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Abstract
Recent studies have shown that predator chemical cues can limit prey demographic rates

such as recruitment. For instance, barnacle pelagic larvae reduce settlement where preda-

tory dogwhelk cues are detected, thereby limiting benthic recruitment. However, adult bar-

nacles attract conspecific larvae through chemical and visual cues, aiding larvae to find

suitable habitat for development. Thus, we tested the hypothesis that the presence of adult

barnacles (Semibalanus balanoides) can neutralize dogwhelk (Nucella lapillus) noncon-
sumptive effects on barnacle recruitment. We did a field experiment in Atlantic Canada dur-

ing the 2012 and 2013 barnacle recruitment seasons (May–June). We manipulated the

presence of dogwhelks (without allowing them to physically contact barnacles) and adult

barnacles in cages established in rocky intertidal habitats. At the end of both recruitment

seasons, we measured barnacle recruit density on tiles kept inside the cages. Without adult

barnacles, the nearby presence of dogwhelks limited barnacle recruitment by 51%. How-

ever, the presence of adult barnacles increased barnacle recruitment by 44% and neutral-

ized dogwhelk nonconsumptive effects on barnacle recruitment, as recruit density was

unaffected by dogwhelk presence. For species from several invertebrate phyla, benthic

adult organisms attract conspecific pelagic larvae. Thus, adult prey might commonly consti-

tute a key factor preventing negative predator nonconsumptive effects on prey recruitment.

Introduction
Predators control prey populations by killing prey, but they also have nonconsumptive effects
(NCEs) on prey [1]. NCEs are often triggered by chemical or visual predator cues that are
detected by prey [2,3]. Upon cue detection, immediate prey responses often include moving
away or decreasing feeding activities to minimize predation risk [4–9]. Such responses occur in
aquatic and terrestrial predator—prey systems [10,11]. As predator cues may reach many prey
individuals at the same time, NCEs may have larger consequences for prey populations than
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consumptive effects, as indicated by theoretical [12,13] and empirical [14–17] studies. For this
reason, currently an important aim in ecology is to identify what factors affect the intensity of
predator NCEs on prey [18].

Studies on invertebrate predator—prey systems have found that predator cues can limit
prey larval settlement [3,19–21] and subsequent recruitment [22], as a number of settling lar-
vae move away when predator cues are detected to reduce future predation risk [23–25]. How-
ever, studies using species from several groups, including molluscs, polychaetes, echinoderms,
arthropods, and tunicates, have found that benthic adult organisms chemically attract conspe-
cific pelagic larvae that are seeking habitat for settlement [26–31]. Such a behavior is thought
to enhance the long-term persistence of populations, as the attraction exerted by adults guides
larvae to locate adequate conditions for development [30,32,33]. Therefore, for species in
which adults attract conspecific larvae, the presence of adult organisms might reduce, or even
eliminate, predator NCEs on the recruitment of such prey species. This study experimentally
investigates this notion using marine predators (dogwhelks) and prey (barnacles) as a model
system.

Barnacles are sessile organisms with pelagic larvae and are common in intertidal habitats
worldwide [34]. Dogwhelks are benthic predatory snails that frequently feed on intertidal bar-
nacles [35,36]. Barnacle larvae often react negatively to chemical cues released by dogwhelks
(e.g., pedal mucus [19]). Recent field experiments have shown that, in the absence of adult bar-
nacles, waterborne chemical cues from dogwhelks can limit barnacle larval settlement [21]
and, ultimately, barnacle recruitment [22]. However, adult barnacles attract conspecific larvae
that are seeking settlement [37–40] through chemical [41–45] and visual [46] cues, in that way
enhancing barnacle recruitment [47–49]. Therefore, we conducted a factorial field experiment
that simultaneously manipulated the presence of dogwhelks and adult barnacles to test the
hypothesis that adult barnacles can neutralize the negative NCEs that dogwhelks have on bar-
nacle recruitment. To examine the generality of this prediction, we replicated the experiment
in two years.

Material and Methods

Study System
For barnacles, settlement is the permanent contact with the substrate established by pelagic
cyprid larvae [50], while recruitment is the appearance of new benthic individuals that have
metamorphosed after larval settlement and have reached a size that allows them to be counted
[51]. We did the experiment in rocky intertidal habitats on Deming Island (45° 12' 45" N, 61°
10' 26" W), near Whitehead, on the Atlantic coast of Nova Scotia, Canada. The experiment
spanned two barnacle recruitment seasons (2012 and 2013), that is, the period during which
recruits appeared on the shore. Daily maximum water velocity (an indication of wave expo-
sure) determined with dynamometers (see design in [52]) was 5.0 ± 0.7 m s-1 (mean ± SE,
range = 3.5–6.6 m s-1; n = 5) in the 2012 recruitment season and 4.2 ± 0.1 m s-1 (range = 3.0–
6.9 m s-1; n = 94) in the 2013 recruitment season. Thus, the studied habitats were subjected to a
moderate wave action, since habitats directly facing the open ocean in Nova Scotia experience
water velocities up to 12 m s-1 [53]. Intertidal temperature measured every 30 minutes through-
out consecutive high and low tides with submersible loggers (HOBO Pendant Logger, Onset
Computer Corp., Pocasset, MA, USA) was 9.2 ± 0.2°C (mean ± SE; n = 6 loggers) during the
2013 recruitment season (no data are available for 2012), with temperatures not exceeding
20°C during low tides. Coastal seawater salinity was 30 ppt in both years [54]. The abundance
of coastal phytoplankton (food for barnacle nauplius larvae and recruits [34, 55]) measured
as chlorophyll-a concentration was 1.50 ± 0.49 mg m-3 (mean ± SE; n = 3) during the 2012
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recruitment season and 3.22 ± 0.02 mg m-3 (n = 2) during the 2013 recruitment season (MOD-
IS-Aqua satellite data [56]).

On this coast, Semibalanus balanoides (L. 1767) is the only intertidal barnacle species [57].
It is a cross-fertilizing hermaphrodite [34,58] that broods once per year [59,60]. In Atlantic
Canada, S. balanoidesmates in early autumn, breeds in winter, and releases pelagic larvae in
spring [59,61]. Larvae develop over 5–6 weeks in the water column [59]. In northern Nova Sco-
tia, barnacle recruits appear in intertidal habitats in May and June [49]. The dogwhelk Nucella
lapillus (L. 1758) is the main predator of S. balanoides on this coast. Movement and feeding in
N. lapillus start at 3–5°C of water temperature and increase up to 20°C [62]. On the Atlantic
coast of Nova Scotia, N. lapillus becomes active in April [35,63], when it can be found preying
on barnacles. Under the environmental conditions described above, N. lapillus cues limit S.
balanoides recruitment [22] by limiting larval settlement [21]. Nucella lapillus releases pedal
mucus during locomotion [64].

Field Experiment
To test our hypothesis, we did a manipulative field experiment. Both in 2012 and 2013, we
used "dogwhelks" and "adult barnacles" as crossed factors, each with two levels (presence and
absence), arranged following a randomized complete block design with each of the four treat-
ments replicated twice within each block. We established six blocks each year on relatively
horizontal intertidal areas, totalling 24 experimental units (12 per year) for each of the four
treatments involving the "dogwhelks" and "adult barnacles" factors. We used different blocks in
each year. The vertical intertidal range is 1.8 m on this coast and the blocks were established at
an elevation range of 0.7–1.4 m above chart datum (lowest normal tide in Canada). Block size
was 15.3 ± 3.0 m2 (mean ± SE; n = 12 blocks), with experimental units being at least 0.5 m
apart within blocks.

The experimental unit (Fig 1) included a cage made of a PVC ring (25 cm in diameter and
2.5 cm tall) and plastic mesh (0.5 cm x 0.5 cm of opening size). Each cage was subdivided by
mesh into a central compartment (12 cm x 12 cm) and a peripheral compartment (area = 347
cm2). We used the peripheral compartment to manipulate dogwhelk presence by either enclos-
ing 10 dogwhelks (2.1–2.3 cm long) collected locally or by excluding dogwhelks. These values
of dogwhelk density represent the natural density range on the studied coast (0–3 dogwhelks
dm-2), which we determined using 60 random quadrats (40 cm x 40 cm). The central compart-
ment included two contiguous PVC tiles (each one measuring 8.9 cm x 4.6 cm x 0.4 cm) cov-
ered with black tape with a sandpaper texture (Permastik self-adhesive anti-skid safety tread,
RCR International, Boucherville, Quebec, Canada) to offer a suitable surface for barnacle
recruitment. A pilot study indicated that such tiles are representative of natural rates of barna-
cle larval settlement, as the density of settled larvae during May did not differ between tiles
(3 ± 1 individuals dm-2; mean ± SE, n = 12 tiles) and the natural rocky substrate (5 ± 2 individ-
uals dm-2, n = 12 quadrats) (t22 = 0.809, P = 0.427). We also used the central compartment to
manipulate adult barnacle presence. Each adult-present cage had four substrates (each one
being 4-cm2 in area and 0.3–0.5 cm in height) hosting a total of 15 adult barnacles (0.5–1.5 cm
in basal shell diameter and 0.3–0.5 cm in height) in the central compartment. These substrates
were attached to the tiles with marine epoxy (A-788 Splash Zone Compound, Z-Spar, Los
Angeles, CA, USA). An adult-absent cage had four such substrates without adult barnacles to
eliminate the epoxy as a possible confounding factor. Because of the small size of the adult bar-
nacles relative to the substrates and of the moderate wave exposure in the habitats, no major
effects of adult barnacles on water motion were expected. We created these substrates by cut-
ting out wood pieces with and without barnacles from a nearby dock. The density of adult
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barnacles in the central compartment (calculated based on the area of the two tiles) was repre-
sentative of the studied shore. We secured the cages to the substrate with screws, washers, and
plastic anchors placed into holes drilled into the substrate. We tightened the tiles to the bottom
mesh of the cages with plastic screws, wing nuts, and washers. In our study habitats, dogwhelks
were naturally feeding on a barnacle diet, as mussels (another possible prey for dogwhelks)
[65] were largely absent.

Cues from adult barnacles [45,46] and dogwhelks [21] affect nearby cyprid settlement within
centimeters. The caged dogwhelks could freely move inside the peripheral compartment and
approach the recruitment tiles up to 1.5 cm. Thus, cyprids settling on the tiles were exposed to
cues from adult barnacles and dogwhelks but not to physical contact with these predators. To
exclude cyprid attraction by adult barnacles found outside the cages, we removed all adult bar-
nacles from 40 cm x 40 cm areas around the center of each cage. We did not feed the caged dog-
whelks during the experiment but, to prevent starvation, we replaced the dogwhelks every two

Fig 1. Experimental unit. (A) Top view of a cage, showing (a) the PVC ring of 25 cm in diameter, (b) the
central compartment with (c) two barnacle recruitment tiles and (d) four small substrates (shown without adult
barnacles), and (e) the peripheral compartment (shown without dogwhelks). The (f) top mesh of the central
compartment is shown open to improve viewing of its internal components, but it remained closed with plastic
cable ties during the experiment. The cage was secured with (g) screws and PVC plates to the substrate. (B)
Side view of a cage (showing adult barnacles in the four substrates in the central compartment), exhibiting its
limited height (2.5 cm) (Picture credits: Julius A. Ellrich).

doi:10.1371/journal.pone.0154572.g001
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weeks, releasing the removed individuals hundreds of meters away. We also removed any free-
living dogwhelks found around the cages periodically. To exclude potential influences of sea-
weed mucus [19], canopy flow barriers [66] and canopy thermal and humidifying effects [49]
on barnacle recruitment, we removed all seaweeds (mainly Fucus vesiculosus and some Asco-
phyllum nodosum) found around the cages. We started the experiment by setting up all treat-
ments on the shore on 16 April 2012 and on 24 April 2013.

Barnacle recruits appeared for the first time on 30 April 2012 and on 9 May 2013. We mea-
sured barnacle recruit density on the tiles on 25 May 2012 and on 26 June 2013. On those
dates, recruits had a basal diameter of 1–2 mm. No recruits appeared afterwards, so we sampled
at the end of the 2012 and 2013 recruitment seasons, when maximum recruit densities were
reached (S1 Dataset).

Statistical Analysis
We conducted a nested, four-way analysis of variance (ANOVA) to test for the effects of dog-
whelk cues (fixed factor with two levels: presence and absence), adult barnacles (fixed factor
with two levels: presence and absence), year (random factor with two levels), and block (ran-
dom factor with six levels, nested within year) on barnacle recruit density. We confirmed the
homoscedasticity and normality assumptions using Cochran's C-test and Shapiro-Wilk test,
respectively, after square-root transformation of the data. When nonsignificant results
occurred for interactions involving random and fixed factors at P� 0.25, we eliminated the
corresponding sources of variation and pooled their sum of squares with the residual sum of
squares to increase statistical power to test the remaining factors [67]. After running the final
ANOVA following this procedure, we compared treatments using Tukey's Honestly Significant
Difference (HSD) tests. We conducted the analyses with SPSS 18.

Ethics Statement
We did the experiment in public-access marine intertidal habitats. The species that we used for
the study, dogwhelks (Nucella lapillus) and barnacles (Semibalanus balanoides), are very abun-
dant and not endangered or protected. Thus, neither a permit nor ethics approval was required
for our research.

Results
The "year x dogwhelks", "year x adult barnacles", "dogwhelks x block(year)" and "dogwhelks x
adult barnacles x block(year)" interactions exhibited P values higher than 0.25 in the first
ANOVA (S1 Table). After pooling the sum of squares of those sources of variation with the
residual sum of squares, the second ANOVA revealed that the "dogwhelk x adult barnacles x
year" interaction then showed a P value higher than 0.25 (S2 Table). After a second step of
sum-of-squares pooling, the final (third) ANOVA indicated that the presence of dogwhelks
and adult barnacles significantly affected barnacle recruit density (Table 1). As the interaction
between those two factors was also significant (Table 1), Tukey HSD tests compared the four
corresponding treatments. Regardless of the nearby presence or absence of dogwhelks, adult
barnacles significantly enhanced barnacle recruit density, by 44% on average combining both
dogwhelk treatments (Fig 2). In turn, adult barnacle presence affected the expression of dog-
whelk NCEs on barnacle recruitment. In the absence of adult barnacles, the nearby presence of
dogwhelks significantly limited (Tukey HSD test, P< 0.001) barnacle recruit density (by 51%
on average), but the presence of adult barnacles prevented dogwhelks from having any NCEs
on barnacle recruit density (Tukey HSD test, P = 0.571; Fig 2), supporting this study’s hypothe-
sis. The factor "year" and the "adult barnacles x block(year)" interaction were not significant
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(Table 1). The factor "block(year)" was significant, but this result merely tells that barnacle
recruit density differed among blocks, the important result being that blocks did not interact
with other factors, indicating that the interactive effects of dogwhelks and adult barnacles sum-
marized above were spatially consistent on the shore.

Results of the final (third) ANOVA that tested the effects of dogwhelk presence ("Dog-
whelks"), adult barnacle presence ("Adult barnacles"), year ("Year"), and blocks nested within
year ("Block(Year)") on barnacle recruit density on the Atlantic coast of Nova Scotia, Canada,

Table 1. Summary results of the final ANOVA on barnacle recruit density.

Source of variation df MS F P

Dogwhelks 1 210.102 14.954 <0.001

Adult barnacles 1 536.024 20.560 0.001

Dogwhelks x Adult barnacles 1 59.218 4.215 0.044

Year 1 0.170 0.002 0.964

Block(Year) 10 78.309 3.001 0.043

Adult barnacles x Block(Year) 11 26.093 1.857 0.061

Pooled 69 14.050

doi:10.1371/journal.pone.0154572.t001

Fig 2. Barnacle recruit density (mean ± SE) in the presence and absence of nearby dogwhelks and adult barnacles. Significant differences between
treatments (P < 0.05) are indicated when the two corresponding bars do not share the same letter.

doi:10.1371/journal.pone.0154572.g002
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at the end of the 2012 and 2013 recruitment seasons. The term "Pooled" refers to the residual
source of variation in the first ANOVA plus the variation for the sources that were nonsignifi-
cant with P� 0.25 in the first and second ANOVA, which are summarized in the S1 and S2
Tables. Significant P values (P< 0.05) are highlighted in boldface.

Discussion
This study has revealed that the presence of adult barnacles prevents the nonconsumptive limi-
tation that dogwhelks would otherwise exert on barnacle recruitment. This is an important
finding because, as predator NCEs may influence prey populations more than consumptive
effects [12–17], it is relevant to unravel the factors that influence the occurrence of NCEs [18].
Our results may be explained by considering the known role of dogwhelk and adult barnacle
cues. On the one hand, in the absence of adult barnacles, dogwhelk cues have been found to
limit barnacle larval settlement [19,21] and subsequent recruitment [22], as such cues are an
indication of predation risk in benthic habitats. However, adult barnacles attract conspecific
larvae that are seeking settlement [37–40] through chemical [41–45] and visual cues [46]. Cor-
respondingly, our experiment has shown that adult barnacle presence increases barnacle
recruitment, which was the case regardless of the presence or absence of dogwhelks. Therefore,
the lack of dogwhelk NCEs on barnacle recruitment in the presence of adult barnacles likely
resulted from the influence of the attractive cues from the adult barnacles. In the presence of
barnacle adults, cyprid larvae possibly did sense dogwhelk cues when these predators were
present, but the adult barnacle cues seemingly had a more prominent role in the settlement
behavior of barnacle larvae. Adult barnacle cues may have indicated to larvae that abiotic and
biotic conditions were suitable for post-settlement growth and reproduction [33].

Future research could investigate if the relative density of dogwhelks and adult barnacles
may influence the occurrence of dogwhelk NCEs on barnacle recruitment. For example, a
higher dogwhelk density than used in our experiment might trigger NCEs on barnacle recruit-
ment under the adult barnacle density we used. This could be so because studies with other
species have shown that predator NCEs on prey behavior may intensify with predator density
through the increase of predator cues in the environment [68–70]. Dogwhelk density has
already been found to influence the occurrence of NCEs on barnacle recruitment in the absence
of adult barnacles [71]. On the other hand, a lower adult barnacle density than used in our
experiment might limit, but not neutralize, dogwhelk NCEs on barnacle recruitment for the
dogwhelk density we used. This could be the case because microcosm experiments with other
species have found that, for a given predator density, the intensity of predator NCEs on prey
activity and growth is negatively related to prey density [72,73]. Because of the convenient
body size of dogwhelks and barnacles for field experimentation, this model predator—prey sys-
tem could help to further advance the theory about density influences on predator NCEs on
prey demography.

Besides barnacles, many invertebrate species show attraction of conspecific larvae by adult
organisms, including other arthropod species and species of molluscs, polychaetes, echino-
derms, and tunicates [26–31]. Thus, reduced or absent predator NCEs on the recruitment of
those species in the presence of adult conspecifics could be a common phenomenon. Excep-
tions could be cannibalistic species in which adults or juveniles consume conspecific larvae.
For instance, in cannibalistic crabs, conspecific presence may have neutral [20] or negative [3]
NCEs on larval settlement, suggesting that conspecific presence would not neutralize negative
NCEs from heterospecific predators on prey recruitment. A thorough understanding of the
interactive effects of predator and adult prey density on prey recruitment could be gained
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through field experiments using prey species spanning a range of adult influences on larval set-
tlement behavior.

Supporting Information
S1 Dataset. Barnacle recruit density (individuals dm-2) in the presence and absence of dog-
whelks and adult barnacles.
(XLSX)

S1 Table. Results of the first ANOVA that preceded the second ANOVA that is summa-
rized in the S2 Table. The first ANOVA tested the effects of the nearby presence of dogwhelks
(denoted as "D"), presence of adult barnacles ("A"), year ("Y"), and block nested within year (“B
(Y)”) on barnacle recruit density on the Atlantic coast of Nova Scotia, Canada, at the end of the
2012 and 2013 barnacle recruitment seasons.
(DOCX)

S2 Table. Results of the second ANOVA that preceded the final ANOVA that is summa-
rized in Table 1. The second ANOVA tested the effects of the nearby presence of dogwhelks
(denoted as "D"), presence of adult barnacles ("A"), year ("Y"), and block nested within year
(“Block(Year)”) on barnacle recruit density on the Atlantic coast of Nova Scotia, Canada, at the
end of the 2012 and 2013 barnacle recruitment seasons. The term "Pooled" refers to the residual
source of variation in the first ANOVA plus the variation for the sources that were nonsignifi-
cant with P� 0.25 in the first ANOVA.
(DOCX)

Acknowledgments
We thank Arne Beermann, Elise Keppel, and Willy Petzold for field assistance, David Risk, Ste-
ven MacDonald, and Vince Arsenault for laboratory assistance, and Ross Coleman, Ana Silva,
and an anonymous reviewer for their constructive comments on earlier versions of this paper.

Author Contributions
Conceived and designed the experiments: JAE RAS MM. Performed the experiments: JAE KR.
Analyzed the data: JAE MM. Contributed reagents/materials/analysis tools: RAS. Wrote the
paper: JAE RAS. Commented on earlier drafts of the manuscript: KR MM.

References
1. Holt RD. Predation and community organization. In: Levin SA, editor. The Princeton guide to ecology.

Princeton: Princeton University Press; 2009. p. 274–281.

2. Ferrari MCO,Wisenden BD, Chivers DP. Chemical ecology of predator-prey interactions in aquatic
ecosystems: a review and prospectus. Can J Zool. 2010; 88:698–724.

3. Tapia-Lewin S, Pardo LM. Field assessment of the predation risk—food availability trade-off in crab
megalopae settlement. PLoS ONE. 2014; 9:e95335. doi: 10.1371/journal.pone.0095335 PMID:
24748151

4. Trussell GC, Ewanchuk PJ, Bertness, MD. Trait-mediated effects in rocky intertidal food chains: preda-
tor risk cues alter prey feeding rates. Ecology. 2003; 84:629–640.

5. Keppel E, Scrosati R. Chemically mediated avoidance of Hemigrapsus nudus (Crustacea) by Littorina
scutulata (Gastropoda): effects of species coexistence and variable cues. Anim Behav. 2004; 68:915–
920.

6. Large SI, Smee DL, Trussell GC. Environmental conditions influence the frequency of prey responses
to predation risk. Mar Ecol Prog Ser. 2011; 422:41–49.

7. Molis M, Preuss I, Firmenich A, Ellrich J. Predation risk indirectly enhances survival of seaweed recruits
but not intraspecific competition in an intermediate herbivore species. J Ecol. 2011; 99:807–817.

Neutralization of Predator Nonconsumptive Effects

PLOS ONE | DOI:10.1371/journal.pone.0154572 April 28, 2016 8 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0154572.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0154572.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0154572.s003
http://dx.doi.org/10.1371/journal.pone.0095335
http://www.ncbi.nlm.nih.gov/pubmed/24748151


8. Johnston BR, Molis M, Scrosati RA. Predator chemical cues affect prey feeding activity differently in
juveniles and adults. Can J Zool. 2012; 90:128–132.

9. Orrock JL, Preisser EL, Grabowski JH, Trussell GC. The cost of safety: refuges increase the impact of
predation risk in aquatic systems. Ecology. 2013; 94:573–579. PMID: 23687883

10. Hermann SL, Thaler JS. Prey perception of predation risk: volatile chemical cues mediate non-con-
sumptive effects of a predator on a herbivorous insect. Oecologia. 2014; 176:669–676. doi: 10.1007/
s00442-014-3069-5 PMID: 25234373

11. Matassa SM, Trussell GC. Effects of predation risk across a latitudinal temperature gradient. Oecolo-
gia. 2015; 177:775–784. doi: 10.1007/s00442-014-3156-7 PMID: 25433694

12. Preisser EL, Bolnick DI, Benard MF. Scared to death? The effects of intimidation and consumption in
predator—prey interactions. Ecology. 2005; 86:501–509.

13. Peacor SD, Peckarsky BL, Trussell GC, Vonesh JR. Costs of predator-induced phenotypic plasticity: a
graphical model for predicting the contribution of nonconsumptive and consumptive effects of predators
on prey. Oecologia. 2013; 171:1–10. doi: 10.1007/s00442-012-2394-9 PMID: 22851163

14. Peacor S, Werner EE. The contribution of trait-mediated indirect effects to the net effects of a predator.
Proc Natl Acad Sci U S A. 2001; 98:3904–3908. PMID: 11259674

15. Trussell GC, Ewanchuk PJ, Matassa CM. Habitat effects on the relative importance of trait- and den-
sity-mediated indirect interactions. Ecol Lett. 2006; 9:1245–1252. PMID: 17040327

16. Pangle KL, Peacor SD, Johannsson OE. Large nonlethal effects of an invasive invertebrate predator
on zooplankton population growth rate. Ecology. 2007; 88:402–412. PMID: 17479758

17. Matassa CM, Trussell GC. Landscape of fear influences the relative importance of consumptive and
nonconsumptive predator effects. Ecology. 2011; 92:2258–2266. PMID: 22352165

18. Weissburg M, Smee DL, Ferner MC. The sensory ecology of nonconsumptive predator effects. Am
Nat. 2014; 184:141–157. doi: 10.1086/676644 PMID: 25058276

19. Johnson LE, Strathmann RR. Settling barnacle larvae avoid substrata previously occupied by a mobile
predator. J Exp Mar Biol Ecol. 1989; 128:87–103.

20. Welch JM, Rittschof D, Bullock TM, Fordward RB. Effects of chemical cues on settlement behaviour of
blue crabCallinectes sapidus postlarvae. Mar Ecol Prog Ser. 1997; 154:143–153.

21. Ellrich JA, Scrosati RA, Bertolini C, Molis M. A predator has nonconsumptive effects on different life-his-
tory stages of a prey. Mar Biol. 2016; 163:5.

22. Ellrich JA, Scrosati RA, Molis M. Predator nonconsumptive effects on prey recruitment weaken with
recruit density. Ecology. 2015; 96:611–616. PMID: 26236858

23. Boudreau B, Bourget E, Simard Y. Behavioural responses of competent lobster postlarvae to odor
plumes. Mar Biol. 1993; 117:63–69.

24. Banks J, Dinnel P. Settlement behavior of Dungeness crab (Cancer magisterDana, 1852) megalopae
in the presence of the shore crab,Hemigrapsus (Decapoda, Brachyura). Crustaceana. 2000; 73:223–
234.

25. Metaxas A, Burdett-Coutts V. Response of invertebrate larvae to the presence of the ctenophore Boli-
nopsis infundibulum, a potential predator. J Exp Mar Biol Ecol. 2006; 334:187–195.

26. Qian PY. Larval settlement of polychaetes. Hydrobiologia. 1999; 402:239–253.

27. Hadfield MG, Paul VJ. Natural chemical cues for settlement and metamorphosis of marine invertebrate
larvae. In: McClintock JB, Baker JB, editors. Marine chemical ecology. Boca Raton: CRC Press; 2001.
p 431–460.

28. Manríquez PH, Castilla JC. Roles of larval behaviour and microhabitat traits in determining spatial
aggregations in the ascidian Pyura chilensis. Mar Ecol Prog Ser. 2007; 332:155–165.

29. Takeda S. Mechanismsmaintaining dense beds of the sand dollar Scaphechinus mirabilis in northern
Japan. J Exp Mar Biol Ecol. 2008; 363:21–27.

30. Vásquez HE, Hashimoto K, Yoshida A, Hara K, Imai CC, Kitamura H, et al. A glycoprotein in shells of
conspecifics induces larval settlement of the Pacific oysterCrassostrea gigas. PLoS ONE. 2013; 8:
e82358. doi: 10.1371/journal.pone.0082358 PMID: 24349261

31. Puglisi MP, Sneed JM, Sharp KH, Ritson-Williams R, Paul VJ. Marine chemical ecology in benthic envi-
ronments. Nat Prod Rep. 2014; 31:1510–1553. doi: 10.1039/c4np00017j PMID: 25070776

32. Rodríguez SR, Ojeda FP, Inestrosa NC. Settlement of benthic marine invertebrates. Mar Ecol Prog
Ser. 1993; 79:193–207.

33. Clare AS. Toward a characterization of the chemical cue to barnacle gregariousness. In: Breithaupt T,
Thiel M, editors. Chemical communication in crustaceans. New York: Springer Science; 2011. p. 431–
450.

Neutralization of Predator Nonconsumptive Effects

PLOS ONE | DOI:10.1371/journal.pone.0154572 April 28, 2016 9 / 11

http://www.ncbi.nlm.nih.gov/pubmed/23687883
http://dx.doi.org/10.1007/s00442-014-3069-5
http://dx.doi.org/10.1007/s00442-014-3069-5
http://www.ncbi.nlm.nih.gov/pubmed/25234373
http://dx.doi.org/10.1007/s00442-014-3156-7
http://www.ncbi.nlm.nih.gov/pubmed/25433694
http://dx.doi.org/10.1007/s00442-012-2394-9
http://www.ncbi.nlm.nih.gov/pubmed/22851163
http://www.ncbi.nlm.nih.gov/pubmed/11259674
http://www.ncbi.nlm.nih.gov/pubmed/17040327
http://www.ncbi.nlm.nih.gov/pubmed/17479758
http://www.ncbi.nlm.nih.gov/pubmed/22352165
http://dx.doi.org/10.1086/676644
http://www.ncbi.nlm.nih.gov/pubmed/25058276
http://www.ncbi.nlm.nih.gov/pubmed/26236858
http://dx.doi.org/10.1371/journal.pone.0082358
http://www.ncbi.nlm.nih.gov/pubmed/24349261
http://dx.doi.org/10.1039/c4np00017j
http://www.ncbi.nlm.nih.gov/pubmed/25070776


34. Anderson DT. Barnacles. Structure, function, development, and evolution. London: Chapman & Hall;
1994.

35. Hughes RN. Annual production of two Nova Scotian populations ofNucella lapillus (L.). Oecologia.
1972; 8:356–370.

36. Palmer AR. Growth rate as a measure of food value in thaidid gastropods: assumptions and implica-
tions for prey morphology and distribution. J Exp Mar Biol Ecol. 1983; 73:95–124.

37. Raimondi PT. Settlement cues and determination of the vertical limit of an intertidal barnacle. Ecology.
1988; 69:400–407.

38. Bertness MD, Gaines SD, Stephens EG, Yund PO. Components of recruitment in populations of the
acorn barnacle Semibalanus balanoides (Linnaeus). J Exp Mar Biol Ecol. 1992; 156:199–215.

39. Thompson RC, Norton TA, Hawkins SJ. The influence of epilithic microbial films on the settlement of
Semibalanus balanoides cyprids—a comparison between laboratory and field experiments. Hydrobiolo-
gia. 1998; 375/376:203–216.

40. Wright JR, Boxshall AJ. The influence of small-scale flow and chemical cues on the settlement of two
congeneric barnacle species. Mar Ecol Prog Ser. 1999; 183:179–187.

41. Crisp DJ, Meadows PS. The chemical basis of gregariousness in cirripedes. Proc R Soc B. 1962;
156:500–520.

42. Gabbott PA, Larman VN. The chemical basis of gregariousness in cirripedes: a review (1953–1984). In:
Schram R, Southward AJ, editors. Barnacle biology. Rotterdam: A. A. Balkema; 1987. p. 377–388.

43. Matsumura KJ, Hills M, Thomason PO, Thomason JC, and Clare AS. Discrimination at settlement in
barnacles: laboratory and field experiments on settlement behaviour in response to settlement-inducing
protein complexes. Biofouling. 2000; 16:181–190.

44. Dreanno C, Kirby RR, Clare AS. Involvement of the barnacle settlement-inducing protein complex
(SIPC) in species recognition at settlement. J Exp Mar Biol Ecol. 2007; 351:276–282.

45. Elbourne PD, Clare AS. Ecological relevance of conspecific, waterborne settlement cue in Balanus
amphitrite. J Exp Mar Biol Ecol. 2010; 392:99–106.

46. Matsumura K, Qian P-Y. Larval vision contributes to gregarious settlement in barnacles: adult red fluo-
rescence as a possible visual signal. J Exp Biol. 2014; 217:743–750. doi: 10.1242/jeb.096990 PMID:
24574388

47. Chiba S, Noda T. Factors maintaining topography-related mosaic of barnacle and mussel on a rocky
shore. J Mar Biol Assoc U. K.. 2000; 80:617–622.

48. Kent A, Hawkins SJ, Doncaster CP. Population consequences of mutual attraction between settling
and adult barnacles. J Anim Ecol. 2003; 72:941–952.

49. Beermann AJ, Ellrich JA, Molis M, Scrosati RA. Effects of seaweed canopies and adult barnacles on
barnacle recruitment: the interplay of positive and negative influences. J Exp Mar Biol Ecol. 2013;
448:162–170.

50. Jenkins SR, Åberg P, Cervin G, Coleman RA, Delany J, Della Santina P, et al. Spatial and temporal var-
iation in settlement and recruitment of the intertidal barnacle Semibalanus balanoides (L.) (Crustacea:
Cirripedia) over a European scale. J Exp Mar Biol Ecol. 2000; 243:209–225.

51. Cole SWB, Scrosati RA, Tam JC, Sussmann AV. Regional decoupling between NWAtlantic barnacle
recruit and adult density is related to changes in pelagic food supply and benthic disturbance. J Sea
Res. 2011; 65:33–37.

52. Bell EC, Denny MW. Quantifying "wave exposure": a simple device for recording maximum velocity
and results of its use at several field sites. J Exp Mar Biol Ecol. 1994; 181:9–29.

53. Hunt HL, Scheibling RE. Patch dynamics of mussels on rocky shores: integrating process to under-
stand pattern. Ecology. 2001; 82:3213–3231.

54. Fisheries and Oceans Canada. Oceanography and scientific data branch; 2015. Database: Oceano-
graphic data [Internet]. Accessed: http://www.meds-sdmm.dfo-mpo.gc.ca

55. Vargas CA, Manríquez PH, Navarrete SA. Feeding by larvae of intertidal invertebrates: assessing their
position in pelagic food webs. Ecology. 2006; 87:444–457. PMID: 16637369

56. National Aeronautics and Space Administration; 2015. Database: Ocean color radiometry online visual-
ization and analysis [Internet]. Accessed: http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?
instance_id=ocean_8day

57. Scrosati R, Heaven C. Spatial trends in community richness, diversity, and evenness across rocky
intertidal environmental stress gradients in eastern Canada. Mar Ecol Prog Ser. 2007; 342:1–14.

58. Rainbow PS. An introduction to the biology of British littoral barnacles. Field Stud. 1984; 6:1–51.

Neutralization of Predator Nonconsumptive Effects

PLOS ONE | DOI:10.1371/journal.pone.0154572 April 28, 2016 10 / 11

http://dx.doi.org/10.1242/jeb.096990
http://www.ncbi.nlm.nih.gov/pubmed/24574388
http://www.meds-sdmm.dfo-mpo.gc.ca
http://www.ncbi.nlm.nih.gov/pubmed/16637369
http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id�=�ocean_8day
http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id�=�ocean_8day


59. Bousfield EL. The distribution and spawning seasons of barnacles on the Atlantic coast of Canada. Bull
Natl Mus Can. 1954; 132:112–154.

60. Pineda J, Riebensahm D, Medeiros-Bergen D. Semibalanus balanoides in winter and spring: Larval
concentration, settlement, and substrate occupancy. Mar Biol. 2002; 140:789–800.

61. Bouchard GM, Aiken RB. Latitudinal variation in the reproductive cycle and size of the northern rock
barnacle Semibalanus balanoides (L.) (Cirripedia, Archaeobalanidae) in the Bay of Fundy. Crusta-
ceana. 2012; 85:779–787.

62. Largen MJ. The influence of water temperature upon the life of the dog-whelk Thais lapillus (Gastro-
poda: Prosobranchia). J Anim Ecol. 1967; 36:207–214.

63. Hunt HL, Scheibling RE. Effects of whelk (Nucella lapillus (L.)) predation on mussel (Mytilus trossulus
(Gould),M. edulis (L.)) assemblages in tidepools and on emergent rock on a wave-exposed rocky
shore in Nova Scotia, Canada. J Exp Mar Biol Ecol. 1998; 226:87–113.

64. Davies MS, Hawkins SJ. Mucus frommarine molluscs. Adv Mar Biol. 1998; 34:1–71.

65. Largen MJ. The diet of the dog-whelk,Nucella lapillus (Gastropoda Prosobranchia). J Zool. 1967;
151:123–127.

66. Jenkins SR, Norton TA, Hawkins SJ. Settlement and post-settlement interactions between Semibala-
nus balanoides (L.) (Crustacea: Cirripedia) and three species of fucoid canopy algae. J Exp Mar Biol
Ecol. 1999; 236:49–67.

67. Underwood AJ. Experiments in ecology: their logical design and interpretation using analysis of vari-
ance. Cambridge: Cambridge University Press; 1997.

68. Silberbush A, Blaustein L. Mosquito females quantify risk of predation to their progeny when selecting
an oviposition site. Funct Ecology. 2011; 25:1091–1095.

69. Bowler DE, Yano S, Amano H. The non-consumptive effects of a predator on spider mites depend on
predator density. J Zool. 2012; 289:52–59.

70. Hill JM, Weissburg MJ. Predator biomass determines the magnitude of non-consumptive effects
(NCEs) in both laboratory and field environments. Oecologia. 2013; 172:79–91. doi: 10.1007/s00442-
012-2488-4 PMID: 23250631

71. Ellrich JA, Scrosati RA, Petzold W. Predator density affects nonconsumptive predator limitation of prey
recruitment: field experimental evidence. J Exp Mar Biol Ecol. 2015; 472:72–76.

72. Turner AM. Non-lethal effects of predators on prey growth rates depend on prey density and nutrient
additions. Oikos. 2004; 104:561–569.

73. Van Buskirk J, Ferrari M, Kueng D, Näpflin K, Ritter N. Prey risk assessment depends on conspecific
density. Oikos. 2011; 120:1235–1239.

Neutralization of Predator Nonconsumptive Effects

PLOS ONE | DOI:10.1371/journal.pone.0154572 April 28, 2016 11 / 11

http://dx.doi.org/10.1007/s00442-012-2488-4
http://dx.doi.org/10.1007/s00442-012-2488-4
http://www.ncbi.nlm.nih.gov/pubmed/23250631


S1 Table.  Results of the first ANOVA that preceded the second ANOVA that is 

summarized in the S2 Table. 

Source of variation df MS F P 
D 1 209.435 83.566 0.069 
A 1 531.501 14.359 0.164 
D x A 1 59.199 2.674 0.349 
Y 1 0.188 0.003 0.964 
Y x D  1 2.507 0.108 0.796 
Y x A 1 37.015 1.023 0.404 
Y x D x A  1 22.141 2.173 0.171 
B(Y) 10 78.165 3.113 0.063 
D x B(Y) 10 11.266 1.107 0.437 
A x B(Y) 10 24.016 2.361 0.096 
D x A x B(Y) 10 10.173 0.655 0.759 
Residual 47 15.519   
 

The first ANOVA tested the effects of the nearby presence of dogwhelks (denoted as "D"), 

presence of adult barnacles ("A"), year ("Y"), and block nested within year (“B(Y)”) on barnacle 

recruit density on the Atlantic coast of Nova Scotia, Canada, at the end of the 2012 and 2013 

barnacle recruitment seasons. 

	  



S2 Table.  Results of the second ANOVA that preceded the final ANOVA that is 

summarized in Table 1. 

Source of variation df MS F P 
D 1 208.663 16.390 0.056 
A 1 537.968 23.667 0.010 
D x A 1 58.476 4.593 0.165 
Y 1 0.133 0.002 0.968 
Y x A x D 2 12.731 0.904 0.410 
B(Y) 10 78.418 3.253 0.038 
A x B(Y) 10 24.106 1.711 0.096 
Pooled 67 14.089   
 

The second ANOVA tested the effects of the nearby presence of dogwhelks (denoted as "D"), 

presence of adult barnacles ("A"), year ("Y"), and block nested within year (“Block(Year)”) on 

barnacle recruit density on the Atlantic coast of Nova Scotia, Canada, at the end of the 2012 and 

2013 barnacle recruitment seasons. The term "Pooled" refers to the residual source of variation in 

the first ANOVA plus the variation for the sources that were nonsignificant with P ≥ 0.25 in the 

first ANOVA. 

	  


