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Abstract.3

Landfast ice covers large surface areas of the winter Siberian Seas. The im-4

mobile landfast ice cover inhibits divergent and convergent motion, hence5

dynamical sea ice growth and re-distribution, decouples winter river plumes6

in coastal seas from the atmosphere and positions polynyas at the landfast7

ice edge o↵shore. In spite of the potentially large e↵ects, state-of-the-art nu-8

merical models usually do not represent landfast ice in its correct extent. A9

simple parametrization of landfast ice based on bathymetry and internal sea10

ice strength is introduced its e↵ects on the Arctic Ocean are demonstrated.11

The simulations suggest that the Siberian landfast ice impacts the Arctic halo-12

cline stability through enhanced brine production in polynyas located closer13

to the shelf break and by re-directing river water to the Canadian Basin. These14

processes strengthen the halocline in the Canadian Basin, but erode its sta-15

bility in the Makarov and Eurasian Basin.16
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1. Introduction

One of the dominant characteristics of the winter Arctic shelf seas is landfast ice (also17

land-fast, fast or shore-fast ice), sea ice that is immobile and mechanically fastened to18

the coast or to the sea floor. As there is no compressive deformation, landfast ice grows19

only thermodynamically and rarely exceeds thicknesses of 1.5 m [Romanov , 2004]. It20

can extend a few (Beaufort Sea, Chukchi Sea, Western Laptev Sea) to several hundred21

kilometers from the coast into the ocean (Kara Sea, Eastern Laptev Sea, East Siberian22

Sea, see Fig. 1). The mechanisms that determine the landfast ice formation, extent and23

decay are not fully understood. To complicate things further, these mechanisms di↵er24

regionally. In the Chukchi and Beaufort Sea the landfast ice edge is found at relatively25

shallow depth of 18 m [Mahoney et al., 2007], while on the Eurasian shelf this depth is26

between 25 and 30 m [Dmitrenko et al., 2005a; Proshutinsky et al., 2007]. In the Chukchi27

and Beaufort Sea the landfast ice is immobilized behind a row of bottom reaching pressure28

ridges [Mahoney et al., 2007]. In the Kara Sea the landfast ice is formed behind a row29

of small islands parallel to the coast [Divine et al., 2004]. At the landfast ice edge in30

the Laptev and East Siberian Seas grounded pressure ridges are rare [Reimnitz et al.,31

1994; Eicken et al., 2005]. Proshutinsky et al. [2007] proposed that the landfast ice edge32

occurs where the warm intermediate Atlantic water reaches the surface after upwelling33

at the shelfbreak. König Beatty and Holland [2010] attributed the landfast ice extent to34

the mechanical properties of the sea ice. Strong freshwater and brackish sea ice [Dethle↵35

et al., 1993; Eicken et al., 2005] formed in low salinity shelf seas with high river water36

content might ground at wide and shallow sand banks [Dethle↵ et al., 1993; Reimnitz37
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et al., 1994] and from there extend with long tongues toward the landfast ice edge. Tides38

in the region are very weak and the tidal amplitudes of up to 10 cm in the Southeastern39

Laptev Sea Fofonova et al. [2014] might not be large enough to deform the extensive40

landfast ice cover.41

Especially in the Siberian Seas, where landfast ice has the largest extent, it is thought42

to have three roles:43

1. Landfast ice limits the sea ice thickness by preventing sea ice compression (e.g.44

pressure ridges) in convergent motion of sea ice. By the same token it lowers the sea ice45

production by preventing sea ice divergence and lead formation. If these processes are not46

adequately represented in a numerical model, simulated thickness fields are not realistic47

[Johnson et al., 2012].48

2. An immobile lid of the landfast ice e↵ectively decouples the inner shelf from the49

atmosphere and a↵ects the river water distribution. The seasonal runo↵ of the large50

Siberian rivers (Ob, Lena, Yenisei) determines the water masses of the shallow Siberian51

shelf. In a summer with strong onshore winds large parts of the summer maximal discharge52

can be held back on the inner shelf until winter [Dmitrenko et al., 2005b]. The large53

amount of the fresh river water in the Arctic surface layer enhances the ocean stratification.54

3. The extent of landfast ice determines the areas of low sea ice concentration—so called55

flaw polynyas (also flaw lead polynyas or flaw leads)—along the landfast ice edge during56

o↵shore wind conditions. The water in these polynyas is more saline than directly at the57

coast, where ocean salinities remain low due to fresh river water inflow and consequently58

more brine is rejected during sea ice production. The brine formed in the winter shelf59

seas maintain, along with the cool water formed by winter convection north of the Barents60
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Sea [Rudels et al., 1996], the Arctic halocline [Aagaard et al., 1981; Martin and Cavalieri ,61

1989; Cavalieri and Martin, 1994; Winsor and Björk , 2000]. The cold and saline water62

flows o↵ the shelves and sinks along the shelf break where it feeds into the halocline layer63

(Fig. 2), which decouples the cold Arctic surface layer from the warm intermediate-depth64

Atlantic layer. The surface layer stays cold with temperatures close to the freezing point65

due to a seasonal sea ice melting - freezing cycle and the layer is fresh due to a strong66

river runo↵. In contrast, the ocean temperature at mid-depth is up to several degrees67

above zero. This warm and saline Atlantic water enters the ocean through the Nordic68

Seas (Fig. 1).69

Landfast ice has been found important for the accurate simulation of the sea surface70

height [Proshutinsky et al., 2007] and sea ice thickness Johnson et al. [2012]. Although71

landfast ice is also important for the processes maintaining the Arctic halocline, it is72

usually not properly represented in state-of-the-art sea ice-ocean models. In this study73

we demonstrate the e↵ects of the landfast ice for the Arctic halocline.74

The outline of this paper is as follows. In section 2 we describe the numerical model for75

the sensitivity study. In Section 2.1 we describe the details of the landfast ice parametriza-76

tion. In sections 3, 4 and 5 we present and discuss our results. A summary of our findings77

and final remarks are given in section 6.78

2. Model setup

Our model is a regional coupled sea ice - ocean model based on the Massachusetts79

Institute of Technology General Circulation Model code - MITgcm [Marshall et al., 1997;80

MITgcm Group, 2014] with a model domain covering the Arctic Ocean, Nordic Seas and81

northern North Atlantic. The horizontal resolution of is 1/4� (⇠28 km) on a rotated grid82
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with the grid equator passing through the geographical North Pole. The model has 3683

vertical levels unevenly distributed in a way that the surface layer is well resolved at the84

cost of the poor resolution in the deep layer. The shelf bottom topography has realistic85

details that allow dense brine to flow downslope and o↵ the shelf. Vertical mixing in86

the ocean is parameterized by a K-Profile Parameterization (KPP) scheme [Large et al.,87

1994] and tracers (temperature and salinity) are advected with an unconditionally stable88

seventh-order monotonicity preserving scheme [Daru and Tenaud , 2004] that requires no89

explicit di↵usivity. The sea ice model is a dynamic-thermodynamic sea-ice model with a90

viscous-plastic rheology [Losch et al., 2010]. The model has a non-linear free surface and91

sea ice that depresses the surface ocean layer according to its mass. We avoid numerical92

issues associated with too thin surface layers when ice gets very thick by using a rescaled93

vertical z*-coordinate [Campin et al., 2008] that distributes the excursion of the free sea94

surface between all vertical levels to the bottom. The same model set-up has been used95

by Itkin et al. [2013] except that now the vertical background di↵usivity has been lowered96

to 10�6 m2/s as recommended by Nguyen et al. [2009] to achieve a better defined Arctic97

halocline.98

The model is initialized by the PHC climatology [Steele et al., 2001] and has initially99

no sea ice cover. For a spin-up we run the model for 30 years forced by the atmospheric100

climatology of the Coordinated Ocean Research Experiment (CORE) version 2 based on101

a reanalysis of the National Center for Atmospheric Research/National Centers for Envi-102

ronmental Prediction (NCAR/NCEP) [Large and Yeager , 2009]. Subsequently the model103

is driven from 1948 to 1978 by daily atmospheric data also provided by CORE. Our model104

experiments start in 1979 and continue until 2010. They are forced by the atmospheric105
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reanalysis – The Climate Forecast System Reanalysis (NCEP–CFSR) [Saha et al., 2010].106

Surface salinity in ice free regions is restored to a mean salinity field (PHC climatology)107

with a time scale of 180 days to avoid model drift. River runo↵ was treated like a surface108

volume flux and it was prescribed for the main Arctic rivers according to the Arctic Ocean109

Model Intercomparison Project (AOMIP, http://www.whoi.edu/projects/AOMIP/) pro-110

tocol. Open boundaries are formulated following Stevens [1991]; they are located at 50�N111

in the Atlantic and just south of the Bering Strait. Temperature and salinity at the open112

boundaries are taken from the PHC climatology. The Barents Strait inflow is prescribed113

as 0.8 Sv and the stream function at open boundary in the Atlantic Ocean derived from114

a North Atlantic simulation [Gerdes and Köberle, 1995] and modified to balance the net115

volume flow in the model domain.116

2.1. Landfast ice Parameterization

The mechanisms that determine the landfast ice formation and extent depend of the117

specific region and are not fully understood. There have been many attempts to model or118

parameterize landfast ice. Lieser [2004] developed a parameterization based on the ratio119

of sea ice thickness and total water column depth. For a specified threshold ratio the grid120

cells assigned as landfast ice remained at rest and surface momentum flux into the ocean121

was set to zero. His approach in a 1/4� (28 km) model resulted in too thick landfast ice that122

even survived the summer. A similar procedure was used in higher horizontal resolution123

models (3-12 km) by Johnson et al. [2012] and Rozman et al. [2011]. Both studies use124

prescribed landfast ice areas obtained from bathymetrical limits or observations. In the125

Kara Sea, where the landfast ice forms over deep waters behind a row of coastal islands,126
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Olason [2012] successfully modeled landfast ice by adjusting the internal sea ice strength127

parameters in the viscous-plastic rheology of Hibler [1979].128

Our model grid does not resolve small islands and shallow topographical features in129

the Siberian Seas, where the landfast ice might get grounded. Therefore we designed a130

simplified and uniform parametrization based on König Beatty and Holland [2010] that131

takes into account water column depth and landfast ice internal strength. The latter is132

justified by a sharp salinity gradient between the shallow shelf waters of the Kara, Laptev133

and East Siberian Sea and the deep ocean. In 1992, Dethle↵ et al. [1993] documented134

freshwater ice up to 100 km seaward o↵ the Lena Delta. In 1999 the freshwater and135

brakish sea ice with salinity below 1 was confined to the coastal waters adjacent to the136

eastern Lena Delta with water depth less than 10 m, while river water on average still137

contributed 62% of the landfast ice further o↵shore in the southeastern Laptev Sea [Eicken138

et al., 2005]. .139

In the widely used sea ice strength parametrization (e.g. Hibler [1979]; Zhang and140

Hibler III [1997]) compressive strength P depends just on the sea ice thickness h and141

concentration A:142

P = P ⇤h exp(�C⇤(1� A)), (1)

where the empirical sea ice strength parameters, P ⇤ = 2750N/m2 and C⇤ = 20 are143

constants.144

The landfast ice parametrization used in this study takes into account the unresolved145

shallow topographical features inside the maximal landfast ice edge mark (25 m) and146

increased sea ice internal strength attributed to the lower sea ice salinity in the same147
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area by setting the P ⇤ to the double of the drift ice. Such landfast ice would still fail148

under strong o↵shore wind if the distance between the coastline and 25-m-bathymetrical149

boundary is large. To prevent this we amended the sea ice rheology in the regions shallower150

than 25 m with sea ice tensile strength T following König Beatty and Holland [2010]:151

⇣ =
P + T

2�
, (2)

⌘ =
P + T

2�e2
= ⇣/e2, (3)

and

p = P � T, (4)

where ⇣ is bulk viscosity, ⌘ is shear viscosity, e = 2 is eccentricity constant and p is the152

pressure term. This moves the elliptical yield curve in the principal stress space into the I.153

quadrant, when the water column is shallower than 25 m and leaves the curve unmodified154

otherwise. T = P

2 , which is consistent with the estimates by Tremblay and Hakakian155

[2006].156

For the sensitivity study we compare a control run (CTRL) and a landfast ice run (LF)157

that di↵er only in this additional landfast ice parameterization.158

3. Impact of the landfast parameterization on the sea ice

In the Laptev and East Siberian Sea the landfast ice cover forms in December, reaches159

its maximal extent in April, breaks up into fully drifting ice in May or June and melts in160

summer. Starting in May, the atmospheric temperatures are too warm to have a significant161

amount of brine produced in the polynya. Hence, in this study we define wintertime162

as the months December to April. In our model landfast ice breaks up completely in163
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early summer. At atmospheric temperatures above zero and when A drops below 1, sea164

ice looses its internal strength exponentially making P ⇤ irrelevant, because P depends165

exponentially on A.166

If we define coastal sea ice with drift speeds below 1 mm/s as landfast ice, then the167

parametrization in LF comparing to CTRL leads to substantially larger areas of landfast168

ice in April, during the annual maximal extent (Figure 3 panels a and b). The simulated169

landfast ice is slow enough for polynyas to form at its seaward edge (Figure 3 c and d).170

The 1 mm/s contour and polynyas in LF agree better with the 1997-2006 landfast ice171

edge produced by the Arctic and Antarctic Research Institute, Saint Petersburg, Russia172

(Smolyanitsky et al. [2007], hereafter AARI dataset). In LF, however, the Laptev Sea173

polynya is located too far away from the coast. This might be a consequence of the coarse174

model resolution and the high P ⇤ value. In the Kara Sea our parametrization has only175

a minor e↵ect because the shelf sea ice is much deeper than the 25 m threshold we use176

in the parametrization and the small o↵shore islands there are located in areas where the177

surrounding seas exceed the depth of 150 m.178

The e↵ect of the parametrization is clearly visible in the sea ice thickness maps (Fig. 4).179

LF sea ice is by up to 30 cm thinner under the regions a↵ected by the landfast ice180

parametrization in the Kara, Laptev, East Siberian, Chukchi and Beaufort Seas. The181

di↵erence pattern accurately matches the landfast ice extent from the AARI dataset182

(Fig. 3). The largest negative di↵erences are in the polynya at the landfast ice edge183

in the East Siberian and Laptev Seas, while in the coastal regions of the Laptev Sea184

di↵erences are positive to reflect the erroneous polynya location in the CTRL.185
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The thinner sea ice in the landfast ice area in LF is a consequence of exclusive thermo-186

dynamic sea ice growth. The thermodynamical growth itself is also di↵erent between the187

runs (Fig. 4): in both cases the highest growth rates occur in the polynyas. In LF this is188

further o↵shore than in CTRL.189

As a volume of water is thermodynamically turned into sea ice, salt is expelled from this190

volume and remains in the ocean. Because this process increases the salinity in the surface191

ocean, one can define a ’virtual salt flux’ S
flux

= FW
flux

S, where FW
flux

is freshwater192

flux and S is the salinity of the surface water minus 4 where the salinity is equal or higher193

than 4. This approximates the constant sea ice salinity of 4 in our model. The resulting194

S
flux

di↵erences resemble the di↵erence pattern in the thermodynamic growth (Fig. 4).195

Because S
flux

depends also on the sea surface salinity its is relatively low in the East196

Siberian Sea although the sea ice production there is high. S
flux

is an order of magnitude197

higher and opposite in sign compared to the virtual salt flux generated by the sea surface198

salinity restoring (not shown). Salinity is only restored to climatology in the ice free part199

of the model grid cell.200

The largest di↵erences in the winter sea ice cover between the runs are found in the201

Laptev and East Siberian Seas. This is the area with the greatest landfast ice extent202

over the shallow shelf and hence our parametrization has the largest e↵ect there. In time203

series, we compare the contributions of wintertime sea ice concentration, thickness, sea ice204

production, ocean surface salinity and S
flux

to wintertime dense shelf water production in205

both simulations (Fig. 5). The mean sea ice concentration over the Siberian Seas is high206

and very similar in both simulations. This is not surprising as the di↵erences between207

the runs are mainly in the positioning of the polynyas within the Siberian Seas. The sea208
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ice concentrations are a little lower in CTRL as the drifting sea ice allows more small209

leads. Sea ice is about 10 cm thinner in LF than in CTRL. This is a consequence of less210

ridging through convergent motion in the landfast ice area and less advection of sea ice211

into the region. In contrast, there is more thermodynamically grown sea ice in LF. While212

the polynyas in LF are shifted o↵shore into more saline sea water, a higher fraction of213

fresh river water reduces the salinity in the shelf seas. Towards the end of the runs these214

counteracting e↵ect leads to a similar surface salinity in polynyas in both runs. Still,215

higher sea ice production leads to higher S
flux

in LF.216

The di↵erences in the sea ice production and S
flux

between CTRL and LF are geograph-217

ically distributed as expected so that we conclude that this sensitivity study can be used218

to estimate the importance of the landfast ice for the Arctic Ocean halocline stability.219

4. Impact of the landfast parameterization on the Arctic halocline

In this section we compare the end of winter (April) climatologies (2000-2010) because220

of the high seasonality of the mixed layer depth in the Arctic. First we examine the221

buoyancy, b = �g ⇢�⇢0

⇢0
at the top of the halocline (25 – 30 m). The di↵erences between222

LF and CTRL show regional e↵ects of the landfast ice parametrization with less buoyancy223

in LF in the Canadian Basin and more buoyancy centered in Makarov and Eurasian Basins224

(Fig. 6a and b).225

To understand the relevance of these di↵erences to the water column stability we ex-226

amine three oceanographic sections; each section runs through one of the major Arctic227

basins: Canadian, Makarov and Eurasian as shown on Fig. 1 and 6. In the first section228

running from the Eurasian coast over the Wrangel Island to the Ellesmere Island (Fig. 7)229

there is increased salinity by locally up to 0.6 at the halocline layer in LF (25 – 30 m),230
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while the surface layer tends to be fresher than in CTRL. Especially in the surface layer,231

the di↵erences are not homogeneous and locally have alternating signs. Along with the in-232

creased temperature at the top halocline depth this suggests this layer is fed by relatively233

warm shelf bottom water mixed with brine originating from the sea ice production. This234

influence is supported by the Hovmöller diagrams of di↵erences at the section across the235

pathway of the water masses from the East Siberian Sea to the Canadian Basin (Fig. 8236

a and b). In LF, this shelf water has continuously larger salinity at the halocline depth237

(panel a), while the surface layer is typically fresher which generally is associated with238

higher river water content (panel b). The salinity and river water fraction in the surface239

layer di↵erences are not constant in time. Notably the salinity di↵erence is positive in the240

early 1990s and in the mid 2000s. Both events are accompanied with a negative di↵erence241

in river water fraction. The di↵erences in temperature and salinity described above have242

consequences for the stratification. The buoyancy frequency N2 is larger in LF than in243

CTRL pointing to a higher stability at the winter mixed layer depth.244

In contrast, the second section which runs from East Siberian Sea to the Northern245

Greenland (Fig. 9) shows a di↵erent pattern with higher salinities by up to 0.8 in the246

surface layer that reflects a decreased river water content in LF compared to CTRL. The247

salinity at the depth of the halocline only increases only by about 0.1, such that the overall248

stability of the upper halocline is reduced. The third section runs from the Laptev Sea249

to the Fram Strait (Fig. 10). Here the di↵erences between the runs are similar as in the250

second section, but not as pronounced. While there is still less river water in the surface251

layer, the halocline layer has more river water in LF than in CTRL. Here, the landfast252

ice parametrization has no clear e↵ect on the halocline stability. This is again supported253
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by the Hovmöller diagrams of di↵erences at the section across the pathway of shelf water254

from the Laptev Sea (Fig. 8 c and d). In LF, the surface layer is mostly more saline,255

while the time series of the river water fraction di↵erences show a strong seasonal cycle256

with typically less river water in the surface layer in the winter and more in the summer257

(not shown).258

5. Discussion

Landfast ice simulated in LF grows almost exclusively thermodynamically and allows259

very little ice production due to convergent motion (dynamical sea ice growth). Therefore260

the coastal regions covered by landfast ice in LF are thinner than in CTRL. To some261

extent, the arbitrary choice of the 25 m isobath for turning on the parameterization place262

the polynyas in the approximately observed positions.In contrast, in CTRL polynyas are263

located directly on the coast. The shift of the polynyas from the coast in CTRL toward264

a realistic landfast ice edge location in LF moves the brine production closer to the265

shelfbreak and into more saline ocean where more brine is produced per sea ice volume.266

To determine if the amount of brine produced in our simulations is realistic we first267

compare the available sea ice production estimates for the Laptev Sea. In LF during268

2000s a mean of 144 km3 of sea ice is produced per winter (not shown, but Fig. 5a269

shows winter sea ice production for the East Siberian and Laptev Sea, roughly half of270

which is produced in that Laptev Sea. That is above Rabenstein et al. [2013]’s estimate271

of 94±27km3 for the southeastern Laptev Sea for winter (late December till mid-April)272

2007/2008. Willmes et al. [2011] estimate a lower 55±15 km3 for the entire Laptev Sea273

during winter, but these authors only took into account ice production in areas with sea274

ice thinner than 20 cm.275
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Our results indicate that with an appropriate representation of landfast ice more river276

water is stored in the Siberian Seas. While in CTRL more river water is dispersed by the277

wind acting through the drifting sea ice, in LF this river water is protected from the wind278

by the immobile shield of the landfast ice and remains on the shelf. From there the river279

water plume is driven northeastward by geostrophic currents (black arrows on Fig. 1)280

into the Canadian Basin and less river water reaches other parts of the Arctic. In LF,281

in summers with strong o↵shore winds the increased amounts of the river water stored282

on the shelf during the winter are driven northwards into the European and Makarov283

Basins. Still, these river water pulses do not change the sign of the salinity di↵erences in284

the surface layer and and do not a↵ect the halocline stability.285

The combined e↵ect of increased brine export to the Central Arctic and redistribution of286

the river water from the winter shelf in LF compared to the CTRL changes the buoyancy287

at the Arctic halocline. In the Canadian Basin the surface layer freshens locally due to288

increased river water content as a consequence of the landfast ice parametrization, while289

the halocline layer becomes saltier due to the di↵erence in the brine production in the290

Siberian polynyas. Both surface and halocline depth di↵erences make the halocline in LF291

stronger. Our simulation supports Nguyen et al. [2012]’s conclusions that the Canadian292

Basin halocline is maintained by the dense water formed on the Eurasian shelf.293

In the Makarov and Eurasian Basin the di↵erence signal is dominated by the increase294

in the surface salinity that is again the consequence of the redirection of the river water to295

the Canadian Basin. Consequently the already weak halocline in this sector of the Arctic296

[Boyd et al., 2002; Rudels et al., 2004] is further eroded in LF. The e↵ect of the landfast297

ice resembles that of the Great salinity anomaly [Steele and Boyd , 1998; Johnson and298
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Polyakov , 2001] observed in the early 1990s, where the changes in the wind circulation299

enhanced the river water export to the Canadian Basin and increased brine production300

in the Siberian Seas polynyas that eroded the Arctic halocline over substantial parts301

of the Arctic Ocean. During the Great salinity anomaly and similarly also in the mid302

2000s landfast ice in LF has an e↵ect outweighing the anomalous o↵shore winds and the303

di↵erences in surface salinity and river water content of the shelf waters originating form304

the East Siberian Sea during these two periods change the sign (Fig. 8a and b).305

Yu et al. [2014] detected a general decrease of the Arctic landfast ice extent of 7±1.5 %306

per decade in the period from 1976 till 2007. In the Chukchi, Laptev and East Siberian307

Seas also the landfast ice season is getting shorter, reflecting the general negative trend308

in the summer sea ice extent in the Siberian Seas [Comiso et al., 2008; Stroeve et al.,309

2012]. According to our results this trend should have implications for the halocline310

stability. The reduction in the extent and duration in the Siberian Seas would lead to311

a weaker halocline in the Canadian Basin, but conversely also to a stronger halocline in312

the Makarov and and Eurasian Basins. Especially for the latter two basins the Atlantic313

water layer has been reported to be warming [Polyakov et al., 2010]. In such a case, the314

loss of the landfast ice would inhibit the heat transport from the Atlantic Water layer to315

the surface and delay the further rapid sea ice loss in the Arctic.316

6. Summary and conclusions

An accurate representation of the landfast ice in a sea ice-ocean coupled model has an317

impact not only on the winter sea ice and brine production but also on the river water318

distribution. The landfast ice in the LF shields the river water that remains on the shelf319

in winter from the winds and promotes northeastward flow of the river water with the320
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coastal currents. We have been able to show this in a sensitivity study with a simple-to-321

implement landfast ice parametrization that generated landfast ice over extensive areas322

of the Laptev and East Siberian Seas. In LF more river water reaches the Canadian323

Basin and less the Makarov and Eurasian Basin. Also the polynyas are located closer324

to the shelf break. From there more brine reaches the halocline depth of the Canadian325

Basin. The surface salinity decrease due to the river water and the halocline salinity326

increase due to the brine both strengthen the halocline in the Canadian Basin, whereas327

in the Makarov and Eurasian Basins the surface salinity increase erodes the already low328

halocline stability. Consequently in the latter two basins where the Atlantic water layer329

is still relatively warm and the halocline is already eroded, extensive landfast ice further330

weakens the halocline and promotes entraining Atlantic water into the ocean mixed layer331

that might lead to sea ice melt.332

Based on our simulations we recommend to include our landfast ice parametrization to333

those regional numerical models that address the halocline stability and shelf - deep basin334

exchanges. The stratification modified by brine produced in the polynyas and the river335

water that supplies the Arctic Ocean with sediments, nutrients, and pollutants are key336

factors for biogeochemical processes.337
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Figure 1. The Arctic Ocean and its marginal seas. The sea ice and surface circulation is

schematically represented by light blue and mid-depth circulation by red arrows (simplified

from Rudels et al. [1994]), respectively. The landfast ice edge is depicted by the magenta

dash line. The coastal current in the Laptev and East Siberian Seas is schematically

represented by the black arrows. The black lines and box mark the sections and regions

used in the model analysis.
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Figure 2. Arctic Ocean vertical stratification and winter processes maintaining the

Arctic halocline.

Figure 3. The e↵ect of the landfast ice parametrization on the mean April (2000-2010)

sea ice concentration (a,b) and motion (c,d). a,c - CTRL, b,d - LF. Speed 1 mm/s is

contoured by blue line. Mean April landfast edge from the AARI dataset (1997-2006) is

depicted by gray dash line.
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Figure 4. Mean winter (2000-2010) sea ice thickness, thermodynamical growth and salt

flux from the sea ice thermodynamical growth: a - CTRL, b - LF minus CTRL.
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Figure 5. Mean winter (December-April) sea ice time series for the Laptev Sea and

East Siberian Sea. CTRL and LF are represented by solid and dash lines, respectively: a

- mean sea ice concentration and thickness with total sea ice production; b - sea surface

salinity of the areas with the production higher than 30 cm, salt flux resulting from the

production and river water content.
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Figure 6. Mean April (2000-2010) buoyancy at the top halocline (25-30 m): a - CTRL,

b - LF minus CTRL. Black lines mark the profile sections across Canadian, Makarov and

Eurasian Basins (Figs. 7, 9, and 10). Gray line marks a section for the time series at the

Eurasian shelf break (Fig. 8).

D R A F T July 28, 2014, 9:51pm D R A F T



X - 30 ITKIN ET AL.: LANDFAST ICE AND ARCTIC HALOCLINE

Figure 7. Mean April (2000-2010) salinity, temperature, river water fraction and

buoyancy frequency along the section across the Canadian Basin.
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Figure 8. Hovmöller diagrams of monthly mean salinity and river water fraction

di↵erences between LF and CTRL: average over an oceanographic section at the Eurasian

shelf break north of the East Siberian Sea (a,b) and at the Laptev Sea shelf break (c,d).

Sections are marked by gray lines on Fig. 1 and 6.)

D R A F T July 28, 2014, 9:51pm D R A F T



X - 32 ITKIN ET AL.: LANDFAST ICE AND ARCTIC HALOCLINE

Figure 9. Mean April (2000-2010) salinity, temperature, river water fraction and

buoyancy frequency along the section across the Makarov Basin
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Figure 10. Mean April (2000-2010) salinity, temperature, river water fraction and

buoyancy frequency along the section across the Eurasian Basin.

D R A F T July 28, 2014, 9:51pm D R A F T


