Scientific background document in support of the development of a CCAMLR MPA in the Weddell Sea (Antarctica) - Version 2015 - Part B: Description of available spatial data

K. Teschke, H. Pehlke and T. Brey on behalf of the German Weddell Sea MPA (WSMPA) project team, with contributions from the participants at the International Expert Workshop on the WSMPA project (7-9 April 2014, Bremerhaven)
Introduction

Part B of the scientific background document informs on the data retrieval process within the Weddell Sea MPA (WSMPA) project. Chapter 1 describes the environmental data sets that were acquired for the evaluation of a MPA in the Weddell Sea planning area (see Table 1-1). These are satellite data mainly with a high temporal resolution. For example, satellite observations on daily sea ice concentration, derive from the Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-EOS) instrument on board the Aqua satellite, are available by several Internet web sites. Further oceanographic data were obtained e.g. from the global Finite Element Sea Ice-Ocean Model (FESOM; Timmermann et al. 2009). Chapter 2 provides a systematic overview of the current data situation regarding ecological data sets. In total, more than 20 ecological data sets on zooplankton, zoobenthos, fish, birds and mammals were acquired (see Tab. 2-1). These data sets consist of point or areal data mainly, are snapshots in time and are stored in data portals, such as AntaBIF/biodiversity.aq (primarily contains presence/absence data) or PANGAEA.

Those data sets or parts of data sets that were acquired for our study, but were not incorporated into further analyses are marked grey in Table 1-1 and 2-1. Those data sets mostly (i) represent parameters that are already covered by other data sets, (ii) show an inappropriate spatial and/or temporal resolution or (iii) are not quantifiable. Most data sets are already presented in our background document SC-CAMLR-XXXIII/BG/02, which the Scientific Committee had welcomed and endorsed as a foundation reference document for the Weddell Sea MPA planning (SC-CAMLR-XXXIII, § 5.21). In addition, some newly acquired data sets are listed (e.g. observation on nest guarding fish).

1. Environmental parameters

1.1 Bathymetry & Geomorphology

Bathymetric data are provided by the first regional digital bathymetric model established in the International Bathymetric Chart of the Southern Ocean (IBCSO) programme and published by Arndt et al. (2013). The bathymetric model Version 1.0 has a horizontal resolution of 500 m x 500 m and a vertical resolution of 1 m. This chart model is based on satellite data and in situ data (multi-beam and single beam data) from many hydrographic offices, scientific institutions and data centres. The derivatives of the bathymetry (e.g. slope, hillshade, geomorphology) are derived from the IBCSO data set.

1.2 Sedimentology

A substantial data set on grain size derives from the scientific data information system PANGAEA, an ICSU World Data Centre, hosted by the AWI and the Centre for Marine Environmental Science, University Bremen (doi:10.1594/PANGAEA.730459, doi:10.1594/PANGAEA.55955). These data are published by Petschick et al. (1996) and Diekmann & Kuhn (1999). The sediment samples were taken with large box corer, multi- or mini-corer during several Polarstern cruises (1983-1997). This data set was complemented by unpublished data that are merged in now in a new compilation (G. Kuhn & K. Jerosch, AWI).
1.3 Oceanography

Data on temperature, salinity and currents (speed and direction of water movement) are derived from the coupled Finite Element Sea Ice Ocean Model (FESOM; Timmermann et al. 2009). FESOM combines a hydrostatic, primitive-equation ocean model with a dynamic/thermodynamic ice model. For the simulations analysed here, FESOM was initialised on February 1st 1980 with hydrographic data from the Polar Science Center Hydrographic Climatology (Steele et al. 2001) and forced with atmospheric reanalysis data such as wind speed, temperature, humidity, and cloudiness.

1.4 Sea ice

Three large data sets on sea ice were acquired (see Tab. 1-1):

1) Satellite observations of daily sea ice concentration derive from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-EOS) instrument on board the Aqua satellite. High resolution AMSR-E 89 GHz sea ice concentration maps (Jun 2002 – Oct 2011) were downloaded from the Institute of Environmental Physics, University of Bremen (http://www.iup.uni-bremen.de/). The ARTIST Sea Ice (ASI) concentration algorithm was used with a spatial resolution of 6.25 km x 6.25 km (Kaleschke et al. 2001, Spreen et al. 2008). We restrained from using AMSR2 data (available since Aug 2012) on board the new `Shizuku` satellite as a thorough calibration of the AMSR2/ASI data has not been accomplished yet.

2) Data on daily polynya distribution derive from the Special Sensor Microwave / Imager (SSM/I). The data were downloaded from the Integrated Climate Data Center (ICDC) of the University of Hamburg (http://icdc.zmaw.de/polynya_ant.html; Kern et al. 2007, Kern 2012). Here, polynyas are defined as areas of open water and/or thin (< 20 cm) sea ice in regions of typically thick sea ice (> 20 cm). A basic algorithm, described by Markus & Burns (1995) and Hunewinkel et al. (1998), was used with a spatial resolution of 5 km x 5 km. Data on daily polynya distribution focus on coastal polynyas and temporally cover the austral winter (May - Sept) for a period from 1992 to 2008.

3) Data on monthly sea ice thickness derive from the coupled Finite Element Sea Ice Ocean Model (FESOM; Timmermann et al. 2009). For analysis, we only used data on ice thickness from the 20 year time period (1990-2009) with a spatial resolution of 6.90 km x 8.65 km.

2. Ecological parameters

2.1 Chl-a concentration

Chlorophyll-a (chl-a) concentration values derive from the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) measurements. The data were downloaded via the NASA’s OceanColor website (http://oceancolor.gsfc.nasa.gov/) as monthly level 3 standard mapped images with a spatial resolution of 9 km x 9 km.
2.2 Pelagic ecosystem

Many data sets on zooplankton, mainly data on krill, were acquired (see Tab. 2-1). Studies focusing on zooplankton communities, including meso-, macro-zooplankton and micro-nekton, were identified as relevant data sources (e.g. Boysen-Ennen & Piatkowski 1988, Flores et al. 2014). These data sets are quite diverse taxonomically, and principal groups include salps, juvenile cephalopods or paralarvae, crustaceans (e.g. euphausiids, copepods) and fish (mainly mesopelagic species). Data on adult squid are extremely scarce particularly catch data refer to very few records (e.g. Nesis et al. 1998). Most data on the occurrence of squid are obtained from stomach analysis of birds and marine mammals (Piatkowski & Pütz 1994, Plötz et al. 1991).

Krill

The largest data set on adult Antarctic krill, *Euphausia superba*, consists of more than 700 stations sampled between 1928 and 2013 (see Tab. 2-1). Next to some snapshot studies from research operations in the 1970s and 1980s (Fevolden 1979; Makarov & Sysoeva 1985; Siegel 1982), most historical abundance data on krill (until 2004) are available in the data base krillbase (http://www.iced.ac.uk/science/krillbase.htm) and are published in e.g. Atkinson et al. (2004, 2008 and 2009) and Siegel (1982). More recent data on krill (2004 to 2008) are published in Siegel (2012) and are complemented by unpublished data from B. Krafft (Institute of Marine Research; Bergen, Norway). Haul-by-haul krill catch data from commercial operations are stored as a summary data base by CCAMLR. Moreover, we acquired data on ice krill, *Euphausia crystallorophias* (Siegel 1982 and 2012; Siegel et al. 2013).

Pelagic fish

Unpublished data are available on the distribution of oceanic pelagic fish (held by R. Knust, AWI). Moreover, we acquired data on mesopelagic fish, such as Antarctic silverfish (*Pleuragramma antarctica*), from the LAzarev Sea KRILL Study (LAKRIS) project (e.g. Flores et al. 2014), and older studies e.g. from Boysen-Ennen & Piatkowski 1988 and Hubold et al. 1988 (see Tab. 2-1).

2.3 Benthic ecosystem

Zoobenthos – Shelf and slope

Three substantial zoobenthic data sets are listed in Table 2-1. Gutt et al. (2013) provide a comprehensive data set on the geographical distribution of Antarctic macrobenthic communities. This descriptive data set, consisting of approx. 90 individual data sets, has a temporal coverage from 1956 to 2010 and covers almost the entire Southern Ocean (Gutt et al. 2013). Although the data show a considerable patchiness at regional scale, the south-eastern Weddell Sea is covered well, and thus the data set provides unique geo-referenced biological basic information. Furthermore, an unpublished quantitative macrobenthos data set (abundance, biomass) is held by D. Gerdes (AWI). Macrobenthic samples were taken during 10 *Polarstern* cruises in the south-eastern and eastern Weddell Sea shelf area from 1984 to 2011 (e.g. Gerdes et al. 1992). A third zoobenthic data set (semi-quantitative data) was
digitised for the WSMPA project based on *Polarstern* cruise reports and on unpublished data held by W. Arntz (AWI, retired). Additional data sources on macrofaunal communities are available e.g. from Galéron et al. (1992) and Voß (1988). Moreover, there is a considerable number of data sets referring to specific taxonomic groups - particularly polychaetes (e.g. Stiller 1995), molluscs (e.g. Hain 1990), and echinoderms (e.g. Gutt 1988, Piepenburg et al. 1997) - sampled along the Weddell Sea shelf and slope. So far more than 10 such smaller data sets, partly stored in the ANTABIF data portal (primarily as presence data) have been made available for the WSMPA project.

Zoobenthos – Deep Sea

There is a considerable number of data sets on abyssal benthic deep-sea fauna in the Weddell Sea. Most of these data sets are based on ANDEEP I-III (ANtarctic benthic DEEP-sea biodiversity: colonization history and recent community patterns) expeditions in 2002 and 2005 (Brandt & Hilbig 2004, Brandt & Ebbe 2007), and referring to specific taxonomic groups - particularly sponges (e.g. Janussen & Tendal 2007), polychaetes (e.g. Hilbig 2001, Schüller & Ebbe 2007, Schüller et al. 2009), molluscs (e.g. Linse et al. 2006, Schwabe et al. 2007), crustaceans (e.g. Brandt et al. 2007, De Broyer et al. 2006) and echinoderms (e.g. Bohn 2006).

Demersal fish

During various *Polarstern* cruises between 1983 and 2011 the demersal fish fauna was sampled particularly along the Weddell Sea shelf, but also in deeper waters (see Drescher et al. 2012, Ekau et al. 2012 a, b, Hureau et al. 2012, Kock et al. 2012, Wöhrmann et al. 2012 and unpublished data held by R. Knust, AWI; Tab. 2-1). Observations on nest guarding fishes (*Chaenodraco wilsoni*, *Neopagetopsis ionah*) derive from unpublished data held by Dieter Gerdes (AWI) and Tomas Lundäv (Swedish Institute for the Marine Environment). Data from an exploratory long line fishery on *Dissostichus mawsoni* conducted by Russia in 2012/13 and 2013/14 have been submitted to the CCAMLR secretariat. They are still awaiting a thorough analysis by CCAMLR’s Working Group on Fish Stock Assessment.

2.4 *Birds*

Seabirds

A few data sets exist on flying seabirds (i.e. petrels or Procellariiformes), their distribution and abundance patterns in the Weddell Sea. Two substantial seabird data sources derive from van Franeker et al. (1999) and Croxall et al. (1995) (see Tab. 2-1). The comprehensive databases give relevant information about Antarctic Petrel and Snow Petrel breeding colonies from Coats Land, Dronning Maud Land and the Antarctic Peninsula between 1905 and the early 90s. Those data were complemented by published data on flying seabirds with substantial breeding populations near the Weddell Sea MPA planning area, such as the Southern Fulmar (Creuwels et al. 2007) and the Southern Giant Petrel (Patterson et al. 2008).
Penguins

Data on emperor penguin population estimates are available from Fretwell et al. (2012, 2014). This data set was complemented by unpublished data on Adélie penguin colonies from Heather Lynch, Stony Brook University, USA.

2.5 Marine Mammals

Pinnipeds

A pinniped survey within the Antarctic Pack Ice Seals (APIS) programme, which was developed and executed by members of the Scientific Committee on Antarctic Research (SCAR) Group of Specialists on Seals and their national programmes, was carried out along the eastern coast of the Weddell Sea from 1996 to 2001 (Ackley et al. 2006; Plötz et al. 2011a-e; Southwell et al. 2012). During five fixed-wing aircraft flight campaigns, which covered an area of more than 80,000 km of aerial transects, approx. 2,300 seals were counted in total. An additional APIS survey, based on helicopter flights from aboard RV Polarstern in 1998 - a year with unusually low sea ice coverage - covered the area from 7°W to 45°W with 15 transects (Bester & Odendaal 2000). Moreover, pack-ice seal line-transect data were collected during an aerial survey, conducted as the UK contribution to the APIS programme, in the western part of the Weddell Sea (Forcada & Trathan 2009; Forcada et al. 2012). A methodologically congruent “pre-APIS”-helicopter survey was carried out more easterly in the Weddell Sea (0° - 5° W) by Bester et al. (1995). Post-APIS-helicopter surveys from aboard RV Polarstern were flown in 2004 / 2005 (ANT-XXII/2), and were concentrated north of 69°S (Flores et al. 2008). Most recent photographic and video footage were taken during the research survey of the AWI aircraft Polar 6 in November 2013, and additional species specific helicopter based counts were carried during RV Polarstern’s ANT-XXIX/9 2013/2014 research mission, both in the southern Weddell Sea. The most recent data are currently in analyses. Acoustic data, i.e. year-round records of the presence of pinnipeds since 2005, derive from the coastal Perennial Acoustic Observatory in the Antarctic Ocean (PALAOA) near Neumayer Station, and additionally from several oceanographic moorings distributed along the Greenwich meridian and throughout the Weddell Sea (Van Opzeeland 2010). However, the International Expert Workshop noted that there is limited information available particularly on elephant seal abundance and migration patterns (more details see WG-EMM-14/19, supplementary material, paragraph 8.). Few tracking data sets are available on southern elephant seals (Tosh et al. 2009; James et al. 2012), Ross seals (Blix & Nordøy 2007), leopard seals (Nordøy & Blix 2009), and Weddell seals (McIntyre et al. 2013).

Whales

The presence of cetaceans is also recorded year-round since 2005 by PALAOA, and additionally by several oceanographic moorings distributed along the Greenwich meridian and throughout the Weddell Sea (Van Opzeeland 2010). Regarding cetacean sightings, two data sets were evaluated. Since 2005, the AWI systematically and continuously logs all sightings of cetaceans near RV Polarstern in the Southern Ocean (Marine Mammal Perimeter Surveillance, MAPS). By means of the MAPS project more than 1300 individuals from nine cetacean taxa were identified in the Weddell Sea from 2005 to date (Burkhardt 2009a-i, 2011, 2012). Those data were used to build a habitat suitability model of humpback and Antarctic minke whales in the Southern Ocean (see Bombosch et al. 2014).
Table 1-1: List of environmental data sets for marine protected area evaluation in the Weddell Sea. Data sets or parts of data sets that were sighted, but were not incorporated into further analyses are grey-shaded.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Spatial and temporal resolution</th>
<th>Source (contact person, publication, web site)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathymetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathymetry (m)</td>
<td>500 x 500 m</td>
<td>not applicable</td>
</tr>
<tr>
<td>Sedimentology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain size, i.e. gravel, sand, silt, clay (%)</td>
<td>> 400 samples were taken with large box corer, multi- or mini-corer</td>
<td>1983 - 1997</td>
</tr>
<tr>
<td>Water column properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea temperature (°C), salinity (PSU), currents, i.e. speed (m) and direction of water movement (°) - Model data (FESOM)</td>
<td>1.5° x 1.5° (horizontal) Surface & bottom value (vert.) Coastal polynia model 3 km – 50 km (horizontal)</td>
<td>1990 - 2009</td>
</tr>
<tr>
<td>Sea temperature (°C), Salinity (PSS), Dissolved oxygen (ml l⁻¹), inorganic nutrients (µM)</td>
<td>1° x 1°</td>
<td>1955 - 2006</td>
</tr>
<tr>
<td>Parameter</td>
<td>Spatial resolution</td>
<td>Period</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Sea ice dynamic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea ice thickness (cm) - Model data (FESOM)</td>
<td>1.5° x 1.5° (horizontal) Coastal polynia model 3 km – 50 km (horizontal)</td>
<td>1990 - 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontal areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weddell Gyre</td>
<td>206 ice-compatible vertically profiling floats</td>
<td>1999 - 2010</td>
</tr>
</tbody>
</table>
Table 2-1: List of ecological data sets for marine protected area evaluation in the Weddell Sea. Data sets or parts of data sets that were sighted, but were not incorporated into further analyses are grey-shaded.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sampling design</th>
<th>Period</th>
<th>Temporal resolution</th>
<th>Source (contact person, publication, web site)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyll-a concentration (mg/m³)</td>
<td>0.83 km x 0.83 km</td>
<td>1997 - 2010</td>
<td>daily</td>
<td>National Aeronautics and Space Administration (NASA) Goddard Space Flight Center's Ocean Data Processing System (ODPS) http://oceandata.sci.gsfc.nasa.gov/SeaWiFS/L3SMI/</td>
</tr>
<tr>
<td>Zooplankton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abundance data on adult Antarctic krill, Euphausia superba (N/m²; N/1000 m³)</td>
<td>> 700 stations; e.g. IKMT, RMT nets</td>
<td>1928 - 1997</td>
<td>Different time intervals</td>
<td>Krillbase: http://www.iced.ac.uk/science/krillbase.htm Fevolden (1979), Makarov & Sysoeva (1985); Siegel (1982, unpublished data) Siegel (2012, unpublished data), Siegel et al. (2013), B. Krafft (Institute of Marine Research, Bergen; unpubl. data)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1977 - 1983</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2001 - 2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2004 - 2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abundance data on Antarctic krill larvae and ice krill larvae (N/m²)</td>
<td>> 300 stations; e.g. Juday, RMT1, Bongo nets</td>
<td>1977 - 1989</td>
<td>Different time intervals</td>
<td>Fevolden (1979, 1980), Hempel & Hempel (1982), Menshenina (1992), Siegel (2005, unpublished data) Siegel (2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2004, 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krill data from commercial operations (catch in kg)</td>
<td>Bottom and midwater trawls</td>
<td>1974 - 2009</td>
<td>Different time intervals</td>
<td>David Ramm, CCAMLR data manager; www.ccamlr.org</td>
</tr>
<tr>
<td>Abundance data on meso- and macrozooplankton (N/1000m³)</td>
<td>39 stations; RMT1, RMT8 RMT, SUIT nets along 3-4 transects; station spacing 20-30 nm, approx. 50-80 stations per expedition</td>
<td>1983</td>
<td>Snapshot in time</td>
<td>Boysen-Ennen & Piatkowski (1988)</td>
</tr>
<tr>
<td>Abundance data on macrozooplankton and micro-nekton (N/1000m³)</td>
<td></td>
<td>2004 - 2008</td>
<td>Different time intervals</td>
<td>Hunt et al. (2011), Flores et al. (2014)</td>
</tr>
</tbody>
</table>
Table 2-1 (contd.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sampling design</th>
<th>Period</th>
<th>Temporal resolution</th>
<th>Source (contact person, publication, web site)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoobenthos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrobenthic communities (descriptive)</td>
<td>± 90 data sets, Weddell Sea shelf</td>
<td>1956 - 2010</td>
<td>Summary data set, Snapshots in time</td>
<td>Gutt et al. (2013) and references therein in regards to results and data http://ipt.biodiversity.aq/resource.do?r=macrobenthos</td>
</tr>
<tr>
<td>Macrozooobenthos (N/m², g C/m²)</td>
<td>Various German Antarctic expeditions; almost 300 samples</td>
<td>1984 - 2011</td>
<td>Different time intervals</td>
<td>Data originators: Dieter Gerdes (AWI); Ute Mühlenhardt-Siegel (DZMB); e.g. Gerdes et al. (1992)</td>
</tr>
<tr>
<td>Macrozooobenthos (semi-quantitative data)</td>
<td>Various German Antarctic expeditions (ANT VII/4, ANT VII/5, ANT IX/1-4, ANT XIII/3, ANT XV/3, ANT XVII/3, ANT XXI/2)</td>
<td>1989 - 2004</td>
<td>Different time intervals</td>
<td>Polarstern cruise reports and data originator W. Arntz (AWI, retired)</td>
</tr>
<tr>
<td>Considerable number on specific higher taxonomic groups (primarily abundance data)</td>
<td>Several Polarstern cruises; mainly sampled along the Weddell Sea shelf, but also in deeper waters</td>
<td>1983 - 2005</td>
<td>Snapshots in time</td>
<td>Polychaetes (e.g. Montiel et al. 2005, Schüller & Ebbe 2007, Stiller 1995), molluscs (e.g. Hain 1990, Linse et al. 2006), crustaceans (e.g. Brandt et al. 2007), echinoderms (e.g. Dahm 1996, Gutt 1988, Brey & Gutt 1991, Gutt 1991, Pimenburg et al. 1997)</td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nest guarding fish observations (Chaenodraco wilsoni, Neopagetopsis ionah)</td>
<td>German Antarctic expeditions ANT XXVII/3 and ANT XXIX/9</td>
<td>2011, 2014</td>
<td>Snapshots in time</td>
<td>Unpublished data held by D. Gerdes (AWI) and T. Lundäv (Swedish Institute for the Marine Environment)</td>
</tr>
<tr>
<td>Fishery operations (catch in kg); mainly Dissostichus spp. catches</td>
<td>Longline surveys</td>
<td>2005 - 2013</td>
<td>Summary data base (annual and bi-annual)</td>
<td>David Ramm, CCAMLR data manager; www.ccamlr.org</td>
</tr>
<tr>
<td>Parameter</td>
<td>Sampling design</td>
<td>Period</td>
<td>Temporal resolution</td>
<td>Source (contact person, publication, web site)</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>--------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Birds</td>
<td>Sampling design and temporal resolution</td>
<td>Source (contact person, publication, web site)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adélie penguin breeding colonies</td>
<td>High resolution (0.6 m) satellite imagery with spectral analysis, Antarctic Peninsula</td>
<td>2000s</td>
<td>Snapshot in time</td>
<td>H. Lynch, Stony Brook University, USA (unpublished data)</td>
</tr>
<tr>
<td>Emperor penguin breeding colonies</td>
<td>High resolution satellite imagery</td>
<td>2009 (Sept-Dec); 2012</td>
<td>Snapshot in time</td>
<td>Fretwell et al. (2012, 2014)</td>
</tr>
<tr>
<td>Mammals</td>
<td>Mammals</td>
<td>Mammals</td>
<td>Mammals</td>
<td>Mammals</td>
</tr>
<tr>
<td>Pinniped line-transect data (N/km²)</td>
<td>flight campaigns</td>
<td>1992 - 2014</td>
<td>Different time intervals</td>
<td>Ackley et al. (2006), Bester et al. (1995, 2002), Bester & Odendaal (2000), Flores et al. (2008), Plötz et al. (2011 a-e; http://www.pangaea.de), Forcada et al. (2012), Southwell et al. (2012), and unpublished data held by H. Bornemann, AWI</td>
</tr>
<tr>
<td>Acoustic data on pinniped and cetacean presence</td>
<td>oceanographic moorings</td>
<td>2006-2012</td>
<td>Daily, different starting times for single recorders</td>
<td>Kindermann (2013), doi:10.1594/PANGAEA.773610</td>
</tr>
</tbody>
</table>
References

Fevolden SE (1979) Investigations on krill (Euphausiacea) sampled during the Norwegian Antarctic Expedition 1976/77. Sarsia, 64, 189-198.

Siegel V (1982) Investigations on krill (Euphausia superba) in the southern Weddell Sea. Meeresforschung, 29, 244-252.

