Response of the cryosphere to ocean warming below Filchner Ronne Ice Shelf (Antarctica)

Ralph Timmermann, Sebastian Goeller, Malte Thoma

Introduction

Projections of future ice shelf basal melting (Hellmer et al., 2012; Timmermann and Hellmer, 2013) indicate the potential of a rapidly increasing basal mass loss for the Filchner-Ronne Ice Shelf (FRIS). Those model studies assumed a steady-state ice shelf geometry. To study ice-ocean interaction in a more consistent way, the ice flow model RIMBAY has been configured in a domain that comprises the FRIS and its catchment area up to the ice divides. At the base of the model ice shelf, melt rates from the Finite-Element Sea ice–ice shelf–Ocean Model FESOM are prescribed. We use the RIMBAY thickness evolution to assess the feedback between ice thickness change and ice shelf basal melt rates in a warm-water scenario.

Concept: data exchange FESOM <-> RIMBAY

Acknowledgements

This work has been supported by funding from the DFG-Schwerpunktprogramm Antarktisforschung (Förderkennzeichen TH 1136/1-1) and the Helmholtz Climate Initiative REKLIM.

Results: Simulated ice shelf basal melt rates with

BEDMAP-2 ice draft:
- 1990-1999: 87 Gt/yr
- 2140-2149: 466 Gt/yr

RIMBAY steady-state ice draft:
- 1990-1999: 99 Gt/yr
- 2140-2149: 470 Gt/yr

RIMBAY 2150 ice draft:
- 1990-1999: 99 Gt/yr
- 2140-2149: 470 Gt/yr

Summary

- RIMBAY’s steady-state geometry yields basal melt rates very close to those obtained with BEDMAP-2 ice draft (Validation √)
- Maximum thickness change for increased GL melting occurs not at the GL, but downstream (kind of obvious, once you think about it).
- Increased slope of lower ice surface fuels ice shelf pump and thus even more concentrates melting to the GL.
- Increase of total mass loss is NOT reduced by ice shelf thickness reduction.

Note that

- This study only adresses the sensitivity of ice shelf basal melt rate anomalies in a warm-water scenario to ice thickness changes.
- The question whether a warm water event on the Weddell Sea continental shelf is likely / unlikely / very likely is not adressed here. No feedback to deep ocean yet.
- We are coupling FESOM to a 10 km RIMBAY model now.

Appendix: Model components

Sea ice / ice shelf / ocean model
- Finite Element Sea-Ocean Model (FESOM; Timmermann et al., 2012)
- 3-equation model of ice-ocean interaction
- global domain, resolution varying from 1.5 km to 333 km; time step: 30 sec
- hybrid vertical coordinate: 36 z-levels, top 22 levels turn into sigma-levels on the Antarctic continental slope and enter the cavities
- ice and bedrock topographies: Bedmap-2/RTopo-1.5
- here: experiments initialized using time slices from coarser-scale simulation, HadCM3-A1B forcing

Ice shelf / ice sheet model
- thermomechanical ice sheet / ice shelf model (Pattyn et al. / Thoma et al.)
- model domain: Filchner-Ronne Ice Shelf and its grounded ice catchment up to the ice divides
- Bedrock and initial ice thickness: Bedmap-2
- resolution: 20 km, time step: 1 yr
- forcing: surface accumulation, surface temperature, geothermal heat flux; present day basal ice shelf melting: from FESOM for 2000, 2050, 2100, and 2150
- New cavity geometries passed back to FESOM.