Christian Katlein¹,

S. Arndt¹, M. Nicolaus¹, M. Jakuba², S. Suman², S. Elliott², L. Whitcomb^{2,3}, C. McFarland³, D. Perovich⁴, R. Gerdes¹, A. Boetius^{1,5}, C. German³

Influence of ice thickness and surface properties on light transmission through Arctic sea ice.

Why light transmission?

HELMHOLTZ

- Energy fluxes:
 - Sea ice \rightarrow mass balance
 - Ocean \rightarrow warming
- Light availability:

 \rightarrow ecosystem

Typical sea ice sampling vs. ROV

Light-fiber tether Piloted / autonomous

- Multiple sensors:
 - Radiometers
 - Multibeam sonar
- \rightarrow light \rightarrow ice topography

Coordinated survey

- Optics
- Topography
- Drillholes
- Aerial image

Results

72% of light variability are explained by ice draft and surface albedo

Averages over larger footprints better describe the variability

→Sea ice is not a homogenous slab
→1-D models have limited capabilities

Spatial scales of variablity

Analysis of Variograms

Distance of data pairs

Typical length Scales

	Pole survey (~100 m)	All data (>10 000 m ²)
Ice draft	26.8 m	15.1 m
Albedo	8.4 m	10.6 m
Light transmission	8.4 m	16.6 m

Typical length Scales

On small scales (<100m), light variability is associated with melt pond variability</p>

On larger scales, light variability is associated with ice thickness variability

Histograms

Summary

- NUI ROV enables comprehensive spatial surveys under ice
- **Spatial averages** of albedo and ice thickness determine **light transmittance**
- Variability of light-transmittance is driven by melt-ponds on small scale and by ice-thickness on larger scales.
- Histograms of optical properties of sea ice can be constructed from distributions of ice thickness and albedo

Katlein et al. 2015, submitted to JGR

Thank you!

• Polarstern crews & captain 2011, 2012, 2014

• WHOI NUI-Team:

Mike Jakuba, Chris German, Louis Whitcomb, Stephen Elliot, Stefano Suman, Christopher McFarland, Chris Judge, John Bailey Sam Laney, Ted Maksym, and many more

NUI Funders: NSF OPP (ANT-1126311), NOAA OER (NA14OAR4320158), WHOI, James Family Foundation, George Frederick Jewett Foundation East AWI sea ice group

