

der et al., 2012). The same authors(Schneider et al., 2012)

have suggested that greater precipitation in the Intertropical

Convergence Zone can cause errors in the surface Cant deter-

minations in the tropical Atlantic, due to the related increase

in Revelle factor. In the section presented here the Amazon

outflow can also be seen in salinity values; thus a variation in

freshwater input may also contribute to errors in the method.

The largest increase (up to 37 µmol kg−1) in surface wa-

ters was found in the SAZ, just south of 45◦ S, in agreement

with the findings of Wanninkhof et al. (2010). The steep-

est vertical gradient of 1Cant is found in the same region,

at ∼ 47◦ S just north of the SAF, where over a depth range

of 0–600 dbar the 1Cant decreases from 37 to 0 µmol kg−1.

Further north, the deepest penetration of positive 1Cant val-
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Figure 3. Section distributions of temperature (◦C), salinity, AOU (µmol kg−1), silicate (µmol kg−1),AT (µmol kg−1) and DIC (µmol kg−1)

from the GEOTRACES-NL (2010/2011) data set.

Table 2. The calculated rates of increase in Cant and rates of decrease in pH along the section, listed per water mass. The identification

criteria for each water mass are provided. Error represents 2σ /N0.5.

Water mass Density range Latitude Pressure dCant/dt dCant/dt∗ dpH/dt

(dbar) (µmol kg−1yr−1) (µmol kg−1yr−1) (yr−1)

SACW σ θ20–σ θ26.8 23–18◦ S 90–160 0.99± 0.14 0.90± 0.04 −0.0016

SAMW σ θ26.8–σ θ27.1 50–48◦ S 90–160 0.53± 0.11 0.53± 0.02 −0.0014

AAIW σ θ27.1–σ θ27.4 50–48◦ S 360–450 0.36± 0.06 0.36± 0.06 −0.0010

uCDW σ θ27.4–σ 341.47 50–49◦ S 1400–1800 0.33± 0.07 0.16± 0.04 −0.0010

uNADW σ θ27.4–σ 341.47 10–15◦ N 1600–1800 0.20± 0.03 0.16± 0.04 −0.0005

lCDW σ 341.47–σ 445.9 50–48◦ S 3250–3750 0± 0.06 0.08± 0.04 0.0000

lNADW σ 341.47–σ 445.9 10–15◦ N 3000–3500 0± 0.02 0.08± 0.04 0.0000

∗ Values from Ríos et al. (2012).

ues in the southern half of the section is found at 1200 dbar

in the SubTropical Zone (STZ), between 25 and 40◦ S. The

1Cant zero-contour shoals southward of 35◦ S to ∼ 600 dbar

at 50◦ S, coinciding with the lower limits of AAIW, as has

been noted in other ocean basins (Sabine et al., 2004). In the

northern half of the section, the deepest limit of 1Cant pene-

tration in AAIW reaches a depth of ∼ 700 dbar at 15◦ S, and

north of the Equator the AAIW signal becomes distorted as

it mixes with NADW. The NADW shows near-zero concen-

trations of 1Cant throughout its extent, with the exception

of the uNADW in the equatorial region, which shows 1Cant

values up to 5 µmol kg−1. In lNADW and the other deep and

bottom waters (AABW, lCDW), 1Cant shows no change or

a tendency towards negative values.

To estimate the rate of increase in Cant in each wa-

ter mass, we identified their respective cores (Fig. 3b)

using the water mass descriptions given in Mémery et

al. (2000) and Ríos et al. (2012) and averaged their values
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Figure 4. Distribution of Cant (µmol kg−1) calculated using the

φC0
T method with the GEOTRACES-NL (2010/2011) data set

(top); distribution of 1C1994−2011
ant (µmol kg−1), calculated us-

ing the eMLR approach (middle); and the distribution of the

1pH1994−2011 associated with 1C1994−2011
ant (bottom). The arag-

onite saturation horizon (�Ar) is marked for pre-industrial times

(solid line), 1994 (dashed line) and 2011 (dotted line).

of 1Cant. Assuming a constant yearly increase, we then di-

vided this total increase by 17 to obtain the rate of yearly

increase in Cant over the period 1994 to 2011. The calcu-

lated values are shown in Table 2 with those of Ríos et

al. (2012) for comparison. The highest rates of increase

were found in SACW and SAMW with Cant increase rates

of 0.99± 0.14 and 0.53± 0.11 µmol kg−1 yr−1, respectively.

The latter value shows good consistency with that calculated

by Ríos et al. (2012) (0.53± 0.02 µmol kg−1 yr−1). How-

ever, there is a notable difference of 0.09 µmol kg−1 yr−1

between the increase for SACW calculated here and that

of 0.90± 0.04 µmol kg−1 yr−1 (Ríos et al., 2012). As this

is a surface water mass, and our study utilized data col-

lected 6 years after those used for comparison in Ríos

et al. (2012), we corrected the 1Cant accordingly. As-

suming equilibration between the atmosphere and ocean,

we corrected our 1Cant value for the additional DIC in-

crease caused solely by atmospheric increases over the last

6 years. The resulting calculated C1994−2005
ant increase rate

was 0.92± 0.14 µmol kg−1 yr−1, making our result consis-

tent with the previous estimate. As such, we attribute the dif-

ference in calculated 1Cant increase rates in SACW to the

increase in DIC driven by higher atmospheric pCO2 concen-

trations in 2010/2011.

Despite the similarities in formation history between

SAMW and AAIW, the latter shows a much lower Cant in-

crease rate of 0.37± 0.06 µmol kg−1 yr−1. The discrepancy

between the Cant increase rates in these two water masses is

in line with the differences in air–sea CO2 flux in the region

(McNeil et al., 2007). In the SAZ a combination of biolog-

ical production and temperature variability leads to a large

seasonal signal of pCO2. The SAMW is formed in the SAZ,

where there is high biological production in spring and sum-

mer and wintertime cooling of surface waters. The winter-

time cooling effect on the solubility of CO2 is sufficient to

counteract the increase in DIC from mixing, resulting in a

strong year-round CO2 sink. South of the SAF, where AAIW

is formed, similar processes operate; however, the biological

production is lower, and convective wintertime mixing brings

up high-DIC waters, thus reducing the CO2 sink (McNeil et

al., 2007). It has also been shown that the formation rate of

AAIW in the Indian Ocean is less than that of SAMW, which

facilitates more efficient sequestration of Cant by the latter

(Hartin et al., 2011).

Modest increase rates of 0.33± 0.07 and

0.20± 0.03 µmol kg−1 yr−1 were calculated for uCDW

and uNADW, respectively. Both these water masses have

been fairly recently ventilated, allowing modest increases in

1Cant. The increase rate for uNADW is in line with values

found by Perez et al. (2010). Due to the very low 1Cant

values found in lNADW and lCDW, their respective increase

rates are not significant and are not discussed further. In

contrast to our calculated 1Cant, a number of studies have

found increasing concentrations of Cant in AABW (Murata

et al., 2008; Vázquez-Rodríguez et al., 2009a; Brown et al.,

2010). However, it has been noted previously that it is absent

in eMLR analyses (Wanninkhof et al., 2010). The distribu-

tions of Cant in AABW presented in Vázquez-Rodríguez et

al. (2009a) also indicate that Cant concentrations have not

yet spread further north than 50◦ S, potentially explaining its

absence in our analysis.

5.2 Associated changes in pH

Assuming no changes in AT between the WOCE ’94 A17

and GEOTRACES-NL (2010/2011) occupations, we use

the 1Cant calculated by eMLR and the measured AT dur-

ing GEOTRACES-NL (2010/2011) to calculate the an-

thropogenically driven change in pH from 1994 to 2011

(1pH1994−2011). From the application of the φC0
T method

of anthropogenic carbon determination (Sect. 2.3.2) to the
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WOCE ’94 A17 data set, we obtain the total Cant signal

from pre-industrial times to 1994 (Fig. 4a). The Cant value

allows the calculation of the decline in pH, which has been

caused by increasing Cant during this time period (from pre-

industrial times to 1994: 1pH1994). The average surface

(< 250 dbar)1pH1994 across the section was−0.08, which is

just under the predicted general surface ocean decrease of 0.1

(Orr et al., 2005). The ocean interior experienced relatively

small 1pH1994; however, the change was accompanied by a

significant shoaling of the aragonite saturation horizon, most

notably in the southern half of the section (Fig. 4c). From

pre-industrial times to 1994, south of the SAF, at ∼ 49◦ S,

the aragonite saturation horizon rose by ∼ 250 m, whereas

further north, at 25◦ S, it rose just 200 m. The change was al-

most imperceptible north of the Equator. From 1994 to 2011,

1pH1994−2011, there is a further decline of 0.03 units, making

the total surface 1pH2011
−0.11 units since pre-industrial

times. Thus, of the total decrease since pre-industrial times

to the present day, 27 % occurred within the past 17 years.

However, we can detect no notable change to the aragonite

saturation horizon over the past 17 years (Fig. 4c). Histori-

cally, the uptake of Cant by the surface ocean was relatively

gradual, which allowed it to be well distributed throughout

the water column. In contrast, the effects of the more recent,

steeply increasing anthropogenic acidification have not yet

significantly penetrated into the deeper ocean.

The distribution of 1pH1994−2011 across the section

broadly follows the Cant increases (compare Fig. 4b, c), as

expected under the assumption of constant AT. By assuming

a constant decrease over the 17 years, the yearly acidification

rates are calculated from 1pH1994−2011 and identified for

each water mass core, as done for the yearly Cant increases

(Table 2). The highest rates of acidification were found in

the surface waters, where we also observe the greatest rates

of Cant increase, with SACW showing a rate of pH decrease

of 0.0016 yr−1. The latter value is in line with that calcu-

lated for the same water mass on the eastern side of the North

Atlantic Ocean at the ESTOC site (0.0017 yr−1) for the pe-

riod 1995 to 2004 (Santana-Casiano et al., 2007; González-

Dávila et al., 2011). The SAMW demonstrates the next great-

est rate of decline of 0.0014 yr−1, followed by AAIW and

uCDW both showing acidification rates of 0.001 yr−1, which

are comparable with values from other recently ventilated

water masses in the North Atlantic: acidification rates of

0.0019 and 0.0012 yr−1 have been reported for SAIW and

SPMW, respectively (Vázquez-Rodríguez et al., 2012). The

lowest non-zero acidification rate of 0.0005 yr−1 is found in

uNADW.

5.3 Buffering capacity

The continuing uptake of atmospheric CO2 gradually de-

pletes the naturally available carbonate ion in the surface

ocean, thereby decreasing the capacity to “buffer” further

CO2 uptake and leading to the gradual acidification of the

seawater. The extent to which the pH is affected by the in-

crease in DIC is dependent upon several properties, includ-

ing temperature, pressure and AT, which together determine

the buffering capacity of the water. As DIC increases, assum-

ing no other changes take place, the buffering capacity of the

water is reduced as [CO2−
3 ] decreases and [CO2] increases.

The AT is not altered by the flux of atmospheric CO2 into

the ocean. However, AT is affected by biological processes,

notably the dissolution and formation of calcium carbonate,

with dissolution dominating in deep waters and formation

playing a more important role in the surface. Table 2 quan-

tifies the extent to which the calculated 1Cant has impacted

pH in the water masses of the southwestern Atlantic Ocean.

Examination of this table clearly shows that the rate of acid-

ification per µmol kg−1 of DIC is not equal between water

masses. The SAMW, a relatively fresh, low-alkalinity wa-

ter mass, has an acidification rate of −0.0014 yr−1, which is

88 % of that of SACW, a warmer, more saline water mass.

However, the Cant increase rate of SAMW is only 54 % that

of SACW. The AAIW shows the same rate of acidification

as uCDW; however, the increase in Cant in uCDW is 10 %

lower than that of AAIW. These differences can be attributed

to the varying buffering capacities of the water masses.

The distributions of the Revelle factor and the sensitivi-

ties of [H+](βDIC), [CO2](γDIC) and �CaCO3
(ωDIC) to

changes in DIC for the southwestern Atlantic are shown in

Fig. 5 and given per water mass in Table 3. The highest buffer

factors, which indicate the greatest sensitivities to increasing

DIC (denoted by low values in Fig. 5b, c, and high values

in d) were generally found in the deep waters. That is to say

that, for a given increase in DIC, these waters will show large

resultant changes in [H+], [CO2] and [CO2−
3 ], or aragonite

and calcite saturation (�Ar, �Ca). Both uCDW and lCDW

show very similar behaviour – as expected from their similar

history – however, interestingly, there is a notable difference

between the buffering capacities of the two limbs of NADW.

The difference is most noticeable in ωDIC, likely caused by

the slightly higher AT / DIC ratio in lNADW. A lower βDIC

in uNADW denotes a greater sensitivity to acidification in

response to increasing DIC concentrations. More rapid acidi-

fication in uNADW compared to lNADW has been observed

by Vázquez-Rodríguez et al. (2012) and attributed to mix-

ing with Labrador Sea Water (LSW), which exhibits a strong

decreasing pH trend with time. The lower pH of LSW and

its contribution to uNADW could account for the reduced

buffering capacity calculated in this water mass in the south-

western Atlantic Ocean.

The lowest Revelle factor and highest βDIC values are

found in SACW, closely followed by SAMW, which de-

spite containing large concentrations of Cant, both have rela-

tively low concentrations of DIC compared to the other water

masses. The SACW and SAMW also have higher concen-

trations of AT giving them greater buffering capacity. The

three water masses with the greatest response in pH rela-

tive to 1Cant were AAIW, uCDW and lCDW, with βDIC
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Table 3. The average water mass values of salinity and potential temperature, with accompanying average buffering capacity values (γDIC,

βDIC, ωDIC and Revelle factor) calculated using the GEOTRACES-NL (2010/2011) data set. Water masses are determined using the same

criteria as given in Table 2.

Water mass Salinity Theta γDIC βDIC ωDIC Revelle factor

(◦C) (mmol kg−1) (mmol kg−1) (mmol kg−1)

SACW 36.854 22.693 0.211 0.256 −0.327 10.02

SAMW 34.021 4.4218 0.144 0.161 −0.181 14.83

AAIW 34.222 2.8567 0.136 0.149 −0.165 16.02

uCDW 34.682 1.9528 0.132 0.143 −0.156 17.14

uNADW 34.987 3.8578 0.132 0.168 −0.191 14.40

Figure 5. Distribution of the Revelle factor across the section (top left) and the three buffering factors relating to DIC: βDIC (top right),

γDIC (bottom left) and ωDIC (bottom right). The latter three are all given in mmol kg−1.

values of 0.148, 0.141 and 0.143 mmol kg−1, respectively.

These water masses show the highest DIC /AT ratios along

the section as they all originate in the Southern Ocean (SO),

where upwelling brings deep waters rich in [CO2(aq)] and

low in [CO2−
3 ] to the surface. In addition, these waters have

slightly lower salinities and thus lower borate concentrations,

which further diminish their buffering capacity, also reflected

in the high Revelle factors (Fig. 5a). For the same DIC value,

the buffering capacity of AAIW is substantially lower than

that of uCDW stemming from the low AT of AAIW, which

is also reflected in the high ωDIC values. With the current

calculated rate of increase in Cant, aragonite will become un-

dersaturated in AAIW around the year 2100, when DIC con-

centrations reach 2208 µmol kg−1. This could happen even

sooner, as wintertime, storm-driven upwelling entrainment of

deep waters into the surface in the SO is predicted to cause

seasonal aragonite undersaturation in the region as soon as

2030, when atmospheric CO2 levels reach ∼ 450 ppm (Mc-

Neil and Matear, 2008).

5.4 Continued Cant increase

The buffering capacity of each water mass will be reduced

by increasing the DIC concentrations. To investigate how the

buffering capacities of the different water masses in this sec-

tion have changed over time, and how they will continue to

change, the DIC buffer factors of each water mass were cal-

culated and plotted against DIC concentration (Fig. 6). Due

to the large relative error of the calculated 1Cant increases

in the deeper waters, these were not included. The high rate

of uptake of Cant by SACW means that this water mass has

seen the largest decrease in buffering capacity since pre-

industrial times. The βDIC value has decreased from 0.281

to 0.247 mmol kg−1 and �Ar has decreased from 4.1 to 3.3.

In contrast, uCDW has shown relatively little change due to

the low values of Cant. However, extrapolating our calculated

Cant rates of increase, we predict a 33 µmol kg−1 increase

in this water mass over the next century, which will result

in a significant reduction in buffering and a pH decrease of
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Figure 6. The buffer factors βDIC (top), γDIC (middle) and ωDIC

(bottom) of each water mass over a range of DIC concentrations.

The vertical lines denote the DIC concentration in pre-industrial

times, 1994 and 2011 and the projected concentration in 2110.

−0.102. The buffering capacities of SAMW and AAIW fol-

low a similar pattern to each other; however, SAMW con-

tains a greater proportion of subtropical water than AAIW,

and thus it maintains a slightly higher buffering capacity than

AAIW. Both AAIW and uCDW will see a similar increase

in Cant over the next century (37 and 33 µmol kg−1, respec-

tively); however, the decline in �Ar will be 1.6 times greater

in AAIW, due to higher ωDIC values. The SAMW will see

approximately 54 % of the increase in Cant that SACW will

experience; however, it will undergo 84 % of the associated

pH decline. These extrapolated predictions highlight the vul-

nerability of SAMW and AAIW to increasing Cant, as also

noted by Gonzalez-Davila et al. (2011).

The observed pattern of 1Cant in the southwestern At-

lantic clearly identifies the SAZ as the most effective entry

point of Cant into the ocean. In addition, the buffering fac-

tors of Egleston et al. (2010) explicitly show that by, the end

of this century, the two dominant water masses in this area

(SAMW and AAIW) will be the most sensitive to further Cant

increases. Whilst it is clear that this will accelerate the rate of

acidification in these water masses, it is unclear how it will

affect the CO2 uptake in the SAZ. Assuming no changes to

primary production, the increased sensitivity of SAMW to

DIC changes will lead to much greater seasonal variability

in the carbonate system of this water mass between the pro-

ductive and non-productive period. The biological uptake of

DIC in the SAZ in austral spring and summer would lead to

a more dramatic decrease in surface water pCO2, allowing a

greater air–sea pCO2 flux. Conversely, the acidification and

decline in �Ar may be detrimental to calcifying organisms

in the area, as observed in the Southern Ocean (Bednarsek et

al., 2012), thus limiting export via the biological pump.

The water masses SAMW and AAIW both risk further re-

duction in their buffering capacities by long-term variability

to their physical properties. On decadal timescales a freshen-

ing of AAIW has been observed in the Pacific and Indian sec-

tors of the Southern Ocean (Wong et al., 1999). Decadal vari-

ability has also been noted in temperature, salinity and bio-

geochemical parameters of SAMW (Bindoff et al., 2007; Al-

varez et al., 2011), which could further diminish or enhance

the buffering capacity of this water mass and thus the Cant-

driven acidification. Variations on decadal timescales have

been related to the Southern Annular Mode, the dominant

climate forcing over the region (Lovenduski et al., 2007; Ál-

varez et al., 2011). Similarly in the North Atlantic, the North

Atlantic Oscillation exerts a degree of control over the car-

bonate system variables and Cant uptake (Santana-Casiano

et al., 2007; Pérez et al., 2010). Such external controls will

cause irregular Cant uptake over time, as was observed by

Brown et al. (2010), making it difficult to accurately predict

future Cant uptake and associated changes in the buffering

capacity.

6 Conclusions

The continuing uptake of Cant in the southwestern At-

lantic has been assessed through application of eMLR

to two data sets collected in 1994 and 2011. The distri-

bution of 1Cant is comparable with previous studies of

Cant accumulation in the region (Ríos et al., 2010). The

largest increases are found in the SAZ, just north of the

SAF, a previously identified substantial CO2 sink (Metzl

et al., 1999). The SACW (0.99± 0.14 µmol kg−1 yr−1),

SAMW (0.53± 0.11 µmol kg−1 yr−1) and AAIW

(0.36± 0.06 µmol kg−1 yr−1) are responsible for the

greatest Cant uptake, consistent with earlier studies showing

them to be an effective pathway of Cant into the ocean

interior (Álvarez et al., 2009). The lower extent of AAIW

demarks the greatest depth of penetration of Cant into the

ocean in the past 17 years, indicating that future uptake will,

similarly, be largely concentrated within the surface 1000 m.

The increase in Cant in the southwestern Atlantic has led

to acidification of water masses. The calculated Cant-driven

acidification is greatest in SACW, where a current rate of pH

decline of 0.0016 yr−1 is found. However, the acidification

response per µmol kg−1 increase in DIC is greatest in the in-

termediate and mode waters. We identify SAMW as the wa-

ter mass with the greatest risk of rapid acidification in the

future, due to a combination of its high Cant uptake and its
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limited buffering capacity. AAIW, on the other hand, is more

at risk of aragonite undersaturation due its lowAT values and

resultant high ωDIC values. Continued increase in Cant at the

current rate calculated will lead to aragonite undersaturation

in the core of AAIW around the year 2100.
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