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Models suggest that large swathes of ocean can be silica limiting for primary producers 9 

(diatoms) and this imposes a cap on the biological uptake of carbon dioxide into the 10 

ocean. Sedimentary burial of biogenic silica (opal) is the main oceanic silicon sink and is 11 

distributed equally between iron-limited open ocean provinces and upwelling margins. 12 

However, the margin silicon sink is mainly localised in the eastern Pacific while 13 

contributions from other upwelling systems are comparatively small. Such large inter-14 

margin differences remain unexplained. Here we measure biogenic fluxes, diatom-15 

bound iron concentrations and silicon isotope ratios in sedimentary material from the 16 

Gulf of California, an archetypal margin silicon sink. We suggest that transient iron 17 

limitation during intense upwelling periods dramatically increases silica relative to 18 

organic carbon export resulting in elevated silica burial -a view also supported by long 19 

sedimentary records from the same basin. Global compilations further show that 20 

hotspots of silicon burial in the ocean are all characterised by high silica to organic 21 

carbon export ratios, a diagnostic trait for diatoms growing under Fe stress. Therefore, 22 

we propose that prevailing conditions of silica limitation in the ocean is largely caused 23 

by Fe deficiency imposing an indirect constraint on oceanic carbon uptake. (199 words) 24 
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Diatoms, a group of phytoplankton with amorphous silica cell walls (opal), account for up to 25 

40% of the marine primary production1. Because their frustules are siliceous and contain no 26 

calcium carbonate, they export carbon to the deep ocean as organic matter. Hence, their 27 

relative abundance determines the organic to calcium carbonate ratio of settling biogenic 28 

particles from the sea surface: the C rain-rate ratio2. This parameter regulates the efficiency 29 

of the biological pump of carbon by pushing the marine carbon cycle towards increased (high 30 

C rain-rate ratio) or decreased (low C rain-rate ratio) CO2 drawdown from the atmosphere3. 31 

In ideal conditions, diatoms need biologically available silicic acid and nitrate with a ratio of 32 

1:1 in the surface waters4. However, while silicic acid is generally above biological 33 

requirements in the deep ocean relative to other macronutrients such as nitrate and phosphate, 34 

thermocline waters fuelling biological productivity in most part of the ocean are depleted in 35 

silicic acid5. This lead to the yield limitation of diatom production by silicic acid in the 36 

surface ocean6-8, restricting the amount of biogenic silica produced and hence the efficiency 37 

of the biological pump of carbon. Here we investigate the causes of this potentially 38 

widespread Si limitation in the ocean. 39 

Silicon is introduced to the ocean via river runoff and is removed by sedimentary burial of 40 

mainly diatom opaline skeletal remains2,9. The ocean waters are undersaturated with respect 41 

to opal, and hence its burial efficiency is only 3% because of dissolution in the water column 42 

and superficial sediments. On an average Si is recycled ~25 times with in the ocean before 43 

permanent removal through sediment burial9.  However, areas of high opal export also 44 

display higher sedimentary Si burial rates as pore waters become rapidly supersaturated in 45 

silicic acid, preventing further dissolution and increasing Si burial10. Shallow water column 46 

and high sedimentation rates in margins further aid the burial of biogenic Si by reducing its 47 

exposure to undersaturated seawater2.  48 

 49 
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Concurrence of Marine Si sinks and Fe limitation 50 

Marine Si sinks are highly localised with burial mostly occurring in the Southern Ocean (SO) 51 

and the North Pacific (NP) for the open ocean (3 Tmol Si.yr-1)11 and in continental margins 52 

(3.7 Tmol Si.yr-1) influenced by upwelling (Supplementary Material section 2; Table 1). 53 

Despite covering a small surface area, coastal upwelling areas represent the main Si sink in 54 

ocean margins. However, not all comparably productive marginal environments are Si sinks. 55 

This is often overlooked and remains unexplained12,13. For instance, Si burial rates in the 56 

Eastern Pacific and Gulf of California (GoC) upwelling regions are one to two orders of 57 

magnitude higher than in the Arabian sea despite similar productivity levels12-14. Therefore, 58 

understanding why some oceanic margins are particularly efficient at removing Si is 59 

important in explaining silicic acid limitation in the surface ocean in view of the constraint it 60 

imposes on the biological C pump. 61 

Areas of high opal production usually support significant organic carbon (Corg) export2 but 62 

there are notable exceptions to this15 (Fig.1a & 1c). In the SO, parts of the NP and to a lesser 63 

extent the equatorial Pacific, Corg export is generally modest despite high biogenic silica 64 

fluxes.  This results in very high biogenic silica to organic carbon (Si:Corg) ratios in the 65 

settling particles (up to 10), in contrast to the rest of the ocean where the Si:Corg ratio is 66 

generally below 1 (Fig.1c, and Supplementary Material section 1 Fig.S1). The areas of high 67 

water column Si and Si/Corg export in Figure 1b are also regions that support relatively large 68 

sedimentary Si burial (Supplementary Material section 2; Fig.S3.) suggesting the close link 69 

between water column and sediment fluxes. These large open ocean regions with high Si 70 

exports are High Nitrate-Low Chlorophyll (HNLC) areas characterised by micronutrient 71 

limitation. In the ocean interior, dissolved iron concentration is generally below biological 72 

requirement relative to essential macronutrients leading to iron limitation in parts of the sea 73 

surface where additional continental supply of Fe is not sufficient16,17. The dearth of bio-74 
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available Fe from continental sources limits primary production and nitrate utilisation in 75 

HNLC regions18,19. One direct consequence of this Fe deficiency is the depletion of silicic 76 

acid in these HNLC regions owing to the high uptake ratio of Si(OH)4 relative to carbon and 77 

other macronutrients by diatoms growing under Fe stress20,21. This over consumption of 78 

silicic acid during diatom growth in turn leads to a high Si:Corg ratio of the settling biogenic 79 

particles, thereby enhancing sedimentary Si burial. Similarly, in coastal areas the Si:Corg ratio 80 

of settling particles varies greatly between margins. Continental margins that support high 81 

biogenic Si fluxes and burial such as the Eastern Pacific and the GoC show elevated Si:Corg 82 

ratios (1-4.5), whereas biogenic fluxes in the Arabian Sea and the Benguela upwelling system 83 

display Si:Corg ratios < 1 (Fig.1c). Such very large variations cannot be simply explained by 84 

differences in silicic acid to nitrate and phosphate ratios of thermocline waters that upwell 85 

and fuel biological production. Further analyses of sediment trap data15 presented in Fig.1c 86 

indicate that such a large contrast between margins cannot be explained solely by variations 87 

in siliceous versus calcareous primary producers or the differences in the ability of these 88 

skeletal remains to ballast organic carbon. Instead, the high Si:Corg fluxes (>1) are related to 89 

high elemental Si:C ratios of the siliceous producers themselves (see Supplementary Material 90 

section 1; Fig.S2). Notionally, unlike open ocean HNLC provinces, coastal upwelling areas 91 

receive additional iron inputs from the shelf and continental sources and are not expected to 92 

be iron-limited. However, recent evidence suggests that iron limitation can arise even in 93 

coastal systems during the course of intense upwelling when these additional terrestrial Fe 94 

inputs are not sufficient to meet consumption by biota22-25. Here, using a suit of diatom-bound 95 

geochemical tracers, we demonstrate that high Si:Corg export ratios and biogenic silica burial 96 

in some upwelling margins can be attributed to iron limitation. We focus on the GoC which 97 

constitutes a large Si sink despite its small size and is widely regarded as the archetypal area 98 

for the formation of diatomaceous sediments26 . 99 
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 100 

Opal exports in the Gulf of California 101 

Biogenic silica fluxes and Si:Corg ratio of the settling particles recorded between 1990 and 102 

1997 in a sediment trap from the GoC are shown in Figure 2a14. The Si:Corg ratio increases 103 

drastically during winters, when intense upwelling conditions prevail, leading to extremely 104 

high silica export to the sediment. Diatoms, the main siliceous producers, ideally need a 105 

silicic acid to nitrate ratio of about 14. With a nutrient ratio of 1.8 in the subsurface water, 106 

silicic acid supplied to the biota is in excess relative to nitrate in the GoC27. Yet Si(OH)4 107 

becomes completely utilized by the phytoplankton at the sea surface over the course of the 108 

upwelling season during ‘normal’ years27
 (Supplementary Material 3). This apparent surfeit 109 

silicic acid consumption in the photic zone and the elevated Si:Corg rain-rate ratio, 110 

comparable to HNLC regions such as the SO, together point to increased SiOH4 uptake by 111 

diatoms, greater export of biogenic silica relative to Corg during the productive season, and 112 

are diagnostic characteristics of the effect of iron limitation on diatoms23.  113 

This inference is supported by the near-complete depletion of dissolved Fe (dFe) in the 114 

surface waters of the central region of the GoC and the low dFe:PO4 ratios (generally <10-3) 115 

in subsurface waters28 falling well below the lower limit of the optimum subsistence ratio for 116 

coastal diatoms and close to the limit for other phytoplankton groups (Supplementary 117 

Material 4)17,29. This suggests that the GoC can be iron-limited during upwelling seasons 118 

when diatom production and biological consumption of both macro- and micro-nutrients 119 

increases23,24. 120 

In addition to Si:Corg rain-rate ratio,  we track seasonal changes in the biological availability 121 

of dissolved Fe in the GoC using trace metal composition of isolated and cleaned diatom 122 

frustules from the sediment trap samples collected between March 1996 and February 199714 123 

(Fig.2a). In the Supplementary Material (Section 3.3; Fig.S5), we show that Fe 124 
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concentrations in diatom frustules track iron availability in natural seawater. In the GoC, 125 

Fe:SiO2 ratios are elevated during the summer months (July and August) when the water 126 

column is stratified due to weak, southerly winds and productivity is at its lowest14,27. Iron 127 

measurements in the surface water of GoC corroborate this finding and reveal high dFe 128 

concentrations and dFe:macronutrient ratio in excess relative to biological requirement under 129 

stratified conditions due to terrestrial Fe inputs28. After stratification breaks down, Fe 130 

concentrations in the diatom frustules decrease by a factor of 5 on average (Fig.2b). The 131 

lowest Fe:SiO2 ratios are generally associated with the highest Si:Corg ratio in settling 132 

particles and elevated biogenic silica fluxes, typically >1500 mmole.m-2.yr-1. The initial 133 

decrease in Fe availability (October) occurs in conjunction with increased biogenic carbon 134 

fluxes (carbonate and Corg) at the beginning of the upwelling season but prior to the biogenic 135 

silica peak, further documenting the sequence of events in the basin: increased biological 136 

consumption of iron in the surface and upwelling of Fe deficient water from the subsurface 137 

trigger Fe limitation, which in turn causes a dramatic increase in Si export as a result of 138 

increased Si:C uptake ratio by diatoms. Fe availability remains low during late winter-early 139 

spring and is only replenished in the summer when the water column becomes stratified and 140 

biological production reaches a minimum. Therefore, we suggest that conditions of transient 141 

iron limitation in the GoC fostered by high biological productivity following intense 142 

upwelling events result in high biogenic Si and Si:Corg fluxes17,20 causing the GoC to operate 143 

as an enhanced Si sink27.  144 

It is important to recognize that in this scenario, Fe limitation is caused by intense upwelling 145 

of waters that are deficient in Fe relative to other macronutrients such that the supply of Fe 146 

from continental sources are insufficient to raise Fe levels to meet biological uptake. Thus, 147 

dampened upwelling should reduce the amount of micro-nutrient required from terrestrial 148 

sources to consume upwelled macronutrients. This in turn could lift Fe limitation. Such 149 
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conditions occur during El Niño episodes, such as the 1991 event, in the Gulf of California 150 

(Fig.2a). As seen in Figure 2 (a & c), biogenic Si fluxes and the seasonal sharp increase in the 151 

Si:Corg ratio of settling particles are much less pronounced during El Niño than during 152 

intense upwelling years. In addition, excess silicic acid has been reported in the GoC during 153 

El Niño events, once again reflecting reduced Si uptake relative to other macronutrients27.  As 154 

a corollary, one can envision that climatic periods characterised by dampened winter 155 

upwelling conditions will see the relaxation of Fe limitation in the basin, a significant 156 

reduction in Si burial and the build up of unutilised silicic acid at the sea surface.  157 

 158 

Pliestocene opal burial in the Gulf of California 159 

We examine this scenario using high-resolution sedimentary records from the GoC 160 

(Fig.3). Drastic declines in Si burials rates have been reported during Heinrich events-cold 161 

climatic periods in the Northern Hemisphere when eastern Pacific margins including the GoC 162 

experience reduced upwelling30. In particular, we explore whether such reduction in biogenic 163 

Si burial is matched by increased Fe biological availability and excess photic zone silicic acid 164 

by combining estimates of diatom-bound Fe and Si isotope ratios in Core MD02-2515. These 165 

long-term records suggest that the GoC has been operating in two modes with respect to iron 166 

status (replete vs. limited) during the last 26 kyrs. Periods of high Si burial and Si/Corg ratios 167 

at the core site correspond to periods of low diatom Fe/SiO2 ratios and elevated δ30Si 168 

(~1.2‰) On the other hand, the onsets of Heinrich events at 17 and 12.5 kys BP are 169 

characterised by decrease in Si burial and Si:Corg ratios, low δ30Si and high Fe/SiO2. The 170 

δ30Si of dissolved silicic acid supplied to the GoC are estimated to be around 1.2‰31,32. Using 171 

a Raleigh fractionation model in a closed system (Supplementary Material section 4.2), we 172 

calculate that episodes of high opal burial correspond with periods of complete silicic acid 173 

utilisation in the GoC by biota27. Given that silicic acid to nitrate ratio is about 1.8 in the 174 
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GoC27, complete silicic acid utilisation in upwelled waters requires diatom uptake of these 175 

nutrients in proportions >1 which is typical of iron limited conditions20,22,33. This is evident 176 

from the low Fe:SiO2 recorded by diatoms during these periods. In contrast, Heinrich events 177 

were matched by 2- to 3-fold higher diatom-bound Fe/SiO2 than the rest of the record, 178 

suggesting that Fe biological availability increased during diatom growth in these intervals. 179 

Assuming silicate to nitrate ratio of upwelling waters remained at 1.8, to achieve ~50% silicic 180 

acid relative utilisation diatoms should have consumed silicic acid and nitrate at a ratio close 181 

to 1. This uptake ratio of 1 suggests diatom growth under Fe replete conditions and diatom 182 

opal yield only limited by N. Therefore, the δ30Si values measured during Heinrich events are 183 

consistent with the absence of Fe limitation. Importantly, these results suggest that the 184 

declines in Si burial during Heinrich events resulted from reduced Si uptake relative to other 185 

macronutrients by diatoms growing under Fe replete conditions, leaving surplus silicic acid at 186 

the surface of GoC. These conditions are similar to observations during modern El Niño 187 

episodes in the GoC27. This case study illustrates the switch from N limitation during 188 

dampened upwelling (El Niño) to Si limitation during intense upwelling periods (eg. La 189 

Niña) due to increased diatom Si(OH)4:NO3
- uptake ratios under Fe stress. Additionally, our 190 

sedimentary records suggests that intense upwelling conditions increase the biological 191 

consumption of Fe and the resultant transient Fe limitation is the key factor that enhances 192 

biogenic silica burial rates in the GoC.  193 

 194 

Implications for the Marine Silicon Budget 195 

The episodic nature of the upwelling process and the strong biological requirement for dFe 196 

imposed on restricted time and spatial scales make upwelling margins prone to transient Fe 197 

limitation, although at variable frequency and intensity subject to local conditions causing 198 

large differences in Si burial between upwelling margins. Upwelling margins such as the 199 
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eastern Pacific with high opal burial also show high Si/Corg export in the water column 200 

(Fig.1a and also see Supplementary Material section 2; Fig.S3). This suggests Fe limitation is 201 

a key factor enhancing opal burial in these margins as our case study in the GoC illustrates. 202 

Eastern Pacific margins, where previous studies have reported transient Fe limitation, are an 203 

important contributor to the marine Si sink and could possibly account for the burial of 1.5 204 

Tmol Si /year or ~25% of the marine Si sink. This is comparable to the largest open ocean Si 205 

sinks in the North Pacific and the SO (table 1, Supplementary Material section 2). We 206 

estimate from our global compilation that between 60 to 75% of the total Si sink may occur 207 

in open ocean and margins where Fe limitation is prevalent. Without these Si burial hotspots, 208 

oceanic Si limitation5,6 would be much diminished. Thus our study reveals the intrinsic link 209 

between Fe stress and Si removal from the ocean and the indirect constraint imposed by Fe 210 

on the C rain-rate ratio and oceanic CO2 uptake by fostering Si deficiency in the ocean. 211 

(2499 words) 212 

Methods   213 

Silicon isotope determination has been conducted in ETH Zürich. A small amount of 214 

biogenic opal (0.5 mg) was dried down with concentrated perchloric acid at ~180°C in 215 

Teflon© vials, and then dissolved in 100 μl of 1 M NaOH, before being diluted to 5 ml with 216 

0.01 M HCl after 24 hours. Equivalent to 10 μg of opal was loaded onto a pre-cleaned 1.8ml 217 

DOWEX 50W-X12 cation exchange resin bed (in H+ form) and eluted with 5 ml of purified 218 

water (Milli-Q element 18.2 MΩ.cm-1). The Si isotope composition was determined on the 219 

diluted solution (0.6ppm Si) on the Nu1700 high-resolution MC-ICPMS at ETH Zürich, 220 

using a standard-sample-standard bracketing protocol34,35. All results in this study were 221 

calculated using the δ30Si notation for deviations of the measured 30Si/28Si from the 222 

international Si standard NBS28 in parts per thousand (‰). The long-term reproducibility 223 
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was better than 0.07‰ δ30Si (1 s.d.). Samples were measured at least 5 times, which resulted 224 

in a 95 % confidence level below 0.08‰. 225 

The trace metal measurements on cleaned diatom frustules36,37 were performed on an Ion 226 

Microprobe Cameca ims-4f at the NERC (National Environment Research Council) 227 

Microprobe Facility located at the School of Geosciences, University of Edinburgh. The 228 

clean diatom samples (2 mg) were pressed into an indium foil and analysed several (10-12) 229 

times for up to 10 cycles with the ion microprobe. We used a 10nA primary beam, 25 micron 230 

image field and energy filtering (75eV). The metal:SiO2 values represent the average of the 231 

10-12 measurements made for each sample. (253 words) 232 
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 350 

Figure 1: The distribution of biogenic silica fluxes and molar biogenic silica (Si) to 351 

organic carbon (Si:Corg) ratios shows the variability in Si:Corg ratio amongst a wide 352 

range of oceanic provinces (a & b): ODV maps and shading are derived from JGOFS15 353 

(black dots) and the Guaymas basin, Gulf of California14 (GoC, black star) sediment trap 354 

data. High-Nitrate, Low Chlorophyll regions (dotted white ellipses) and North East Pacific 355 

margin display higher Si:Corg export ratio than the surrounding open ocean. (c) Corg 356 

normalised biogenic Si and inorganic carbon (Cinorg) ratios in JGOFS sediment traps.   357 

Figure 2: Biogenic fluxes, Si:Corg ratio and diatom-bound Fe in the GoC sediment trap 358 

(a)  Si fluxes and Si:Corg ratios drastically increase during winter upwelling (blue stripes). 359 

(b) A close up on year 1996-1997 shows that Fe:SiO2 (ppm,  grey bars) is high during the 360 

stratified period and decreases during the upwelling season when inorganic (green) and 361 

organic carbon (black) fluxes increase. (c) 1990-1997 average biogenic flux changes in the 362 

GoC. Winter and upwelling conditions show elevated Si fluxes and Si:Corg ratios relative to 363 

summers and El Niño winter. Relatively constant inorganic carbon (Cinorg) suggests Si:Corg 364 

variations are not related to calcareous production. 365 

Figure 3: Multiproxy reconstruction of silica cycling and iron biological availability in 366 

the GoC over the last climatic cycle in core MD 02-2515 (27º53’N, 111º40’W) illustrates 367 

the long-term impact of Fe limitation on Si burial. Diatom-bound Fe (a) increases at the 368 

onset of Heinrich event 1 and the Younger Dryas period (yellow stripes), in conjunction with 369 

decreasing silicic acid relative utilisation (δ30Si, (b))27, biogenic silica concentration (weight 370 

%) (c), Si:Corg molar ratio (d).  371 


