Influence of $p\text{CO}_2$, temperature, and feeding on the extracellular pH of *Calanus glacialis* during diapause

Henrieke Tonkes
Barbara Niehoff
Daniela Freese
Franz Josef Sartoris
Copepods of the genus *Calanus*

- Important grazers of ice algae and phytoplankton
- Biomass can be > 80% of zooplankton community
- Store lipids in high quantities
- Important food source for fish, whales and birds

From: Greenland Institute of Natural Resources (2010)
Objectives

1. To investigate the influence of environmental conditions on extracellular pH (pH_e) of *Calanus glacialis* during and at the end of the diapause

 Environmental conditions:
 - Ocean acidification
 - Warming
 - Feeding

2. To compare pH_e in CV and ♀ to elucidate differences in developmental stage
Life cycle of *Calanus glacialis*

Diapause
- Reduced development
- Reduced growth
- Reduced metabolism
- Starvation
- No locomotion

Activity
- Reproduction
- Feeding
- Growing
- Lipid accumulation

Modified from: Diel (1991)
Life cycle of *Calanus glacialis*

Diapause
- Reduced development
- Reduced growth
- Reduced metabolism
- Starvation
- No locomotion

Activity
- Reproduction
- Feeding
- Growing
- Lipid accumulation

Modified from: Diel (1991)
Regulation of ions and pH_e

- Diapause conducted at depth

Ion regulation
- To reach neutral buoyancy
- High density ions replaced by low density ions
- Antarctic copepods replace Na^+ by NH_3 (Sartoris et al. 2010; Schrönder et al. 2013)
- NH_3 is toxic
Regulation of ions and pH$_e$

- Diapause conducted at depth

- **Ion regulation**
 - To reach neutral buoyancy
 - High density ions replaced by low density ions
 - Antarctic copepods replace Na$^+$ by NH$_3$ (Sartoris *et al.* 2010; Schründer *et al.* 2013)
 - NH$_3$ is toxic

- **Regulation of pH$_e$**
 - To withstand toxicity
 - At low pH$_e$: NH$_3$ \rightarrow NH$_4^+$
 - NH$_4^+$ is not toxic
 - Low pH$_e$ might trigger metabolic depression

- During winter (diapause) \rightarrow pH$_e$ is low
Seasonality of pH_e in *C. glacialis* CV

pH_e was low in autumn/winter and high in spring/summer.

Modified from: Freese *et al.* (submitted)
Climate change

- **Ocean acidification**: reduction of pH with 0.3 - 0.6 units (Povopa et al. 2014)
- **Warming**: increase in sea surface temperature (IPCC 2007)

Modified from: Freese et al. (submitted)
Experimental set-up

<table>
<thead>
<tr>
<th></th>
<th>Experiment 1: during diapause</th>
<th>Experiment 2: end diapause</th>
<th>Experiment 3: end diapause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling area</td>
<td>Billefjorden</td>
<td>Billefjorden</td>
<td>Billefjorden</td>
</tr>
<tr>
<td>Sampling time</td>
<td>September 2013</td>
<td>January 2014</td>
<td>January 2014</td>
</tr>
<tr>
<td>Amount animals</td>
<td>3600</td>
<td>750</td>
<td>~ 200</td>
</tr>
<tr>
<td>Stage</td>
<td>CV</td>
<td>CV</td>
<td>♀</td>
</tr>
<tr>
<td>Species</td>
<td>C. glacialis</td>
<td>C. glacialis</td>
<td>C. glacialis</td>
</tr>
<tr>
<td>Incubation time (d)</td>
<td>15 – 30</td>
<td>31</td>
<td>37</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>0, 5, and 10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pCO₂ (ppm)</td>
<td>390 and 2300</td>
<td>500 and 1500</td>
<td>-</td>
</tr>
<tr>
<td>Food available</td>
<td>no</td>
<td>no</td>
<td>yes / no</td>
</tr>
</tbody>
</table>
Results: No influence of temperature on pH_e during the diapause (exp.1)
Results: No influence of pCO$_2$ on pH$_e$ during the diapause (exp.1)
Results: No influence of pCO$_2$ on pH$_e$ at the end of the diapause (exp.2)
Results: No difference in pH$_e$ of CV and ♀ at the end of the diapause (exp.2)
Results: Feeding increased pH_e at the end of the diapause (exp.3)

Start feeding

Thalassiosira weissflogii
Synthesis

- pH_e was not related to the environmental conditions
- No difference in pH_e of CV and ♀
- Feeding increased pH_e of ♀ -> copepods became active

Diapausing *C. glacialis* CV and ♀ will be able to regulate pH_e at environmental conditions predicted for the end of the century

&

We can confirm that feeding is crucial in the transition from diapause towards activity

- Future research -> climate change might change food quality can *Calanus* spp. cope?
Thank you!

A special thanks goes to:
Crew of R.V. Heincke (HE408), Crew of R.V. Helmer Hanssen (CarbonBridge NFR-226415), Malin Daase, Elisabeth Halvorsen, Eike Stübner, Lena Jacob, Caroline Otten, Nicole Hildebrandt, Erika Allhusen

Funding:
Polmar Graduate School & BIOACID II for providing funding to attend the ASLO Aquatic Sciences Meeting 2015 in Granada