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The investigation and application of a wide range of dietary supplements, such as probiotics, prebiotic and other
additives, are increasingly popular in aquaculture research and practice. To date few studies have attempted to
quantify the value of commercially available additives in improving growth performance of juvenile turbot
(Scophthalmusmaximus) and in compensating potential growth reduction resulting fromhigh levels of plant pro-
tein (PP) in carnivorous fish diets.
Two experiments were conducted to investigate the effect of different active ingredients in diet additives on
turbot. I) Five diets supplemented with (1) yeast b-glucan and mannan oligosaccharides (GM), (2) alginic acid
from brown algal extracts (AC), (3) yeast nucleotides and RNA (NR), (4) potassiumdiformate (PDF) and (5) bac-
teria strains Bacillus subtilis and B. licheniformis (BS), containing fish meal (FM) as the only protein source, were
fed to turbots (initial weight 48.8 g ± 5.2 g) over 112 days. II) Four diets supplemented with (1) GM, (2) AC,
(3) NR and (4) BS, containing soy protein concentrate (SPC) and wheat gluten (WG) as a partial replacement
of FM, were fed to turbots (initial weight 95.8 g ± 17.7 g) over 84 days. A non-supplemented FM diet
(exp. I) and an FM- and PP-based diet (exp. II), respectively, were used as control diets.
Diet additives did not promote additionalweight gain, specific growth rate (SGR), daily feed intake (DFI) and feed
conversion ratio (FCR) in turbot fed FM- or PP-based diets (p N 0.05)when compared to isocaloric control diets in
both experiments. Growth of turbots fed the high FM content control diet (II) was significantly higher than all
other treatments (p b 0.01). Body proximate composition, condition factor (K) and liver index (HSI) remained
unaffected by additive supplementation in fish fed either FM or PP diets (p N 0.05).
Results indicate that reported benefits for specific diet additives cannot be assumed to function or applied across
species boundaries and age classes. In addition, dietary additive application may not be economically valid for
larger animals and/or animals not exposed to specific culture-related stressors. The benefits of popular additives
to high value species such as S. maximus remains to be tested under specific immune or physical stress situations
and at crucial larval and early juvenile stages.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Efforts to intensify aquaculture of valuable finfish, such as turbot
(Scopthalmusmaximus) can lead to increased stress, limited growthper-
formance and poor welfare (Dalsgaard et al., 2013; Tal et al., 2009).
Managing and avoiding outbreaks of infectious diseases are a challenge,
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particularly, since EU regulations banned the use of antibiotics as
growth and health promoters in livestock production (EU 2003; EC No
1831/2003). Animal health and nutritional conditions are of particular
importance to fish farmers to ensure a high quality and sustainable
product for the consumer. A proper diet is essential to improve fish
health and reduce susceptibility of fish to diseases. Turbot diets are rec-
ommended to have 500 up to 650 g kg−1 protein (drymatter) with fish
meal (FM) as themain protein source (Cho et al., 2005; Lee et al., 2003).
For the growing production of turbot, 5.5 kt to 12.7 kt (2002 to 2012), in
Europe, a rising demand for fish meal is evident (FAO, 2014).

However, rising demand and limited supply (due to the sustainable
use of fish stocks and therefore reduced fishery production, El Niño
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events, etc.) of high quality fishmeal have increased prices and forced
the feed industry to partly substitute FM with alternative protein
sources, mainly protein-rich plant ingredients (Rana et al., 2009;
Tacon and Metian, 2008; Watanabe, 2002). Soy protein concentrate
(SPC) and wheat gluten are popular alternative protein sources
in aquafeeds due to their favorable profile of essential amino acids
(EAAs), competitive price and availability (Gatlin et al., 2007; Hardy,
2010; Storebakken et al., 2000). Substitution with plant protein (PP)
can, however, reduce growth performance, feed utilization and fish
health due to diminished palatability, EAA deficiency, reduced energy
content, antinutritional factors and lower nutrient digestibility com-
pared to fish meal (Bakke-McKellep and Refstie, 2008; Bonaldo et al.,
2011; Francis et al., 2001; Krogdahl et al., 2010). An alternative
approach to reduce adverse factors of PPs may be the inclusion of diet
additives that can improve growth performance in fish and, possibly,
compensate performance loss in low FM diets.

A range of diet additives, including probiotics, prebiotics, acidifiers
and plant or animal derived extracts, are commercially available for
aquatic animals. Previous studies have evaluated several of these addi-
tives on their effect on growth performance, immune response and dis-
ease resistance, as well as intestinal microbial communities for various
fish species (Balcázar et al., 2006; Kesarcodi-Watson et al., 2008; Merri-
field et al., 2010; Ringø et al., 2010). The polysaccharides beta-1,3/1,6-
glucans (BG) and mannan oligosaccharides (MOS), isolated from
cell walls of yeasts, plants, algae, fungi or bacteria, are widely accepted
as diet ingredients with positive effects on growth and health (Bohn
and BeMiller, 1995;Meena et al., 2013; Zeković et al., 2005). Treatments
with BG and MOS proved to promote growth performance in fish
(Ai et al., 2007; Andrews et al., 2009; Kühlwein et al., 2014; Li et al.,
2008; Misra et al., 2006; Staykov et al., 2007; Torrecillas et al., 2012;
Yoo et al., 2007).

Among the many other substances and extracts investigated as diet
additives, macroalgae and macroalgal extracts are rich in polysaccha-
rides (e.g. alginic acid, laminarin, fucoidan) and contain bioactive
substances (e.g. vitamins or polyphenols) that are known to affect
animal health (Buchholz et al., 2012; Fleurence, 1999; Gupta and
Abu-Ghannam, 2011; Holdt and Kraan, 2011; MacArtain et al., 2007).
Macroalgae extracts containing alginic acids are reported to enhance
growth performance in a variety of fish species (Ahmadifar et al.,
2009; Heidarieh et al., 2011, 2012; Sheikhzadeh et al., 2012). Dietary
uptake of exogenous nucleotides, isolated from yeast, may optimize
cell proliferation in order to promote rapid growth, as the synthesis of
nucleotides is a metabolically costly process (Sanderson and He,
1994). Particularly under stressful conditions additional nucleotides
can be needed, for instance, for further signal transduction or immune
cell proliferation (Carver and Walker, 1995; Li and Gatlin, 2006). The
application of nucleotides has demonstrated a positive influence on
growth performance when added to formulated fish diets (Burrells
et al., 2001b; Lin et al., 2009; Tahmasebi-Kohyani et al., 2012).

Furthermore, acidifiers consisting of organic acids and their salts,
used for instance as preservatives, are considered as promising growth
promoters in animals (Lückstädt, 2008). Dietary supplementation
of citric acid and potassium diformate showed improved growth and
feed utilization in some fish species (Abu Elala and Ragaa, 2014;
Baruah et al., 2007; Hossain et al., 2007). In addition, probiotics or ben-
eficial bacteria are known to control pathogens through a variety of
mechanisms and affect intestinal microbial communities (Kesarcodi-
Watson et al., 2008). In somefish species the dietary inclusion of Bacillus
subtilis and B. licheniformis strains had a positive effect on growth
performance (Bairagi et al., 2004; He et al., 2011; Kumar et al., 2006;
Raida et al., 2003).

Despite the progress made with various fish species, the effect of
the above-mentioned feed additives on growth performance and feed
utilization of commercially important turbot remains limited (Li et al.,
2008; Peng et al., 2013; Yun et al., 2011). Few studies have investigated
the effectiveness of diet additives on performance and health in fish
comparing FM- and PP-based diets (Dimitroglou et al., 2010; Peng
et al., 2013; Salze et al., 2010; Yun et al., 2011). Applied research, such
as the current study, is needed to fill the knowledge gaps regarding
feed additives' potential to support the increased use of plant proteins
in diets for carnivorous fish species. The current study aims to deter-
mine the effect of selected feed additives on growth performance of tur-
bot fed FM- and PP-based diets.

2. Materials and methods

Two trials were carried out to test the capacity of commercially
available feed additives with the active ingredients, (1) yeast b-glucan
and mannan oligosaccharides (GM), (2) alginic acid from brown algal
extracts (AC), (3) purified yeast nucleotides and ribosomal RNA (NR),
(4) acidifier potassiumdiformate (PDF; only used in trial I) and (5) pro-
biotic bacteria strains Bacillus subtilis and B. licheniformis (BS), to
improve growth performance (I) and/or to compensate performance
loss in juvenile turbots (S. maximus) resulting from dietary fish meal
reduction (II). The growth performance and feed utilization of fish fed
(I) a high quality diet with 77% fish meal content and (II) a fish meal
reduced diet with 32% fishmeal were determined. Feeding experiments
were conducted in two separate trials I (January to May 2013) and II
(October 13 to January 14) as the experimental set-up and high number
of treatments did not allow a simultaneous performance of both trials in
one experiment.

2.1. Trial I: Experimental setup

Juvenile turbot, approx. 15 g in weight, were obtained from
Maximus A/S (Bedsted Thy, Denmark). Fish were examined for infec-
tious diseases at the beginning and at the endof the experiments to con-
firm suitability as experimental animals. Prior to the experiment, fish
were acclimatized for 10 weeks in a recirculating aquaculture system
(RAS) in the Center for Aquaculture Research (ZAF) at the Institute
for Marine Resources (IMARE) in Bremerhaven (Germany). During
acclimatization turbot were fed in the morning and the afternoon at a
rate of 2.0% BW−1 day−1 of a commercial dry feed with 55% crude pro-
tein and 16% crude fat (R Europa 15, 2 mm diameter; Skretting ARC,
Stavanger, Norway). The system had a total water volume of 40 m3

and was equipped with drum filter, protein skimmer, moving bed
biofilter and disinfection unit (Ozon generator; Sander Aquatec GmbH,
Uetze-Eltze, Germany). The experiments were performed under the
guidelines of the local authority (Department of Food Safety, Veterinary
Affairs and Plant Protection) in Bremenwith the permission to carry out
animal experiments (522-27-11/02-00(112)).

The photoperiod was maintained at a 12 h light: 12 h dark
cycle throughout. Water parameters, such as dissolved oxygen (8.8 ±
0.3 mg l−1), temperature (16.7 ± 0.5 °C) and salinity (30.8 ±
3.3 g l−1) were monitored constantly with a SC 1000 Multiparameter
Universal Controller (Hach LangeGmbH, Düsseldorf, Germany). Ammo-
nia, nitrite and nitrate were measured daily before feeding (0.05 ±
0.09 mg l−1 NH4–N, 0.33 ± 0.18 mg l−1 NO2–N, 390.9 ± 92.1 mg l−1

NO3–N; photometer DR 2800; Hach Lange GmbH, Düsseldorf,
Germany).

A total of 1,440 turbot with an initial mean body weight of 48.8 g
(±5.2 g) and initial mean standard length of 13.7 cm (±0.6 cm) were
randomly allocated to 36 experimental tanks (0.8 m2 bottom surface,
500 L water volume; 40 individuals tank−1; stocking density
50 fish m−2 or 2.4 kg m-2). Six feeding groups were assigned to the
tanks allowing six replicates per treatment. Over the entire experimen-
tal period of 16weeks fishwere hand-fedwith floating pellets to appar-
ent satiation twice a day (10:00 and 14:00). All uneaten feedwas netted
(mash size= 500 μm) out of the tanks 30 min after start of the feeding,
dried at 50 °C for 24 h and weighed. The weights of daily recovered
pellets were corrected for soluble losses using a factor whichwas calcu-
lated from the difference between dry weight of pellets before and after
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recovering. Therefore, pellets (approximately 5 g) of each diet were
soaked in systemwater for 15 min, dried at 50 °C for 24 h andweighed.

2.2. Trial I: Experimental diets

A control diet (CT) was formulated with 77% FM to contain 61%
crude protein and 22 MJ kg−1 gross energy. The composition and con-
centration of nutrients (moisture, crude protein, crude fat, ash, phos-
phorus and calcium) and gross energy of the six formulated diets are
presented in Table 1. The other six experimental diets were formulated
with regards to an isonitrogenous and isocaloric content and were sup-
plemented with active ingredients of commercially available feed addi-
tives: (1) a yeast (Saccharomyces cerevisiae) product consisting of 20%
beta-1,3/1,6 glucans and 17% mannan oligosaccharides (ProEnMune,
ProEn Protein and Energie GmbH, Soltau, Germany) (GM), (2) an alginic
acid product of brown algal extracts containing 99% Laminaria digitata
and 1% Ascophyllum nodosum (Ergosan®, Intervet/Schering-Plough
Aquaculture, Saffron Walden, UK) (AC), (3) a product of purified yeast
nucleotides (Cytidine-5 V-monophosphate (CMP), disodium uridine-5
V-mono-phosphate (UMP), adenosine-5 V-monophosphate (AMP),
disodium inosine-5 V-monophosphate (IMP), disodium guanidine-
5 V-monophosphate (GMP)) and ribosomal RNA (Vannagen®,
Chemoforma Ltd., Augst, Switzerland) (NR), (4) an acidifier product of
potassium diformate containing 35% free formic acid, 35% formate and
30% potassium (Aquaform®, ADDCON/Nordic AS, Porsgrunn, Norway)
(PDF) and (5) a probiotic product of bacteria strains Bacillus subtilis
and B. licheniformis (Probiotic-plus.ru, Russia) (BS). The ingredients
were mixed using a spiral mixer (WP Kemper President 75 AF-V, Emil
Kemper GmbH, Rietberg, Germany) and extruded to floating pellets of
3 mm in diameter using a twin-screw extruder (Bühler 2-Wellen-
Extruder DNDL-44, Bühler AG, Uzwil, Schweiz) at temperature of 95–
Table 1
Ingredients, nutrient composition in g kg−1 drymatter (DM) and gross energy inMJ kg−1

DM of the experimental diets in trial 1.

Diets

CT GM AC NR PDF BS

Ingredients [g kg−1]
Fish meala 777.0 777.0 777.0 777.0 777.0 777.0
Wheat glutenb 30.0 29.5 29.5 28.0 30.0 30.0
Wheat starchb 110.0 104.5 105.5 110.0 107.0 109.4
GM 0.0 6.0 0.0 0.0 0.0 0.0
AC 0.0 0.0 5.0 0.0 0.0 0.0
NR 0.0 0.0 0.0 2.0 0.0 0.0
PDF 0.0 0.0 0.0 0.0 3.0 0.0
BS 0.0 0.0 0.0 0.0 0.0 0.6
Fish oilc 74.0 74.0 74.0 74.0 74.0 74.0
Vitamin/mineral mixtured 7.0 7.0 7.0 7.0 7.0 7.0
Titanium dioxidee 2.0 2.0 2.0 2.0 2.0 2.0

Nutrient compositionf [g kg−1]
Moisture 34 29 34 34 33 35
Crude protein 614 621 611 617 618 604
Crude fat 149 147 146 148 152 149
Crude ash 136 134 137 134 139 138
Calcium 30 29 29 29 29 31
Phosphorus 21 21 21 21 21 22
Gross energy [MJ kg−1]g 22 22 22 22 22 22

CT = control, GM= b-glucan/MOS, AC = alginic acid, NR = nucleotides/RNA, PDF =
potassium diformate and BS= Bacillus spp. Additive concentrations were recommended
bymanufacturers and literature (Burrells et al., 2001a,b; Lückstädt, 2008; Merrifield et al.,
2011).

a Köster Marine Proteins GmbH, Hamburg, Germany.
b Kröner Stärke, Ibbenbüren, Germany.
c Vereinigte Fischmehlwerke Cuxhaven GmbH & Co KG, Cuxhaven, Germany.
d Spezialfutter Neuruppin GmbH & Co. KG, Neuruppin, Germany.
e Kronos Titan GmbH & Co.OHG, Nordenham, Germany.
f Weender analysis (Dumas):moisture (VDLUFA Bd. III 3.1), crude protein (VDLUFA Bd.

III 4.1.2), crude fat (VDLUFA Bd. III 5.1.1), ash (VDLUFA Bd. III 8.1); ICP-mass spectrometry:
calcium and phosphor (PM DE01_018).

g Bomb calorimeter (6100, Parr Instrument GmbH, Frankfurt a. M., Germany).
110 °C. Subsequently, pellets were dried (Bühler OTW-25/50, Schweiz)
and coated with oil under constant mixing using a wendel mixer (WV
240a, DIOSNA Dierks & Söhne GmbH, Osnabrück, Germany). All diets
were sieved at the end to discard fractions below 3 mm.

2.3. Trial II: Experimental setup

The experimental set-up was identical to trial 1 (see Section 2.1).
Water parameters, such as dissolved oxygen (9.3 ± 0.5 mg l−1), tem-
perature (17.3± 0.5 °C) and salinity (28.6± 1.4 g l−1) weremonitored
constantly. Ammonia, nitrite and nitrate were measured in a three days
interval before feeding (0.01± 0.02mg l−1 NH4–N, 0.04± 0.03mg l−1

NO2–N, 80.6 ± 16.7 mg l−1 NO3–N; photometer DR 2800).
900 turbot individuals with an initial mean body weight of 95.8 g

(±17.7 g) and initial mean standard length of 18.0 cm (±1.1 cm)
were used for this experiment and randomly placed into the experi-
mental tanks (25 individuals tank−1; stocking density 31.3 fish m−2

or 3.0 kg m−2). Each of the six feeding groups contained six replicates
(n = 36 tanks). Feeding was done as described for trail 1 (see 2.1)
over a period of 12 weeks.

2.4. Trial II: Experimental diets

Ahigh FM control dietwith 58% FM (C-HF) and a low FMcontrol diet
with 32% FM (C-LF) were formulated to contain 56% crude protein and
22MJ kg-1 gross energy (Table 2). Protein content in C-LFwas partly re-
placedwith soy bean concentrate andwheat glutenwith an inclusion of
56% PP. The reduction of FM to 32% was chosen as studies showed that
growth performance in turbot was significantly decreased with a FM
Table 2
Ingredients, nutrient composition in g kg−1 drymatter (DM) and gross energy inMJ kg−1

DM of the experimental diets in trial 2.

Diets

C-HF C-LF GM AC NR BS

Ingredients [g kg−1]
Fish meala 585.0 320.0 320.0 320.0 320.0 320.0
Soy protein concentratesa 125.0 250.0 250.0 250.0 250.0 250.0
Corn glutenb 30.0 40.0 40.0 40.0 40.0 40.0
Wheat glutenc 20.0 147.0 146.7 146.8 146.9 147.0
Wheat starchc 184.0 160.0 154.3 155.2 158.1 159.4
GM 0.0 0.0 6.0 0.0 0.0 0.0
AC 0.0 0.0 0.0 5.0 0.0 0.0
NR 0.0 0.0 0.0 0.0 2.0 0.0
BS 0.0 0.0 0.0 0.0 0.0 0.6
Fish oild 45.0 72.0 72.0 72.0 72.0 72.0
Vitamin/mineral mixturee 10.0 10.0 10.0 10.0 10.0 10.0
Titanium dioxidef 1.0 1.0 1.0 1.0 1.0 1.0

Nutrient compositiong [g kg−1]
Moisture 72 70 66 65 74 64
Crude protein 553 567 571 569 562 571
Crude fat 117 112 112 112 118 113
Crude ash 108 76 75 77 71 77
Calcium 18 11 11 11 11 11
Phosphorus 15 10 10 10 10 10
Gross energy [MJ kg−1]h 21 22 22 21 22 22

C-HF = high fish meal control, C-LF = low fish meal control, GM= b-glucan/MOS, AC=
alginic acid, NR = nucleotides/RNA and BS = Bacillus spp. Additive concentrations were
recommended by manufacturers and literature (Burrells et al., 2001a,b; Merrifield et al.,
2011).

a Köster Marine Proteins GmbH, Hamburg, Germany.
b Cargill Deutschland GmbH, Krefeld, Germany.
c Kröner Stärke, Ibbenbüren, Germany.
d Vereinigte Fischmehlwerke Cuxhaven GmbH & Co KG, Cuxhaven, Germany.
e Spezialfutter Neuruppin GmbH & Co. KG, Neuruppin, Germany.
f Kronos Titan GmbH & Co.OHG, Nordenham, Germany.
g Weender analysis (Dumas):moisture (VDLUFABd. III 3.1), crude protein (VDLUFA Bd.

III 4.1.2), crude fat (VDLUFA Bd. III 5.1.1), ash (VDLUFA Bd. III 8.1); ICP-mass spectrometry:
calcium and phosphor (PM DE01_018).

h Bomb calorimeter (6100, Parr Instrument GmbH, Frankfurt a. M., Germany).
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content below 40% and a PP level above 30%, respectively (Bonaldo
et al., 2011; Day and Plascencia González, 2000). The other four experi-
mental diets were formulated on the basis of control diet C-LF andwere
supplemented with commercially available feed additives: (1) GM,
(2) AC, (3) NR and (4) BS (for details see 2.2). All diets were formulated
with regards to an isonitrogenous and isocaloric content. Composition
and concentration of crude nutrients, minerals and gross energy of the
six formulated diets are presented in Table 2. The preparation of the
diets was identical to trial 1 (see 2.2). Diets were extruded to floating
pellets of 5 mm in diameter.

2.5. Sampling, measurements and calculations

All fish were individually weighed and the total length was mea-
sured at the beginning and the end of the experiment as well as at
4-week intervals. Prior to weighing fish were starved for 24 h. Deriving
from weight and length measurements weight gain, specific growth
rate (SGR) and body condition factor (K) were determined for each
fish according to the formulae:

(1) Weight gain (g) = final weight − initial weight,
(2) SGR (% body weight day−1) = [ln(final weight) − ln(initial

weight)]/feeding days × 100,
(3) K (%) = 100 × final body weight × final body length−3.

The actual total feed intake (FItotal) was determined by subtracting
the dried feed remnants (Funeaten) from feed offered (Foffered) after
correcting for soluble losses during feeding:

(4) FItotal (g) = Foffered − (Funeaten × factorsoluble loss).

Daily feed intake (DFI) and feed conversion ratio (FCR) were calcu-
lated according to the formulae:

(5) DFI (% BW day−1) = 100 × FItotal/[(initial weight + final
weight)/2]/feeding days,

(6) FCR = FItotal/weight gain.

For a determination of the hepatosomatic index (HSI) in trial I, livers
of 72 individuals (two fish per tank= 12 fish per treatment) were sam-
pled after 16 weeks and, in trial II, livers of 108 individuals (three fish
per tank= 18 fish per treatment) were sampled after 12weeks of feed-
ing. Before sampling, fishwere killedwith an overdose (500mg/L−1) of
the anesthetic tricaine methane sulfonate (MS 222; Sigma-Aldrich Co.
LLC., Munich, Germany). Liver weight and fish weight were recorded
and the HSI was calculated for each fish according to the formula:

(7) HSI (%) = (liver weight/final body weight) × 100.

2.6. Whole body composition

At experimental outset 10 fish and at the end of the experiment six
fish per dietary treatment (n = 6), respectively, were freeze-dried
(Alpha 1–4 LSC, Martin Christ GmbH, Osterode a. H., Germany) and
homogenized (grinder GRINDOMIX GM 200, Retsch GmbH, Haan,
Germany) for an analysis for their respective proximate composition.
The gross energy was determined using a bomb calorimeter (6100,
Parr Instrument GmbH, Frankfurt a. M., Germany). Analysis for mois-
ture, crude lipid (CL) and ashwere carried out by Intertek Food Services
GmbH (Bremen, Germany) following the VDLUFA protocols (Bd. III 3.1,
Bd. III 5.1.1 and Bd. III 8.1). Total nitrogen content was determined by
the Kjeldahl method (L 06.00-7 (mod.)). CP content of the fish body
was calculated by multiplying N by 6.25.
2.7. Statistics

Data are presented as mean ± standard deviation (S.D.) for each
treatment. The Sigma plot 11 for Windows (Systat Software Inc., San
Jose, CA, USA) software package was used for statistical evaluations.
Data of growth parameters, feed utilization, whole body composition
and condition parameters (K, HSI) were tested for normality distribu-
tion by Shapiro-Wilk test. If normality or homogeneity of variances
was confirmed, multiple comparisons were done by one-way analysis
of variance (ANOVA) followed by the post hoc Tukey's Honestly Signif-
icant Difference (HSD) test or Dunn test. The non-parametric Kruskal–
Wallis test was used when the normality assumption was not met.
Differences between set of comparisons were considered significant at
a probability of error at p b 0.05.

3. Results

3.1. Trial I

3.1.1. Mortalities, growth performance and body composition
Mortality was low (0.4 to 2.2%, p N 0.05; Table 3) and turbot

remained otherwise healthy throughout the experiment. Mean initial
weight (by treatment) ranged from 48.6 ± 0.6 g to 49.0 ± 0.3 g. Final
fish weight (g) and weight gain (g) ranged from 231.8 ± 50.2 (PDF)
to 251.5 ± 52.1 (GM) and 183.2 ± 12.1 (PDF) to 202.9 ± 12.2 (GM),
respectively (Table 3). SGR (%) of fish ranged from 1.39 ± 0.04 (PDF)
to 1.47 ± 0.04 (GM). No significant differences in growth perfor-
mance were detected between dietary treatments (p N 0.05). Fish
DFI (% BW d−1) ranged from 0.86 ± 0.02 (PDF) to 0.90 ± 0.03 (BS)
across all treatments (Table 3). FCR of fish ranged from 0.73 ± 0.01
(CT) to 0.76 ± 0.02 (BS). Results of DFI and FCR showed no significant
differences among all dietary treatments (p N 0.05). Fish K (%) ranged
from 2.16 ± 0.10 (AC) to 2.21 ± 0.04 (CT) and fish HSI (%) ranged
from 1.07 ± 0.13 (AC) to 1.32 ± 0.14 (GM) across all treatments
(Table 3). K and HSI did not significantly differ between dietary treat-
ments (p N 0.05).

Crude protein (% dry matter (DM)) of the whole body composition
ranged from 69.7 ± 1.1 (BS) to 72.3 ± 2.0 (PDF) (Table 4). Crude lipid
(% DM) ranged from 11.2 ± 4.4 (CT) to 13.7 ± 0.8 (BS) (Table 4).
Gross energy (MJ kg−1 DM) ranged from 20.0 ± 1.4 (CT) to 21.5 ±
0.8 (BS) (Table 4). All results were not significantly different among
dietary treatments (p N 0.05).

3.2. Trial II

3.2.1. Mortalities, growth performance and body composition
Turbot were healthy throughout the experiment andmortality rates

were low (maximum 0.7%, p N 0.05; Table 5). Weight (g) at experimen-
tal outset ranged between 95.7 ± 0.1 and 95.9 ± 0.8. Highest final
weight (299.5 ± 92.0 g), weight gain (203.7 ± 21.8 g) and SGR
(1.35 ± 0.09%) were observed in fish fed the high FM-diet (C-HF)
(Table 5). Growth performance of fish was significantly different com-
pared to fish fed the low FM-diets (p b 0.01). Final weight, weight
gain and SGR of fish fed the low FM-diets ranged from 246.3 ± 71.1
(NR) to 257.5 ± 70.4 (AC), 150.3 ± 15.3 (NR) to 161.4 ± 16.7 (AC)
and 1.12 ± 0.08 (NR) to 1.17 ± 0.08 (AC), respectively (Table 5). No
significant differences were achieved between the low FM treatments
(p N 0.05). DFIs (% BW d−1) ranged from 0.85 ± 0.08 (AC) to 0.95 ±
0.05 (C-HF) (Table 5). The differences between fish DFIs of all treat-
ments were not significant (p N 0.05). FCRs of all dietary treatments
ranged from 0.83 ± 0.08 (GM) to 0.78 ± 0.01 (C-HF) (Table 5). No sig-
nificant differences were found among all treatments (p N 0.05). Fish K
(%) ranged from 1.97± 0.08 (BS) to 2.07± 0.04 (C-HF) and fish HSI (%)
ranged from 1.19 ± 0.14 (C-HF) to 1.40 ± 0.19 (BS) across all treat-
ments (Table 5). K and HSI showed no significant differences between
all dietary treatments (p N 0.05).



Table 3
Growth performance and feed utilization of turbot fed experimental diets for 112 days in trial 1.

CT GM AC NR PDF BS

Initial weight, g 49.0 ± 0.3 48.6 ± 0.6 48.9 ± 0.5 49.0 ± 0.2 48.6 ± 0.6 48.8 ± 0.2
Final weight, g 251.4 ± 53.7 251.5 ± 52.1 240.7 ± 63.9 242.3 ± 53.9 231.8 ± 50.2 249.2 ± 60.3
Weight gain, g 202.4 ± 20.9 202.9 ± 12.2 191.5 ± 29.4 193.4 ± 19.2 183.2 ± 12.1 200.5 ± 27.6
SGR, % day−1 1.46 ± 0.07 1.47 ± 0.04 1.42 ± 0.11 1.42 ± 0.08 1.39 ± 0.04 1.45 ± 0.10
DFI, % day−1 0.88 ± 0.03 0.89 ± 0.01 0.88 ± 0.03 0.88 ± 0.02 0.86 ± 0.02 0.90 ± 0.03
FCR 0.73 ± 0.01 0.74 ± 0.01 0.75 ± 0.03 0.74 ± 0.02 0.74 ± 0.01 0.76 ± 0.02
Mortality, % 0.0 0.0 2.2 0.4 0.9 0.9
K, % 2.21 ± 0.04 2.18 ± 0.02 2.16 ± 0.10 2.18 ± 0.07 2.17 ± 0.07 2.20 ± 0.07
HSI, % 1.25 ± 0.22 1.32 ± 0.14 1.07 ± 0.13 1.15 ± 0.14 1.11 ± 0.24 1.14 ± 0.21

CT= control, GM=b-glucan/MOS, AC= alginic acid, NR=nucleotides/RNA, PDF= potassiumdiformate and BS = Bacillus spp. SGR = Specific growth rate, DFI = daily feed intake,
FCR = feed conversion ratio, K = condition factor, HSI = hepatosomatic index. Each value is mean ± S.D. (n = 6). No significant differences were identified (p N 0.05).
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Crude protein (% DM) of the whole body composition ranged from
67.2 ± 5.1 (NR) to 72.5± 0.4 (BS) (Table 6). Crude lipid (% DM) ranged
from 12.0 ± 2.6 (C-HF) and 12.0 ± 4.8 (AC) to 15.6 ± 2.3 (NR). Gross
energy (MJ kg−1 DM) ranged from 20.8 ± 1.1 (C-LF) to 21.8 ± 0.9
(BS) (Table 6). All results were not significantly different among dietary
treatments (p N 0.05).

4. Discussion

Diet additives, classified as functional feeds, have recently attracted
extensive attention and investment within the aquaculture industry.
However, the cost of most additives and the challenge of incorporating
them into extruded feeds have to be considered by evaluating benefits
against investment. This study has for the first time shown that growth
and feed utilization is not positively influenced by either of the five
types of diet additives in growing turbot from 50 g weight up to 300 g
in a recirculating system. Additive inclusion in extruded diets failed to
improve performances of turbots fed either FM-based diets or diets con-
taining partial FM replacement by soy and wheat proteins.

The current results stand in contrast tomuchof the literature. Li et al.
(2008) reported improved growth in turbot, whichhad an initialweight
of 151.3 ± 11.3 g, when fed a pelleted diet supplemented with a
commercial yeast product (containing 20% b-glucan and 20% MOS,
1.3 g kg−1 in diet) for 72 days. However, SGR results (0.75–0.84%
day−1) were in general low compared to values (1.39–1.46% day−1)
in this study. Yoo et al. (2007) also observed a positive effect on weight
gain, SGR and feed efficiency ratio in olive flounder (Paralichthys
olivaceus) which was fed diets containing yeast b-glucan, derived from
Saccharomyces cerevisiae, for 7weeks. Growth performancewas highest
at 1 and 1.5 g kg−1 b-glucan inclusionwhich is similar to the concentra-
tion of 6 g kg−1 GM (20% b-glucan/17% MOS) applied in this study in
one of the diets. However, fish had an initial weight of 9.2 g and were
much smaller compared to turbots in this study. Likewise, improved
weight gain, SGR and FCRwere reported inmirror carp (Cyprinus carpio)
fed a diet with levels of 10 and 20 g kg−1 yeast b-glucan (Kühlwein
et al., 2014). Dietary yeast MOS (2 and 4 g kg−1 diet) enhanced growth
performance in European sea bass (Dicentrarchus labrax) and promoted
growth, FCR and survival in rainbow trout (Oncorhynchus mykiss)
(Staykov et al., 2007; Torrecillas et al., 2012).
Table 4
Proximate whole body composition in % dry matter basis and gross energy in MJ kg−1 dry mat
in trial 1.

Initial fish (n = 10) CT GM

Proximate body composition
Dry matter 21.2 20.3 ± 1.5 21.1
Crude protein 65.4 72.2 ± 3.9 71.9
Crude lipid 14.5 11.2 ± 4.4 13.4
Crude ash 17.6 17.6 ± 1.0 14.7

Gross energy (MJ kg−1) 21.3 20.0 ± 1.4 20.9

CT = control, GM = b-glucan/MOS, AC = alginic acid, NR = nucleotides/RNA, PDF = potass
differences were identified (p N 0.05).
Further investigations observed growth enhancing properties using
extracts of brown algae or yeast derived nucleotides as diet additives.
Dietary inclusion of algae extracts (5 g kg−1 diet) and yeast nucleotides
(1.5 and 2 g kg−1 diet) had a positive effect on performances in beluga
(Huso huso), malabar grouper (Epinephelus malabaricus), Atlantic
salmon (Salmo salar) and rainbow trout (Ahmadifar et al., 2009;
Burrells et al., 2001b; Heidarieh et al., 2011, 2012; Lin et al., 2009;
Tahmasebi-Kohyani et al., 2012). Other studies demonstrated that
inclusion of potassium diformate (2 and 3 g kg−1 diet) and probiotic
Bacillus strains (B. subtilis and/or B. licheniformis) stimulated growth
in nile tilapia (Oreochromis niloticus), rohu (Labeo rohita), carp and
trout (Abu Elala and Ragaa, 2014; Bagheri et al., 2008; He et al., 2011;
Kumar et al., 2006).

In contrast, some investigations could not confirm a positive perfor-
mance of diet additives in other fish species. Research demonstrated
that b-glucan or MOS enriched diets did not improve growth in dentex
(Dentex dentex), tilapia, Asian catfish (Clarias batrachus), channel catfish
(Ictalurus punctatus), hybrid tilapia (O. niloticus ♀ × O. aureus ♂) and
Atlantic salmon (Efthimiou, 1996; Grisdale-Helland et al., 2008; He
et al., 2009; Kumari and Sahoo, 2006; Lara-Flores et al., 2003; Welker
et al., 2007; Whittington et al., 2005). Moreover, supplementation
with brown algae extracts, yeast nucleotides and potassium diformate
did not support growth compared to the unsupplemented diets in red
drum (Sciaenops ocellatus) and tilapia (Li et al., 2005; Merrifield et al.,
2011; Zhou et al., 2009).

Refstie et al. (2010) proved that supplementation with MOS
(2 g kg−1 diet) in a FM reduced diet, containing soy bean and sunflower
meal (SBM + SFM) as substitutes, improved growth performance in
salmon. However, the same MOS concentration in a SBM diet and b-
glucan (0.5 and 1 g kg−1 diet) inclusion in both SBM + SFM and SBM
diets fail to increase the potential of both PP-based diets. Similarly,
growth performance and feed utilization of turbot and gilthead sea
bream (Sparus aurata) remained unaffected by nucleotide (0.3 and
1 g kg−1 diet) and MOS (2 and 4 g kg−1 diet) supplementation in a
FM- and SBM-based diet (Dimitroglou et al., 2010; Peng et al., 2013).

In the present study, turbots have fed on high quality diets in trial I
and have been reared under optimal conditions during the experiment.
Although diet additives did not improve growth performance under fa-
vorable rearing conditions, these additives may have beneficial impacts
ter of initial fish samples and turbot fed the control and experimental diets over 112 days

AC NR PDF BS

± 0.4 23.3 ± 3.3 22.9 ± 1.3 24.2 ± 0.3 24.3 ± 0.3
± 3.3 70.5 ± 2.5 71.6 ± 3.0 72.3 ± 2.0 69.7 ± 1.1
± 3.7 13.5 ± 3.8 12.1 ± 0.8 12.2 ± 3.4 13.7 ± 0.8
± 0.9 16.7 ± 1.9 15.7 ± 1.0 16.7 ± 2.7 16.2 ± 0.1
± 1.4 21.3 ± 0.9 20.5 ± 0.2 20.5 ± 1.7 21.5 ± 0.8

ium diformate and BS = Bacillus spp. Each value is mean ± S.D. (n = 6). No significant



Table 5
Growth performance and feed utilization of turbot fed experimental diets for 84 days in trial 2.

C-HF C-LF GM AC NR BS

Initial weight, g 95.8 ± 0.1 95.8 ± 0.1 95.9 ± 0.8 95.9 ± 0.2 95.9 ± 0.3 95.7 ± 0.1
Final weight, g 299.5 ± 92.0a 254.2 ± 77.9b 251.9 ± 69.6b 257.5 ± 70.4b 246.3 ± 71.1b 254.0 ± 72.0b

Weight gain, g 203.7 ± 21.8a 158.4 ± 32.2b 156.1 ± 19.7b 161.4 ± 16.7b 150.3 ± 15.3b 158.6 ± 20.8b

SGR, % day−1 1.35 ± 0.09a 1.15 ± 0.15b 1.15 ± 0.09b 1.17 ± 0.08b 1.12 ± 0.08b 1.16 ± 0.10b

DFI, % day−1 0.95 ± 0.05 0.86 ± 0.07 0.88 ± 0.06 0.85 ± 0.08 0.86 ± 0.05 0.89 ± 0.05
FCR 0.78 ± 0.01 0.81 ± 0.04 0.83 ± 0.08 0.79 ± 0.09 0.82 ± 0.03 0.83 ± 0.07
Mortality, % 0.0 0.0 0.7 0.0 0.7 0.0
K, % 2.07 ± 0.04 2.01 ± 0.07 2.00 ± 0.06 1.99 ± 0.10 2.03 ± 0.05 1.97 ± 0.08
HSI, % 1.19 ± 0.14 1.25 ± 0.17 1.36 ± 0.20 1.28 ± 0.26 1.21 ± 0.19 1.40 ± 0.19

C-HF=highfishmeal control, C-LF= low fishmeal control, GM=b-glucan/MOS, AC=alginic acid, NR=nucleotides/RNA andBS= Bacillus spp. SGR=specific growth rate, DFI=daily
feed intake, FCR= feed conversion ratio, K= condition factor, HSI= hepatosomatic index. Each value ismean± S.D. (n= 6). Different superscript letters within a line denote significant
differences (p b 0.05).
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on fish in challenging situations, for instance under conditions of
immunodepression related to environmental stress, as demonstrated
in previous studies (Burrells et al., 2001b; El-Boshy et al., 2010; Kumar
et al., 2006; Santarém et al., 1997; Tahmasebi-Kohyani et al., 2012;
Torrecillas et al., 2012; Yeh et al., 2008). Some authors hypothesize
that these functional additives are able to enhance mechanism of the
immune system that in turn leads to resistance against pathogens
and diseases (Dalmo and Bøgwald, 2008; Merrifield et al., 2010; Ringø
et al., 2012).

Survival, achieved SGR and FCR of turbots feeding FM-based diets
and PP-based diets were higher or similar compared to those observed
in other studies (Árnason et al., 2009; Bonaldo et al., 2011; Regost et al.,
1999; Schramet al., 2009; VanHamet al., 2003). Decreased growthmay
be caused by a deficiency of phosphorous in diets or by poor utilization
of plant proteins offered and a limitation of essential amino acids. In
general, reduced DFI for diets high in plant proteins indicate that these
are less attractive and palatable than diet treatments containing a high
level of FM. Further investigations can confirm performance loss and
reduced feed intake in turbots with increasing PP content in diets con-
taining overall crude protein levels of 50–54% (Regost et al., 1999),
53–51% (Bonaldo et al., 2011), 50% (Day and Plascencia González,
2000), 57–62% (Fournier et al., 2004) and 59% (Nagel et al., 2012).

Researchers suggest that palatability (Arndt et al., 1999; Freitas et al.,
2011; Kissil et al., 2000), lack of nutrients (Gatlin et al., 2007), unfavor-
able amino acid profiles (Li et al., 2008) and antinutritional factors
(ANFs) (Francis et al., 2001) of plant meals or concentrates are respon-
sible for reduced feed intake and poor feed conversion in fish species.
This may explain performance loss of turbots fed PP-based diets in
this study. Previous studies already revealed negative effects of diets
containing soy bean meal (SBM) or soy protein concentrate (SPC)
on feed consumption and growth performance in turbot (Bonaldo
et al., 2011; Day and Plascencia González, 2000) and other fish species
(Davis et al., 2005; Kasper et al., 2007; Kaushik et al., 1995; Kissil
et al., 2000). However, during the process of SPC production most
antinutritional factors should be destroyed, only phytate may be con-
centrated with the protein fraction (Gatlin et al., 2007). High phytate
concentrations reduce the availability of phosphorus as it is bound in
or by phytic acid. It seems possible that a limitation of phosphorus
Table 6
Proximate whole body composition in % dry matter basis and gross energy inMJ kg−1 dry matt
trial 2.

Initial fish (n = 10) C-HF C-L

Proximate body composition
Dry matter 20.4 25.1 ± 6.3 20.4
Crude protein 72.8 68.3 ± 2.3 69.7
Crude lipid 4.4 12.0 ± 2.6 12.4
Crude ash 23.4 18.1 ± 2.4 17.7

Gross energy (MJ kg−1) 17.5 20.9 ± 0.6 20.8

C-HF = high fish meal control, C-LF = low fish meal control, GM= b-glucan/MOS, AC = algin
No significant differences were identified (p N 0.05).
and/or essential amino acids (EAAs, e.g. lysine) is responsible for re-
duced growth rates in turbots (Kaushik, 1998; Peres and Oliva-Teles,
2008; Riche and Brown, 1996).

Whole body composition of turbots remained unaffected by additive
inclusions in both, high and low FMdiets as in earlier studies comparing
FM- or PP-based diets supplemented with some additives (Dimitroglou
et al., 2010; Heidarieh et al., 2012; Kühlwein et al., 2014; Merrifield
et al., 2011; Ng et al., 2009). The observed growth decline of fish fed
high levels of soy bean and wheat proteins cannot be explained by re-
duced development of fillet muscles caused by lower protein retention
or reduced fat storage. In contrast, other authors observed an influence
of additives on crude lipid (Baruah et al., 2007; Li et al., 2005) or crude
protein and lipid content (Abdel-Tawwab et al., 2008; Bagheri et al.,
2008; Bairagi et al., 2004; Lara-Flores et al., 2003) inwhole body compo-
sition. Additive and PP inclusion also did not influence HSI values and,
consequently, did not seem to promote an increased or decreased fat
retention in liver. Liver index of Senegalese sole (Solea senegalensis)
was higher in fish fed a PP-based diet compared to FM-based diets,
although HSI decreased with reduced fat content in FM diets (Valente
et al., 2011). However, no evidence of increased fat storage in liver
was found in other fish species feeding high levels of PP (Chatzifotis
et al., 2008; Dimitroglou et al., 2010; Hansen et al., 2013; Lekva et al.,
2010).

At present, there is no single definitemode of action and explanation
of why or how dietary supplementation with the examined additives
causes improved growth in aquatic animals and it is not clear why
they affect growth in some species and not in others. Besides, additives
that have been successful at improving growth performance in one
study proved to be ineffective for the same species in another investiga-
tion. The potential effectmay depend on the dosage of additives applied
and themethod of administration, short- or long-term and oral, immer-
sion or injection (Anderson and Siwicki, 1994; Dalmo and Bøgwald,
2008; Jeney and Anderson, 1993; Nikl et al., 1993; Peddie et al., 2002;
Selvaraj et al., 2005). In addition, culture conditions, for instance physi-
cal and chemicalwater parameters, stocking density and feeding rate, as
well as size and age class have an influence on performances in turbot
and have to be considered when comparing results (Blanquet and
Oliva-Teles, 2010; Foss et al., 2009; Imsland et al., 2001; Irwin et al.,
er of initial fish samples and turbot fed the control and experimental diets over 84 days in

F GM AC NR BS

± 1.7 21.5 ± 0.4 20.7 ± 1.8 22.0 ± 1.0 19.0 ± 5.2
± 2.7 71.6 ± 1.8 72.0 ± 3.3 67.2 ± 5.1 72.5 ± 0.4
± 2.3 13.1 ± 3.1 12.0 ± 4.8 15.6 ± 2.3 13.8 ± 1.6
± 2.4 15.4 ± 1.0 16.5 ± 1.2 16.6 ± 3.2 15.0 ± 1.2
± 1.1 21.7 ± 0.6 21.6 ± 1.2 21.5 ± 1.0 21.8 ± 0.9

ic acid, NR = nucleotides/RNA and BS = Bacillus spp. Each value is mean ± S.D. (n = 6).
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1999; vanBussel et al., 2012; VanHamet al., 2003). Under optimal hold-
ing conditions, diet additives probably do not have beneficial impacts in
turbot during the grow-out phase. However, additives may be valuable
growth and immunity promoters, especially in earlier life stages of fish,
to improve survival during critical life phases and to overcome environ-
mental stressors in fish farms. In particular, there is still a dearth of in-
formation about the effects of diet additives on performances in fish of
size classes above 200 g and in fish that have been offered additives
over a long-term period more than 4 months.

In conclusion, diet additives (yeast BG/MOS, yeast nucleotides/RNA,
alginic acid, potassium diformate and strains of Bacillus spp.) failed to
improve growth performance and feed utilization in turbots, weighing
between 50 and 250 g, fed FM-based diets (78% FM) in RAS holding.
Likewise, yeast BG/MOS, yeast nucleotides/RNA, alginic acid and strains
of Bacillus spp. failed to improve growth and feed conversion in turbots
(100–250 g) offering PP-based diets which contain 25% SPC and 15%
wheat gluten. Reduced growth performance due to 45% FM protein
substitution can partially be explained by a deficiency of calcium and
phosphorus and some EAAs in PP-based diets resulting in decreased
protein turnover. Results indicate that these additives are not econom-
ically viable for inclusion in commercial turbot on-growing diets when
culturing turbots under optimal conditions. Further research is required
to determine the size and level of optimal conditions where additives
become superfluous.
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