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A new algorithm to retrieve characteristics (albedo andmelt pond fraction) of summer ice in the Arctic from op-
tical satellite data is described. In contrast to other algorithms this algorithm does not use a priori values of the
spectral albedo of the sea-ice constituents (such asmelt ponds,white ice etc.). Instead, it is based on an analytical
solution for the reflection from sea ice surface. The algorithm includes the correction of the sought-for ice and
ponds characteristics with the iterative procedure based on the Newton–Raphson method. Also, it accounts for
the bi-directional reflection from the ice/snow surface, which is particularly important for Arctic regions where
the sun is low. The algorithm includes an original procedure for the atmospheric correction, as well. This algo-
rithm is implemented as computer code called Melt Pond Detector (MPD). The input to the current version of
the MPD algorithm is the MERIS Level 1B data, including the radiance coefficients at ten wavelengths and the
solar and observation angles (zenith and azimuth). Also, specific parameters describing surface and atmospheric
state can be set in a configuration input file. The software output is the map of the melt ponds area fraction and
the spectral albedo of sea-ice in HDF5 format. The numerical verification shows that theMPD algorithm provides
more accurate results for the light ponds than for the dark ones. The spectral albedo is retrieved with high accu-
racy for any type of ice and ponds.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Knowledge of properties of the Arctic ice cover is of great impor-
tance for modeling and predicting the global climate and for ship navi-
gation in the Arctic Ocean (Serreze et al., 2000; Shindell & Faluvegi,
2009; Untersteiner, 1990). Extensive melting in the summer affects
the entire sea-ice structure; particularly, it changes the upper layer of
ice, producing the melt ponds on its surface (Perovich et al., 2009;
Polashenski, Perovich, & Courville, 2012). Melt ponds change the radia-
tive balance in the Arctic, because they drastically reduce the ice albedo
and, therefore, increase the flux of absorbed sun light energy and speed
up the melting process (positive feedback mechanism) (Curry,
Schramm, & Ebert, 1995). Melt ponds are not just one of the most im-
portant factors affecting the ice albedo, but also one of themost variable
(Barry, 1996; Eicken, Grenfell, Perovich, Richter-Menge, & Frey, 2004).
Ice albedo, in its turn, is among themost crucial parameters, which gov-
ern the climate processes in the Arctic (Køltzow, 2007; Pirazzini, 2008).
In particular, changes of the ice albedomodulate the strengthof the sub-
polar westerlies and storm tracks (Dethloff et al., 2006). It is also impor-
tant that with decrease of the ice thickness the ice pack becomes more
sensitive to the ice-albedo feedback (Perovich, Richter-Menge, Jones,
& Light, 2008; Pistone, Eisenmann, & Ramanathan, 2014; Serreze,
Barrett, & Cassano, 2011).

Therefore, the availability of temporally and spatially continuous
data on sea-ice albedo and melt pond fraction products is crucial (see,
e.g. Schröder, Feltham, Flocco, & Tsamados, 2014). These products can
serve as an input for Global Climate Models or be utilized in studies of
melt evolution mechanisms (Flocco, Feltham, & Turner, 2010; Flocco,
Schroeder, Feltham, & Hunke, 2012; Hunke, Hebert, & Lecomte, 2013;
Lüpkes et al., 2013).

The objective of this work is to develop an algorithm to retrieve
summer ice albedo and the area fraction of melt ponds on sea ice from
data of optical satellite sensors.

TheMPDalgorithm for retrieval of the ice albedo andmelt pond frac-
tion from satellite measurements is based on fieldmeasurements of the
reflectance spectra of ice and ponds (Istomina, Nicolaus, & Perovich,
2013; Polashenski et al., 2012). Other known algorithms of melt pond
fraction retrieval from the optical satellite data (Rösel et al., 2012;
Tschudi, Maslanik, & Perovich, 2008) use the a priori fixed spectral re-
flection coefficients for different pixel constituents, such as snow, bare
ice, melt ponds, and open water. However, the physical properties of
these constituents, e.g. the ice or snow thickness and the typical grain
size, the ponddepth, and the albedo of pondbottom, are highly variable,
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and so are their optical properties. This variability can result in substan-
tial errors in pond fraction retrieval. For example, thedark icemay result
in overestimation of the melt pond fraction. Conversely, the light pond
can bemisclassified as unponded ice. At the same time the optical prop-
erties (e.g., the reflection coefficients) of ice and ponds have different
spectral behavior. So, using a sufficient number of spectral channels,
we can set, in principle, the problem not just to retrieve their fractions,
but also to estimate some of their characteristics (e.g. the optical thick-
nesses of ice, the pond depth, the albedo of its bottom etc.). In this work
we are making the first attempt to develop an algorithm for pond
fraction retrieval from the satellite data without a priori fixed values
of the spectral reflection coefficients of the pixel constituents and with
simultaneous estimation of ponds and ice properties.

The second feature of theproposedMPD algorithm is that it accounts
for bi-directional reflectance of the ice/snow surface. This feature is
especially important in the Arctic where the sun is low and the light
incidence is oblique (Zege et al., 2011). Particularly, the Fresnel reflec-
tion from melt pond surface (glint) at oblique incidence is very high.
At the common geometry of measurements, when the observation
is not much different from nadir, this glint is not seen from a satellite,
but it contributes significantly to the albedo value. It is one more rea-
son why the Lambertian approximation is not suitable for this prob-
lem. Moreover, using the albedo instead of the radiance coefficient
(bi-directional reflectance distribution function — BRDF) can lead
to unrealistic results.

The third specific feature of the MPD algorithm is the procedure of
the atmospheric correction of the satellite data, included directly into
the iterative retrieval process (see Section 2.3.1).

2. Retrieval algorithm

2.1. Physical and optical properties of sea ice with melt ponds

The basis of the algorithm is the relationship between physical char-
acteristics of melting ice and measured reflectance properties. System-
atic investigations of reflection characteristics of Arctic summer ice
have been carried out throughout the 20th century (Doronin, 1970;
Grenfell & Maykut, 1977; Light, 2010; Mobley et al., 1998; Nazintsev,
1964; Perovich, 1996). A significant contribution to our knowledge
was made in the recent years by the Tara drift (Heygster et al., 2012;
Nicolaus et al., 2010) and by the Polarstern cruise ARK-27-3 (Boetius
et al., 2013). The seasonal changes of theMulti-Year Ice (MYI) structure
and reflection, aswell as themelt pondemergence and evolution during
Arctic summer, are carefully traced in the paper of Perovich, Grenfell,
Light, and Hobbs (2002) on the base of the long-term observations.
The following pattern can be picked out from this work.

During May the total albedo does not change significantly, being
quite high due to the snow cover. Then in June, over several days
rapid decrease of albedo takes place because of extensive snowmelting.
Melt water is accumulated in depressions on the ice surface, forming
melt ponds and leaving the drained surface. The latter is covered by
small (severalmm) pieces of ice. At first glance this covermay look sim-
ilar to snow. It is called ‘white ice’ (Perovich, 1996). In contrast to snow,
white ice is characterized by the larger typical grain size and physical
density (typical microphysical/optical parameters can be found in
Light, Eicken, Maykut, and Grenfell (1998)). Ice melting and pond for-
mation result in albedo decrease with strong spatial variability. The
melting period lasts usually from mid-June to mid-August. Then, from
the end of August to early September the freezing begins and the albedo
increases, reaching its winter values after a regular snowfall. The
months indicated here were typical for the Beaufort and Chukchi seas
at the end of the 20th–the beginning of the 21st centuries (Perovich
et al., 2002). Nowadays the melt onset has moved to earlier time (in
May) in this region (Markus, Stroeve, & Miller, 2009). For regions locat-
ed at higher latitudes the melting period starts as late as beginning July
and is considerably shorter than at the southern latitudes.
The white ice is the bare ice with a substantial surface scattering
layer that provides stable high reflectance. As measurements show
(Perovich et al., 2002), the spectral albedo of the white ice is compara-
tively stable and varies in the range 0.75–0.8 in the blue-green region
of the spectrum (at 450–500 nm). Tschudi et al. (2008) write: “The
white ice category rose from the observation of bare ice at Barrow that
had a white appearance due to the presence of a surface scattering
layer. This layer was typically a few centimeters thick and consisted of
small fragments of deteriorated ice.”

In fact, the optical parameters of white ice are determined by the
following main features: the ice grains have arbitrary shapes and sizes,
much greater than the wavelength of the visible light. Thus, the main
results of snow optics (Kokhanovsky & Zege, 2004) can also be used to
describe the optics of white ice and for remote sensing of sea-ice. Fur-
ther development of optics of snow and ice has been achieved recently
with the use of the model of random mixture (Malinka, 2014).

The reflection properties of a layer are described by the spectral bi-
directional reflectance distribution function (BRDF) R(θ, θ0, φ, λ),
where θ and θ0 are the zenith angles of the observation and illumination
directions, respectively, and φ is the azimuth angle between them.
Hereafter,wewill omit the variables (θ, θ0,φ, λ) of function R for brevity.
The reflection of thewhite ice aswell as the reflection of a snow covered
ice floe (Zege et al., 2011) can be described using the asymptotic solu-
tion for optically thick weak absorbing scattering media (Kokhanovsky
& Zege, 2004). The following solution for the BRDF R∞ of a semi-
infinite weak absorbing layer is described in Zege, Ivanov, and Katsev
(1991):

R∞ ¼ R0
∞ exp −4qγg θð Þg θ0ð Þ=R0

∞

h i
; ð1Þ

where R∞
0 is the BRDF of the semi-infinite non-absorbing layer with the

same scattering phase function; g(θ), q and γ are equal to:

g θð Þ ¼ 3
7

1þ 2 cosθð Þ; ð2Þ

q ¼ 1
3 1−ω0gð Þ ; ð3Þ

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ω0ð Þ 1−ω0gð Þ

p
; ð4Þ

whereω0 is the single scattering albedo (the photon survival probability)
and g is the mean cosine of the scattering phase function.

Eq. (1) was used in (Zege et al., 2011) for snow remote sensing
(Wiebe, Heygster, Zege, Aoki, & Hori, 2013). But unlike snow cover,
when a layer with depth of a few cm is optically very thick, an ice floe
is more or less translucent and its optical thickness τwi is the main pa-
rameter that determines its reflection and transmission. In this case,
using the asymptotic solution for optically thick layers (Zege et al.,
1991), one can get:

R ¼ R0
∞
sinh γ τwi þ 4q 1−g θð Þg θ0ð Þ=R0

∞

h i� �h i
sinh γ τwi þ 4qð Þ½ � : ð5Þ

The values R∞0, ω0, and g (and consequently, q and γ) are calculated
with theuse of themodel of randommixture (Malinka, 2014),which re-
lates the inherent optical properties of a stochastic medium to the com-
plex refractive index and the effective grain size aeff.

In Eqs. (2)–(5) the values R∞0, g, and τwi do not depend practically on
wavelength in the considered spectral region. The spectral dependence
of reflectance is defined by the single scattering albedo ω0, determined
by the complex refractive index of ice (Warren & Brandt, 2008) and the
absorption of possible pollutants. The analysis of field data shows
(Istomina, Heygster, et al., 2013) that if one consider ice disposed far
from the coastline, the spectral dependence of reflectance is described
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well by adding the absorption of yellow organic pigments from the
seawater (Bricaud, Morel, & Prieur, 1981).

In the blue-green range of the spectrum (450–500 nm), where
neither ice nor yellow substance absorb light, themodel of randommix-
ture gives the values:

q≈1; γ≈0: ð6Þ

Within this limit formula (5) turns into:

R ¼ R0
∞−

4g θð Þg θ0ð Þ
τwi þ 4

: ð7Þ

Using Eq. (7), it is easy to get the albedo in this region of the spec-
trum. The albedo at direct incidence (the direct-hemispherical reflec-
tance or ‘black sky’ albedo) r(θ0) equals:

r θ0ð Þ ¼ 1− 4g θ0ð Þ
τwi þ 4

: ð8Þ

The albedo at diffuse incidence (the bi-hemispherical reflectance or
‘white sky’ albedo) r equals:

r ¼ τwi

τwi þ 4
: ð9Þ

Thus, the BRDF of white ice is completely determined by the optical
depth τwi of a layer, themean effective grain size aeff, and the absorption
coefficient αyp of yellow pigments, which could arrive in the white ice
due to organics from the seawater. These parameters constitute the
vector Xice = (τwi, aeff, αyp) (see Table 1).

Melt ponds can differ in color from dark gray to light blue. In general,
melt ponds have a width from the order of meters to hundreds of me-
ters and a depth from several centimeters to tens of centimeters. How-
ever, the apparent color of a melt pond practically does not depend on
the water depth, but mainly on the optical thickness of the ice under-
neath. Therefore, the melt pond type can evolve during the melt season
as the underlying ice becomes thinner. Most often, the general separa-
tion of the melt ponds into dark and light blue ponds corresponds to
ponds on first year or thinner ice floes and on multiyear or thicker ice
floes, respectively. However, there are ponds, which cannot be attribut-
ed to a particular category, or even ponds, which have a portion with a
light bottom and a portion with a dark bottom (Perovich et al., 2002).

To describe the light reflection by melt ponds we use the following
model assumptions:

1. Meltwater is clear, i.e. there are nopollutants,which could change its
absorption spectrum. Actually, this assumption is not necessary, be-
cause any absorbing contaminant with the known absorption spec-
trum can be included into the model straightforwardly. However,
the possibility of satellite retrieval of the contaminant concentration
in melt ponds is a question of future work. At this stage we do not
consider any contaminants inmelt water. This assumption is reason-
able at least for cases when ice is far enough from the coastline and
not affected by river run-off.
Table 1
Characteristics of ponds and ice, used in the modeling. All characteristics are given at
wavelength 550 nm, except absorption of yellow pigments, which is given at 390 nm.

Type Characteristics Comments

Pond Xpond τp Optical thickness of the water layer in the pond
σice Transport scattering coefficient of the underlying ice
τice Optical thickness of the underlying ice

Ice Xice τwi Effective optical thickness of white scattering layer
aeff Effective grain size in white scattering layer (in μm)
αyp Absorption coefficient of yellow pigments (in m−1)
2. As the melt ponds depth is much smaller than their width, we will
consider the pond as an infinite layer of water, neglecting the
sidelong reflection, but considering only reflection by the pond
bottom.

3. The reflection from the pond bottom is isotropic (Lambert law).
Deviation from the Lambert law will cause a negligible change
in the angular distribution of light going out from the melt
pond because of multiple reflections between pond surface
and bottom.

With these assumptions after somewhat lengthy but straightfor-
ward calculations one can get the following expression for the pond
BRDF:

R ¼ π
μ0

RF μ0ð Þδ μ−μ0ð Þδ φð Þ þ
T F μ0ð ÞT F μð Þ exp −τp=μ

0
t −τp=μt

� �
Ab

n2 1− f in τp
� �

Ab

� � ; ð10Þ

where μ = cos θ, μ0 = cos θ0 are the cosines of the observation and
incidence zenith angles, μt and μt0 are the cosines of the corresponding
angles after refraction:

μ0
t ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2−1þ μ2

0

q
; μ t ¼

1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2−1þ μ2

q
; ð11Þ

n is the real part of the refractive index of water; RF(μ0) and TF(μ0) are
the Fresnel reflection and transmission coefficients, respectively, δ(x)
is the Dirac delta-function, τp is the melt pond optical depth, Ab is the
albedo of the pond bottom, fin(τp) is a function defined as:

f in τð Þ ¼ 2
Z1
0

Rin μ 0
t

� �
exp −2

τ
μ 0
t

� �
μ 0
tdμ

0
t ; ð12Þ

where Rin(μ t′) is the Fresnel coefficient for inner reflection.
The first term in Eq. (10) describes the sun glint from the water sur-

face; the second one describes the light, multiply reflected between the
pond bottom and its surface.

Thus, the BRDF of amelt pond Rpond is determined by themelt water
optical depth τp and by the spectral albedo Ab of its bottom. The pond
bottom is an ice layer characterized by the transport scattering coeffi-
cient σice and the optical depth τice through formulas analogous to
Eq. (5). These parameters constitute vector Xpond = (τp, σice, τice) (see
Table 1).

Finally, it is supposed that the surface consists of white ice (highly
reflective) and melt ponds with area fraction S. The BRDF of the whole
pixel is a linear combination:

R ¼ 1−Sð ÞRice þ SRpond: ð13Þ

The described model of the summer ice reflection was verified with
field data (Istomina, Heygster, et al., 2013) from the Polarstern cruise
(Istomina, Nicolaus, et al., 2013) and from field observations
(Polashenski et al., 2012). A more detailed description of modeling op-
tical properties of summer ice will be published separately.

2.2. Spectral channels

The input data to the retrieval algorithm are the TOA (top-of-the-
atmosphere) radiance coefficients measured in the spectral channels
of a satellite radiometer. We used the channels of radiometer MERIS
(MEdium Resolution Imaging Spectrometer) on ENVISAT (Environ-
mental Satellite), because it had a sufficient number of channels in the
visible and the near IR range, which were not saturated by reflection
from bright surfaces as ice or snow. MERIS was operational from April
2002 until ENVISAT stopped its mission in April 2012, so we have a
full decade of data to process. All further description will refer to the



Table 2
MERIS spectral channels. The channels used in the algorithm are shown in bold and italic.

# Center (nm) Width (nm) Use Feature

1 412.5 10 Cloud mask,
Iterative procedure

2 442.5 10 Separation of bright pixels,
Cloud mask,
Iterative procedure

3 490 10 Separation of bright pixels,
Iterative procedure

4 510 10 Separation of bright pixels
5 560 10 Ozone absorption
6 620 10 Ozone absorption
7 665 10 Ozone absorption
8 681.25 7.5 Iterative procedure
9 708.75 10 Water vapor absorption
10 753.75 7.5 Cloud mask,

Iterative procedure
11 760.625 3.75 Cloud mask Oxygen absorption
12 778.75 15 Iterative procedure
13 865 20 Cloud mask,

Separation of the melting ice pixels,
Iterative procedure

14 885 10 Cloud mask,
Iterative procedure

15 900 10 Water vapor absorption

156 E. Zege et al. / Remote Sensing of Environment 163 (2015) 153–164
MERIS channels; however the algorithm can be easily adjusted to any
appropriate satellite sensor, especially to the Ocean and Land Color In-
strument (OCLI) on Sentinel-3 scheduled for launch in late 2014. The
MERIS channels and their usage in the MPD algorithm are shown in
Table 2. For clarity the channels used in the iterative procedure are
given in bold; the channels used in the preprocessing are given in Italic.

The atmospheric contribution to the spectrometer signals needs to
be taken into account in the retrieval procedure. The satellite data
have to be corrected for four factors: scattering and absorption by aero-
sols and gases. Scattering and absorption by aerosols, as well as themo-
lecular scattering, have much weaker spectral selectivity than gas
absorption. The two main atmospheric gases with notable effect on
the TOA signals in the spectral region of interest are ozone and water
vapor. At the same time the concentrations and the altitude profiles of
these gases are most changeable and uncertain. That is why the chan-
nels affected by these gases were excluded from the retrieval algorithm
(they can be used in preprocessing, though).

Channel 11 was excluded because it corresponds to the R-branch of
the oxygen absorption band (760.625 nm). Channels 4 to 7 were also
excluded because they are affected by the ozone absorption band.
Ozone absorption is not very strong in this range; however, it becomes
notable with oblique incidence typical for polar regions. Although chan-
nel 4was excluded from the iterative procedure, it is used in the prepro-
cessing of the input data. The remaining channels (1–3, 8–10, 12–14)
are not affected by ozone absorption. Channel 15 was excluded because
it matches the water vapor absorption line at 900 nm. The influence of
water vapor absorption in channel 9 is not obvious a priori, but our
further investigations (see Section 3.2.1) showed that the estimation
of pond fraction in a pixel is affected by the atmospheric water vapor
if channel 9 is included into the processing scheme. With exclusion of
channel 9 the effect of water vapor on the retrieved pond fraction
becomes negligible. Finally, the following channels are used in the iter-
ation procedure: 1, 2, 3, 8, 10, 12, 13, 14, and channels 4 and 11 are used
for preprocessing (see Eq. 14).

2.3. MPD algorithm structure

The flowchart of the MPD algorithm is presented in Fig. 1.

1. The input to the algorithm is the MERIS level 1B data with the spatial
resolution of 1 km × 1 km at nadir, including the radiance coefficients
Ri at channels i= 1, 2, 3, 4, 8, 10, 11, 12, 13, 14, and the solar and ob-
servation angles (zenith and azimuth). Also the relevant information
on atmosphere and surface state can be entered from an input file.

2. The data is sent to the three independent blocks:

a. Atmospheric correction preprocessing block;
b. Separation of the sea-ice pixels;
c. Setting the bounds for ice and pond parameters.

3. The core of the algorithm is the iterative procedure (see Section 2.3.4)
for retrieving ice and pond parameters Xice and Xpond (see Table 1) and
pond fraction S.

4. The resulting values of Xice, Xpond, and S are used to calculate the spec-
tral albedo of the pixel.

5. Output is the values ofmelt pond fraction, spectral albedo, and estima-
tion of retrieval error in every pixel.

Hereinafter these procedures are described in more detail.

2.3.1. Atmospheric correction preprocessing block
The atmospheric correction preprocessing is organized in four steps

(Fig. 1):

1. If there are relevant data on the state of the atmosphere, such as aerosol
load, temperature or pressure profiles, these data can be entered into
the calculation. Else, the default models are used. The default model
for the molecular atmosphere defines the altitude profiles of tempera-
ture, pressure, and gases concentration, depending on the month and
the latitude, similar as done in the radiative transfer model SCIATRAN
(Rozanov, Rozanov, Kokhanovsky, & Burrows, 2014). The default aero-
sol model is the Arctic Background aerosol (Tomasi et al., 2007).

2. The atmospheric reflectance ri and transmittance ti are calculated
for the used set of wavelengths (i is the channel number) with the
radiative transfer code RAY (Tynes et al., 2001). The reflectance ri
is an array of two values: Ratm the atmospheric path radiance coef-
ficient, and ra, the atmospheric hemispheric reflectance when dif-
fusely illuminated from below. The transmittance ti is an array of
four values: t0(θ), t0(θ0), td(θ), and td(θ0), which are the quasi-
direct (subscript ‘0’) and diffuse (subscript ‘d’) atmosphere trans-
mittances when illuminated with a directional beam at incident
angles θ and θ0, respectively.

3. The values of ri and ti are stored for every pixel and channel used. In
our algorithm we suppose that the atmosphere is homogeneous for
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Fig. 1. Flowchart of the MPD algorithm.
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the whole scene, but the values of ri and ti for different pixels
differ, because of the observation geometry. These values are
used later to calculate the TOA (top of the atmosphere) radiance
coefficients.

4. Values of ri and ti are used to calculate the maximal TOA radiance
coefficient Rmax

TOA . It is the TOA radiance coefficient calculated with
the same BRDF but with no absorption in any spectral channel. It
is obtained by Eq. (26) (see below), with r(θ) = r(θ0) = r = 1
and R, calculated with the RAY code. This value (Rmax

TOA ) is used
later in the iterative procedure as a threshold.
2.3.2. Separation of the sea-ice pixels
The separation of sea ice pixels works in two steps. First, the ocean

pixels are identified by applying the landmask, using the geolocation
data. Then, the following criteria are used to separate the ice pixels
(Schlundt et al., 2011):

a. Brightness criterion:

R2;R3;R4≥0:3; ð14Þ
is used to separate bright pixels to discard open water.

b. Spectral neutrality criterion:

R1

R2
b1:04: ð15Þ

c. MERIS differential snow index (MDSIX) criterion:

R13−R14

R13 þ R14
N0:01: ð16Þ

Image of Fig. 1
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Criteria (14)–(15) separate white surfaces, which can be snow, ice,
or cloud. Criterion (16) discards the cloudy pixels. Pixels not satisfy-
ing criteria (14)–(16) are discarded.

d. An additional threshold is used to screen out high clouds, using the
MERIS Level 1b reflectances at wavelengths 753 nm and 760 nm.
These are bands 10 (oxygen A reference) and 11 (oxygen A absorp-
tion). To identify the cloud free pixels we detect pixels where the
oxygen absorbs light within the whole atmosphere column as op-
posed to cloudy pixels where the absorption occurs only within
the small fraction of the atmosphere column, namely, above the
cloud. To do so we use the ratio:

R11

R10
b0:27: ð17Þ

Visual analysis of several dozen daily averages showed improved
cloud screening and decreased amount of cloud edges and high
thin clouds within the resulting product as compared to the product
without use of this threshold.

2.3.3. Setting the bounds for ice and pond parameters
In order to avoid unphysical values for ice and pond parameters, the

bounds are set to the values:

Smax ¼ 1:0;
τmin
wi ¼ 5:0;

amin
eff ¼ 30:0μm; amax

eff ¼ 10000:0μm;

τmin
p ¼ 0:0005;

σmin
ice ¼ 0:1m−1

; σmax
ice ¼ 5:0m−1

;

τmin
ice ¼ 0:4; τmax

ice ¼ 6:0

ð18Þ

Value Smax=1.0 is obvious (themelt pond fraction is less or equal to1).
The limiting case S = 1 is treated as water saturated surface.

The lower bound for the optical thickness of ice τwi
min determines the

lowest value of ice albedo in the range 450–500 nmat directional or dif-
fuse incidence through Eqs. (8) and (9), respectively. Typical white ice
albedo values of 0.75–0.8 in this spectral region, as observed by
Perovich et al. (2002), correspond to the optical thicknesses τwi in the
range of approximately 8.0–12.0 for the sun zenith angle of 650 in
Eq. (8). So, if not going beyond the case of white bare ice, one should
take the bounds:

τmin
wi ¼ 8:0; τmax

wi ¼ 12:0: ð19Þ

However, the values fromEq. (19) restrict the scope of the algorithm
strongly. E.g., it completely excludes snow that can have the albedo
value close to 1 in this spectral region for a semi-infinite (τwi → ∞)
layer. That is why, in order to include the snow covered ice into the
scope, we remove the restriction on the upper bound for τwi.

Conversely to snow, the darker types of ice can be included into the
scope by decreasing the lower bound τwi

min. E.g. wet ice can often occur in
conditions of melt onset. We call ‘wet ice’ the situation when the air
pores in the upper layer of ice are mainly filled with water. In this case
the scattering layer becomes much darker (albedo decreases) because
of the lower optical thickness (e.g., 2.0). Thus, in order to include wet
ice in the retrieval procedure one should set the lower bound to,
e.g., 2.0. However, this change requires a certain amount of caution. As
τwidecreases and aeff increase (the case of wet ice), the reflectance spec-
trumof ice approaches that of amelt pond. In this case ponds and ice be-
come undistinguishable in the visible and near IR range. This does not
affect strongly the albedo, but makes it impossible to retrieve the melt
pond fraction. That is why, for the season of developed melting, when
melt ponds on white ice can be easily identified, we use the lower
bound τwi
min = 5.0, which provides the lowest white ice albedo of 0.6

and higher in the blue-green region of the spectrum.
The other bounds for ranges of the retrieved parameters serve as

additional regularization of the MPD algorithm and are set to corre-
spond to values observed in nature (see Istomina, Heygster, et al., 2013).

In this block, as well as in that for the atmosphere, the relevant data
can be used to change the default settings for values (18) in the input
file. E.g., if a user knows that the ice type is perfect white ice (or e.g.
snow-covered), the lower bound τwi

min can be increased. If it is known
that the ponds are mature, the lower bound τpmin can be increased, and
so on.

2.3.4. The iterative procedure
If the pixel is classified by criteria (14)–(16) as ice or snow, and not

cloud, the radiance coefficients Ri at channels i=1, 2, 3, 8, 10, 12, 13, 14,
as well as the solar (θ0, φ0) and observation (θ, φ) angles (zenith and
azimuth), are used for further processing.

The pixel is characterized by the white ice and melt ponds parame-
ters, shown in Table 1 (Xice = (τwi, aeff, αyp) and Xpond = (τp, σice, τice)),
and pond area fraction S. All these parameters constitute the vector X
specifying the physical state of the surface:

X ¼ S; τwi; aeff ;αyp; τp;σ ice; τice
� �

: ð20Þ

The iterative procedure is based on the Newton–Raphson method
(Press, Teukolsky, Vetterling, & Flannery, 1992) and comprises the
following steps (see Fig. 1).

1. Brightness test:

RiNR
TOA
max ið Þ: ð21Þ

If test (21) is true, the chosenmodel of ice BRDF and the atmospheric
state cannot provide such high values of the TOA radiance coeffi-
cients. In this case we conclude that there are no melt ponds in this
pixel, because melt ponds can only decrease reflection, i.e.

S ¼ 0; ð22Þ

and further evaluation concerns the ice parameters Xice only. In this
case the pixel gets the attribute ‘TOO_BRIGHT’ as a flag.
If test (21) is false, all parameters (20) are included in the further
processing.

2. Initialization of the state-vector X to the starting values:

S ¼ 0:5;
τwi ¼ max Twi;5ð Þ;
aeff ¼ 3333μm;

αyp ¼ 0:3m−1
;

τp ¼ :01;

σ ice ¼ 1:5m−1
;

τice ¼ min τwi=3; τ
max
ice

� �
:

ð23Þ

Here Twi is the auxiliary value:

Twi ¼ 4
g θð Þg θ0ð Þ

RTOA
max 3ð Þ−R3

−4; ð24Þ

with g(θ) defined in Eq. (2).
Formula (24) is the rough estimation of the ice optical thickness,
derived from Eq. (7) for channel 3, corresponding to 490 nm. In
this estimation the effect of the atmosphere is neglected.



Table 3
Examples of the retrieval for some typical situations (see Table 1 for the explanation of
symbols). Pond fraction values are given in bold.

Parameter τwi aeff (μm) αyp (m−1) τp σice (m−1) τice S

White ice & light pond
True 8.5 3333. 0.1 0.016 1.0 3.0 0.40
Retrieved 7.8 3140. 0.29 0.010 1.1 3.3 0.401

Bright ice (snow covered) & light pond
True 534. 289. 0.53 0.016 1.0 3.0 0.40
Retrieved 24. 582. 0.37 0.023 4.1 6.0 0.33

White ice & dark pond
True 8.5 3333. 0.1 0.013 0.2 0.5 0.40
Retrieved 5 4886. 0.3 0.007 1.0 0.93 0.24

Bright ice (snow covered) & dark pond
True 534. 289. 0.53 0.013 0.2 0.5 0.40
Retrieved 10. 1090. 0.33 0.012 5.0 1.7 0.17

White ice & light pond & 3% random error
True 8.5 3333. 0.1 0.016 1.0 3.0 0.40
Retrieved 7.6 3670. 0.29 0.008 0.66 4.0 0.38
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3. Initialization of the increments ΔX:

ΔS ¼ 0:0005;
Δτwi ¼ 0:1;
Δaeff ¼ 3μm;

Δayp ¼ 0:003m−1
;

Δτp ¼ 10−5
;

Δσ ice ¼ 0:01m−1
;

Δτice ¼ 0:01:

ð25Þ

4. The radiometer signals on the top of the atmosphere Ri
TOA are calcu-

lated for the given surface state X. The functional dependence
Ri
TOA(X) is based on Eqs. (2)–(5). An approximate formula is used

to calculate the TOA radiances with the known pixel BRDF and the
atmosphere reflectance and transmittance:

RTOA ¼ Ratm þ t0 θð Þ R− r θð Þr θ0ð Þ
r

� �
t0 θ0ð Þ

þ t0 θð Þr θð Þ þ td θð Þrð Þ t0 θ0ð Þr θ0ð Þ þ td θ0ð Þrð Þ
r 1−rarð Þ ;

ð26Þ

where Ratm, t0(θ), t0(θ0), td(θ), and td(θ0) are defined at Section 2.3.1,
R is the surface BRDF, r(θ) and r(θ0) are the pixel albedo at direct in-
cidence, r is the pixel albedo at diffuse incidence. Eq. (26) is obtained
under the following assumptions: the light transmitted by the atmo-
sphere is considered as a sum of the direct (quasi-direct) and diffuse
light and the light reflected by the atmosphere when illuminated
from below is considered as completely diffuse. This formula is a
modification of one, derived by Tanré, Herman, and Deschamps
(1983) for atmospheric correction.

5. The matrix of logarithm derivatives of RiTOA are numerically calculated
for every component of vector X:

M ¼ Mikð Þ ¼ Xk
∂RTOA

i

∂Xk

 !
: ð27Þ

6. The new value of vector X in the (n + 1)th iteration step is calculated
by:

Xnþ1
k ¼ Xn

k exp ΔXkð Þ; ð28Þ

where ΔX is defined as:

ΔX ¼ pinv M;λminð Þ � R−Rn� �
; ð29Þ

pinv(M, λmin) is theMoore-Penrose pseudoinverse of matrixM, calcu-
lated using the singular value decomposition by level λmin (Press et al.,
1992), when any singular values less than λmin are treated as zero.
R = (Ri) is the vector of measured values, Rn = (RiTOA) is the vector
of values, calculated on the nth iteration step.

7. If any of the new values Xk is outside the bounds defined by Eq. (18),
this parameter is assigned the bound value and is no longer changed.
Its increment is set to zero:

ΔXk ¼ 0: ð30Þ

The situation with S = 1 is treated as extensive melting of ice when
the surface is water saturated.

8. The iterative loop is terminated when the condition

ΔXkb0:001 ð31Þ

is met for all k. Usually the iteration process converges after 4–5 steps.
3. Algorithm implementation

3.1. Internal verification

For the verification of theMPD algorithm, a closed numerical exper-
iment has been performed. It consists of the successive solution of the
direct and inverse problem and the comparison of the initial (consid-
ered as ‘true’) and retrieved values. The point of this experiment is to
detect the intrinsic error of the retrieval algorithm. The problem of the
pond fraction retrieval belongs to the class of ill-posed problems and
like many inverse problems it needs regularization. TheMPD algorithm
uses the singular values decomposition as a regularization method (see
Eq. 29). That iswhy, although the same function Ri

TOA(X) is used both for
direct and inverse problem, the retrieval results differ from the initial
‘true’ values.

Thus the signals in theMERIS spectral channels were simulated for a
set of ice pixels, each one being characterized by its own vector X =
(S, τwi, aeff, αyp, τp, σice, τice), for a few typical situations shown in
Table 3 as the ‘true’ data. In Table 3 and Figs. 2–6 some results of the re-
trieval of the pond fraction and the pixel albedowith theMPD algorithm
are presented.

The retrieval is shown for five different situations. In all considered
cases the true pond fraction is 0.4. This value was chosen as an example,
because this is the case when both ponds and ice contribute significant-
ly to the reflection, and because the simulations show that the retrieval
error is close to maximal about this value. The first case in Table 3 rep-
resents themost frequently occurring situation, when the pixel consists
of the ‘standard’white ice and light blue melt pond (Eicken et al., 2004;
Perovich et al., 2002, 2009; Polashenski et al., 2012). In this case the
retrieved values are very close to the true ones, because this situation
is the initial scope of the algorithm.

The second case presents the situation of very bright ice, covered
with a layer of snow. In the developed approach snow matches the
same microphysical model as white ice. The difference is that a snow
layer has much greater optical thickness τwi and much lower effective
grain size aeff (see Table 3). In this case the retrieval is a bit worse than
in the ‘standard’ case but is still acceptable. The retrieved pond fraction
is 0.33 instead of 0.4.

The blue colored light ponds are quite good for retrieval, because of
their clearly recognizable spectral behavior. The cases with the dark
ponds provide much greater retrieval errors, because the dark melt
ponds have weak spectral dependence and lower reflectance. E.g., in
the third case (white ice–dark pond) the retrieved pond fraction is
0.24, i.e., is considerably underestimated. As dark ponds reduce the
pixel albedo notably all over the spectrum, the reflection pattern of a
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Fig. 2. Retrieved spectral albedo of a pixel consisting of white ice and light pond (S= 0.4).
True albedo (o); albedo, retrieved with the MPD algorithm (curve), the albedo, retrieved
within the Lambert approximation (x).
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Fig. 4. Retrieved spectral albedo of a pixel consisting of white ice and dark pond (S= 0.4).
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mixed pixel with a certain amount of dark ponds is almost the same as
that of a mixed pixel with darker ice and smaller pond fraction. These
situations are hardly distinguishable in the visible range.

An evenmore pronounced effect is demonstrated in the fourth case:
bright (snow covered) ice and darkmelt pond, where the pond fraction
is underestimated more than twice. However, this is a rare situation.
The dark pond is a mature pond, i.e., the pond formed in the process
of the developed melting. Fresh snow nearby could arise from a snow-
fall, which is a rare event in mid-summer.

Finally, the last (fifth) case shows the retrieval in the presence of the
measurement error of ±3%. It is seen that all retrieved parameters are
very close to the values retrieved in the first case when the error is ab-
sent. This is due to the fact that the pseudo-inverse matrix works as
the least-squares approach, partially smoothing out the random errors.

Figs. 2–6 present the spectral albedo of the surface (true and
retrieved). The crosses show the spectral albedo, retrieved within the
Lambert approximation, i.e., with no regard to the BRDF of white ice
and ponds. The first and most important conclusion is that the MPD
algorithm provides accurate retrieval of the spectral albedo in all con-
sidered cases, even in the situations with dark ponds when the error
of the melt pond fraction retrieval is maximal. The second feature seen
from Figs. 2–6 is following: the spectral albedo is retrieved much better
with the MPD algorithm than within the conventional algorithms using
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Fig. 3. Retrieved spectral albedo of a pixel consisting of snow covered ice and light pond
(S = 0.4).
the Lambert approximation for surface reflection. The use of this con-
ventional approach leads to underestimations of the albedo at about
0.05 all over the spectral range, whereas the error of the MPD retrieval
in the worst case (‘bright ice–dark pond’, see Fig. 5) is 0.01 and lower
in all other considered cases.

3.2. Sensitivity of the MPD algorithm to the atmospheric model

TheMPD algorithm includes a procedure for atmospheric correction,
embedded in the iterative scheme. Asmentioned in Section 2.3.1 it uses
a predefined atmospheric model that can be adjusted if one has the rel-
evant data on the profiles of pressure and temperature aerosol load, and
gas (mainly, ozone and water vapor) content. Such information is not
always available, in which case the default model is used. That is why
it is so important to check the stability of the retrieval results with
respect to the used atmosphere model.

Rayleigh scattering is not very sensitive to the thermodynamic state
and it is easy to take it into account. The effect of ozone absorption is
discarded in the MPD algorithm by the channels selection. The most
uncertain atmospheric factors are the water vapor content and the
aerosol load.

3.2.1. Sensitivity to the water vapor content
To figure out the effect of the uncertainty in the prescribed water

vapor content in atmosphere used for the retrieval we made the
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Fig. 5. Retrieved spectral albedo of a pixel consisting of snow covered ice and dark pond
(S = 0.4).
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Fig. 6. Retrieved spectral albedo of a pixel consisting of white ice and light pond (S= 0.4)
and the measurement error of ±3%.

Table 5
Arctic aerosolmodels and their optical thickness (Tomasi et al., 2007).

Type AOT at 0.5 μm

Background aerosol 0.015
Dense aerosol 0.080
Arctic haze 0.150
Asian dust 0.200
Fire smokes 0.300
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following numerical experiment. We took the MERIS scene of Arctic
sea ice (MER_RR__1PPBCM20080607_224801_000001522069_00173_
32792_0519.N1, date: June 7, 2008) and chose the two ice pixels:
80°36′ N, 140°04′ W and 80°08′ N, 141°03 W.

For these two pixelswe ran theMPD algorithm in two versions:with
and without including channel 9 in the retrieval. For both versions two
values of the water vapor content were used: the default value of
2.13 g cm−2 and the increased value of 3.3 g cm−2. The results of this
experiment are shown in Table 4. The retrieved pond fraction is affected
by the prescribed water vapor content if channel 9 is included into the
iterative scheme. As seen from Table 4 the effect of water vapor on the
retrieved pond fraction is negligible, if the iterative scheme does not
use channel 9. This is the reason why channel 9 was excluded from
the iterative procedure in the MPD retrieval.

3.2.2. Sensitivity to the aerosol model
The retrieval of aerosol optical thickness above such bright surfaces

as ice or, even more, snow from satellite data is associated with great
difficulties. That is why in this case it is reasonable to use the predefined
aerosol models for atmospheric correction procedure. In order to
estimate the error, caused by the uncertainties of aerosol load, we
have investigated the sensitivity of the retrieval to the aerosol model
and its optical thickness. The satellite radiometer signals were simulat-
ed with the RAY code (Tynes et al., 2001) for typical Arctic aerosols (see
Table 5). The type of aerosol determines the spectral behavior of the
extinction and scattering coefficients and hence the aerosol optical
thickness (AOT) at any wavelength through its value at 0.5 μm
(Tomasi et al., 2007).

The signals at the radiometer input were simulated for various aero-
sol types and loads (see Table 5). The retrievals from these simulated
satellite signals were performed with the atmospheric correction
using the Arctic Background aerosol for all simulated cases. The results
of the retrieval are shown in Figs. 7 and 8. They demonstrate the sensi-
tivity of the melt pond fraction (Fig. 7) and spectral albedo (Fig. 8)
retrieval to the inaccuracy of aerosol model (aerosol type and optical
thickness) used for atmospheric correction. It is seen that the MPD
Table 4
Effect ofwater vapor on the retrieved pond fraction in version of algorithmwith andwith-
out the 9th channel.

With channel 9 Without channel 9

Water vapor content 2.13 g cm−2 3.3 g cm−2 2.13 g cm−2 3.3 g cm−2

Melt pond fraction. Pixel 1 0.159 0.172 0.162 0.166
Melt pond fraction. Pixel 2 0.112 0.196 0.120 0.123
retrieval is weakly sensitive to the aerosol load and the aerosol model
for the typical Arctic aerosols. This is particularly true for the albedo re-
trieval. Thus, for the procedure of atmospheric correction in the process
of the retrieval it is acceptable to use the Arctic Background model.
However, if any additional data about the aerosol optical thickness
and/or model are available, they can be easily adjusted within the
MPD software.

3.3. Estimation of the retrieval error

Within the MPD software some estimations of the accuracy of the
retrieval are performed. Namely, the root mean square difference
between measured and retrieved signals σ

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

X
i

Ri
meas−Ri

ret

� �2s
ð32Þ

is computed for every pixel and included in the outputfile. Herem is the
number of channels used (in the current implementation of the MPD
algorithm m = 8).

This value is a good estimate for the absolute error ΔA of the albedo
retrieval:

ΔA ¼ 2σ ;
Aret ¼ Atrue � σ ð33Þ

The relative error of the pond fraction retrieval (except the case
S = 0) can be estimated from Eq. (29) that is a standard system of
linear equations (see, e.g., Appendix in Malinka & Zege, 2007):

ΔS
S

¼ σ
λmin

ffiffiffi
n

p ; ð34Þ
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Fig. 7. Retrieved melt pond fraction vs. aerosol optical thickness. AOT corresponds to the
type of aerosol (see Table 5). The retrieval is made with the Arctic Background model.
The true melt pond fraction (-), the pond fraction, retrieved with the Arctic Background
aerosol (o-), and the pond fraction, retrieved without atmospheric correction (x-).
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model. The true (-) and retrieved (o-) albedo values.
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where n is the number of parameters to retrieve. In the current MPD
implementation:

n ¼ 7; λmin ¼ 0:0075: ð35Þ

3.4. Validation with the field data

The validation of the both albedo and melt pond fraction retrieval
has been performed on an extensive set of airborne, ship-based and in
situ campaigns for various ice and weather conditions. The comparison
is most informative for the cases of landfast or multiyear sea ice (high
ice concentration, no thrashed overturned ice floes) for the situation
where ponds are surrounded with white ice. The full MPD validation
description can be found in (Istomina et al., 2014). This Section presents
a typical example of the validation efforts.

Among all the used datasets, the best quality and spatial coverage
was given by aerial measurements. The flight was performed on
06/06/2008 within the MELTEX field campaign (Birnbaum et al.,
2009) over the landfast ice. The time difference between satellite
and airborne overflight was limited to 1.5 h. The albedo measure-
ments were performed from an aircraft with two Eppley pyrano-
meters mounted in a fixed position to measure the broadband
hemispheric down- and upwelling shortwave radiation. The colloca-
tion to the satellite data was performed by calculating an
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Fig. 9. Validation of the albedo andmelt pond fraction retrievals with the data of theMELTEX fie
classified melt pond fractions (left), R = 0.70, RMS= 0.15; correlation between the retrieved
orthodromic distance of every pixel within a satellite swath to a
given aerial measurement point and collecting aerial points with
the minimum distance to the center of a chosen satellite pixel. This
results in about 500 albedo measurements per pixel. The melt pond
fraction was extracted from preselected quality-assured airborne
images that were classified into surface classes with the maximum
likelihood method. The number of points per flight is in the order
of hundreds with about 5 images per satellite pixel collocated to
the satellite data, same as in the albedo measurements. An example
of comparison for both albedo and melt pond fraction is shown in
Fig. 9.

The left panel of Fig. 9 shows the comparison of the airborne derived
melt pond fraction to the MPD retrieved values. Number of points is
N = 88. It is seen that the melt pond fraction is overestimated a little
in the retrieval, as compared to the aerial observations. The highest
overestimation is in the range of small fractions. However, this effect
is present in other algorithms as well (for instance, see Fig. 11 in Rösel
et al., 2012). This overestimation can be explained by the presence of
blue ice or sediments from the coast, because the airborne measured
albedo of these pixels is quite low (b0.4). However, in total, the correla-
tion is satisfactory (R = 0.70).

As it might be expected, the situation is much better for the albedo
retrieval. The right panel shows the comparison of broadband albedo
obtained by airborne pyranometer (thewavelength range of the instru-
ment is 285nm to 2.8 μm) to the shortwave albedo obtained by narrow-
to-broadband conversion of the retrieved spectral albedo at 4 channels
(490 nm, 560 nm, 665 nm, and 865 nm), as suggested by Liang (2001),
Stroeve et al. (2005), Gao, Schaaf, Jin, Lucht, and Strahler (2003). Num-
ber of points is N = 279, correlation coefficient R = 0.90, root-mean-
square difference RMS = 0.032. Due to the fact that the measured
broadband albedo is dependent on the atmospheric conditions and illu-
mination geometry (including the flight time), the absolute difference
of measured and retrieved value is less informative than the correlation
of these values that allows evaluating the melt state of the surface.

3.5. Implementation of the algorithm for bulk processing

TheMPD algorithm is currently implemented for bulk data process-
ing at the Institute of Environmental Physics, University of Bremen. The
entire historic MERIS dataset 2002–2012 has been processed. The pro-
cessing chain is implemented as a Python script and, besides the actual
running of the MPD software, includes subsetting the full orbit to the
satellite scene of interest and performing radiometric corrections
(equalization to reduce detector-to-detector and camera-to-camera
systematic radiometric differences, smile correction (Bourg, D'Alba, &
Colagrande, 2008) to reduce the CCD-induced variations of wavelength
from pixel to pixel, and radiometric re-calibration), using the BEAM
0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

albedo, measured

al
be

do
, r

et
rie

ve
d

ld campaign on 06/06/2008 (landfast ice): correlation between the retrieved and airborne
and airborne measured broadband albedo (right), R = 0.90, RMS = 0.032.

Image of Fig. 8
Image of Fig. 9


Fig. 10. Daily averages of spectral sea ice albedo at 500 nm andmelt pond fraction for the 10th of June, 2010. Notice the melt onset in the Beaufort Sea and otherwise relatively melt free
Arctic Ocean.
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command line tool (www.brockmann-consult.de/cms/web/beam/). To
produce daily averaged output, the data obtained from all the orbits
for the given day is gridded into a 12.5 km polar stereographic grid
(the so-called NSIDC grid). The resulting values are the daily averages
of melt pond fraction, spectral albedo and their standard deviations.
These values are stored as four variables into a NetCDF file.

An example of the daily averaged melt pond fraction and sea ice al-
bedo at 500 nm for the 10th of June, 2010 is shown in Fig. 10. On this
day, the Arctic Ocean is still relatively melt free at the higher latitudes.
Melt onset starts in themore southern Beaufort Sea. In this region, espe-
cially closer to the shore on the first year ice and land fast ice, the melt
pond fraction reaches 0.4, which is typical for smooth and level ice
before pond drainage. The spectral albedo is correspondingly lower in
this region.

4. Conclusion

The newalgorithm to retrieve themelt pond fraction and spectral al-
bedo of the summer ice in Arctic has been developed. It is substantially
different from the known state-of-the-art algorithms (Rösel et al., 2012;
Tschudi et al., 2008) as it is based on the newly developed optical model
of the sea ice reflection and does not use the a priori reflectance spectra
of sub-pixels constituents. Conversely, these spectral reflectances are
corrected during the iteration process. The algorithmuses an embedded
procedure of atmospheric correction and takes into account the ice
BRDF, which is of great importance for the satellite remote sensing of
the Arctic basin because of the low sun.

The opticalmodels of sea ice andmelt pond reflection used in this al-
gorithmwere successfully verified with existing experimental data and
measurements for various types of Arctic summer ice (Istomina,
Heygster, et al., 2013). The experimental spectra of ice and melt ponds
used are taken from the databases of the Cold Regions Research and
Engineering Laboratory (CRREL, USA) (Polashenski et al., 2012) and
from the Polarstern expedition 2012 measurements (University of
Bremen) (Istomina, Nicolaus, et al., 2013). The algorithm verification
with the in situ measurements and aerial data is published separately
(Istomina et al., 2014).

Basing on the analysis of experimental data, the bounds for values,
specifying the physical state of the surface, were established. These
bounds determine the variability of the ice/pond properties observed
in situ. The variation of the bounds allows expanding or straitening
the scope of the algorithm, even to the limit where the spectral reflec-
tion coefficients of ice and ponds are fixed. In this case the MPD
algorithm becomes analogous to the state-of-the-art ones (Rösel et al.,
2012; Tschudi et al., 2008). On the other hand, the extension of the per-
missible bounds allows including situations, which were not initially in
the scope, e.g., to describe the wet, water saturated ice surface or thin
ice. However, these types of ice have reflectance spectra that are very
close to those ofmelt ponds. This fact does not strongly affect the albedo
retrieval, butmakes it impossible to distinguish ponds and ice. The same
applies to the case of blue ice that has spectral reflectance similar to that
of ponds. However, this problem is well known and is inherent to any
algorithm, working with data in the visible and IR range (Tschudi
et al., 2008). That is why the algorithm is supposed to be stable when
the ice is quite bright, providing the albedo of about 0.6 and higher in
the blue-green region of the spectrum.

The numerical simulations show that the MPD algorithm provides
accurate estimates of the fractional composition of a pixel in the case
of developed melting when pixels constituents are white ice and light
melt ponds. It is shown that more accurate MPD results are obtained
for pixels with light blue ponds than with dark ones. Despite the errors
of the retrieved pond fraction in the case of dark ponds can exceed 50%
in the worst cases, the spectral albedo is retrieved with high accuracy
for any type of ice and ponds (the error is not greater than 0.01). This
feature relates to the fact that the MPD algorithm takes into account
the angular dependence of the reflection, while the retrieval with the
Lambert approximation usually underestimates the albedo by about
0.05 all over the spectral range. Thereby, the accuracy of the MPD re-
trieval of the spectral albedo of Arctic summer ice from satellite data
meets the requirements of many application including climatological
ones.

The algorithmwas implemented as computer code that we call Melt
Pond Detector (MPD). Currently, the MPD code is arranged as a Linux
console application, and works in the MERIS processing chain in the
University of Bremen, providing a comprehensive melt pond data prod-
uct based on the completeMERIS data set (2002–2012). These retrievals
provide historical data on the process of Arctic ice melting, which is so
important for understanding the climate changes in the Arctic. It is
planned to implement theMPD code for processing data of other optical
satellite sensors such as OCLI on Sentinel 3 to be launched in the near
future.

Acknowledgment

The authors would like to express their special appreciation and
thanks to Prof. Donald Perovich and Dr. Chris Polashenski from CRREL

http://www.brockmann-consult.de/cms/web/beam/
Image of Fig. 10


164 E. Zege et al. / Remote Sensing of Environment 163 (2015) 153–164
for their extremely valuable consulting and providing the reflection
spectra of the Arctic ice during melting period. We would also like to
thank the scientific shipboard party of the RV Polarstern cruise IceArc-
2012 for making the field observations of ice albedo possible.

This work was supported by the project no. 262922 SIDARUS (Sea
ice downstream services for Arctic and Antarctic Users and Stake-
holders), financed by the European Union in the 7th Framework
Programme for Research and Development.

References

Barry, R. G. (1996). The parameterization of surface albedo for sea ice and its snow cover.
Progress in Physical Geography, 20(1), 63–79.

Birnbaum, G., Dierking,W., Hartmann, J., Lüpkes, C., Ehrlich, A., Garbrecht, T., et al. (2009).
The Campaign MELTEX with Research Aircraft “POLAR 5” in the Arctic in 2008.
Berichte zur Polar- und Meeresforschung Reports on Polar and Marine Research, 593,
3–85.

Boetius, A., et al. (2013). Export of algal biomass from the melting Arctic sea ice. Science,
339(6126), 1430–1432. http://dx.doi.org/10.1126/science.1231346.

Bourg, L., D'Alba, L., & Colagrande, P. (2008). MERIS smile effect characterisation and cor-
rection. ESA technical note (http://earth.eo.esa.int/pcs/envisat/meris/documentation/
MERIS_Smile_Effect.pdf).

Bricaud, A., Morel, A., & Prieur, L. (1981). Absorption by dissolved organic matter of the
sea (yellow substance) in the UV and visible domains. Limnology and Oceanography,
26(1), 43–53.

Curry, J. A., Schramm, J. L., & Ebert, E. E. (1995). Sea-ice albedo climate feedback mecha-
nism. Journal of Climate, 8(2), 240–247.

Dethloff, K., Rinke, A., Benkel, A., Køltzow, M., Sokolova, E., Kumar Saha, S., et al. (2006). A
dynamical link between the Arctic and the global climate system. Geophysical
Research Letters, 33, L03703. http://dx.doi.org/10.1029/2005GL025245.

Doronin, Yu.P. (1970). Thermal interaction of the atmosphere and the hydrosphere in the
Arctic. Edited by E. P. Borisenkov. Translated by Dov Lederman. Published by Israel
Program for Scientific Translation. 1st edition:Main Administration of the Hydrometeoro-
logical Service, Arctic and Antarctic Scientific Research Institute.

Eicken, H., Grenfell, T. C., Perovich, D. K., Richter-Menge, J. A., & Frey, K. (2004). Hydraulic
controls of summer Arctic pack ice albedo. Journal of Geophysical Research, 109,
C08007. http://dx.doi.org/10.1029/2003JC001989.

Flocco, D., Feltham, D. L., & Turner, A. K. (2010). Incorporation of a physically based melt
pond scheme into the sea ice component of a climate model. Journal of Geophysical
Research, 115, C08012. http://dx.doi.org/10.1029/2009JC005568.

Flocco, D., Schroeder, D., Feltham, D. L., & Hunke, E. C. (2012). Impact of melt ponds on
Arctic sea ice simulations from 1990 to 2007. Journal of Geophysical Research, 117,
C09032. http://dx.doi.org/10.1029/2012JC008195.

Gao, F., Schaaf, C., Jin, Y., Lucht, W., & Strahler, A. (2003). Deriving albedo from coupled
MERIS and MODIS surface products. Proceedings of MERIS user workshop 2003, ESA,
ESRIN, Frascati, Italy, 10–13 November 2003.

Grenfell, T. C., & Maykut, G. A. (1977). The optical properties of ice and snow in the Arctic
basin. Journal of Glaciology, 18(80), 445–463.

Heygster, G., Alexandrov, V., Dybkjær, G., Girard-Ardhuin, F., von Hoyningen-Huene, W.,
Katsev, I. L., et al. (2012). Remote sensing of sea ice: advances during the
DAMOCLES project. The Cryosphere, 6, 1411–1434. http://dx.doi.org/10.5194/tc-6-
1411-2012.

Hunke, E. C., Hebert, D. A., & Lecomte, O. (2013). Level-ice melt ponds in the Los Alamos
sea ice model, CICE. Ocean Modelling, 71, 26–42.

Istomina, L., Heygster, G., Huntemann, M., Schwarz, P., Birnbaum, G., Scharien, R., et al.
(2014). The melt pond fraction and spectral sea ice albedo retrieval from MERIS
data: validation and trends of sea ice albedo and melt pond fraction in the Arctic
for years 2002–2011. The Cryosphere Discussions, 8, 5227–5292. http://dx.doi.org/10.
5194/tcd-8-5227-2014.

Istomina, L., Heygster, G., Zege, E., Malinka, A., Prikhach, A., & Katsev, I. (2013). Albedo
and meltpond analysis: validation and calibration of the MPD retrieval using sea
ice and melt pond albedo spectra measured during Polarstern cruise IceArc2012.
Scientific report no. D4.4 to project SIDARUS (Sea Ice Downstream services for Arctic
and Antarctic Users and Stakeholders), grant no. 262922 of the 7th Framework
Programme for Research and Development (http://sidarus.nersc.no/content/
public-deliverables).

Istomina, L., Nicolaus, M., & Perovich, D. (2013). Spectral albedo of sea ice and melt ponds
measured during POLARSTERN cruise ARK XXII/3 (IceArc) in 2012. PANGAEA dataset.
Bremen: Institute for Environmental Physics, University of Bremen. http://dx.doi.
org/10.1594/PANGAEA.815111.

Kokhanovsky, A. A., & Zege, E. P. (2004). Scattering optics of snow. Applied Optics, 43,
1589–1602. http://dx.doi.org/10.1364/AO.43.001589.

Køltzow, M. (2007). The effect of a new snow and sea ice albedo scheme on regional
climate model simulations. Journal of Geophysical Research, 112, D07110. http://dx.
doi.org/10.1029/2006JD007693.

Liang, S. (2001). Narrowband to broadband conversion of land surface albedo. I. Algo-
rithms. Remote Sensing of Environment, 76, 213–238.

Light, B. (2010). Theoretical and observational techniques for estimating light scattering
in first-year Arctic sea ice. In A. Kokhanovsky (Ed.), Light scattering reviews 5. Single
light scattering and radiative transfer (pp. 331–391). Berlin: Springer.

Light, B., Eicken, H., Maykut, G. A., & Grenfell, T. C. (1998). The effect of included particu-
lates on the spectral albedo of sea ice. Journal of Geophysical Research, 103(C12),
27,739–27,752.

Lüpkes, C., Gryanik, V. M., Rösel, A., Birnbaum, G., & Kaleschke, L. (2013). Effect of
sea ice morphology during Arctic summer on atmospheric drag coefficients
used in climate models. Geophysical Research Letters, 40, 1–6. http://dx.doi.
org/10.1002/grl.50081.
Malinka, A. (2014). Light scattering in porousmaterials: Geometrical optics and stereological
approach. Journal of Quantitative Spectroscopy and Radiation Transfer, 141, 14–23.

Malinka, A., & Zege, E. (2007). Possibilities of warm cloud microstructure profiling with
multiple-field-of-view Raman lidar. Applied Optics, 46(35), 8419–8427.

Markus, T., Stroeve, J. C., & Miller, J. (2009). Recent changes in Arctic sea ice melt onset,
freezeup, and melt season length. Journal of Geophysical Research, 114, C12024.
http://dx.doi.org/10.1029/2009JC005436.

Mobley, C. D., Cota, G. F., Grenfell, T. C., Maffione, R. A., Pegau, W. S., & Perovich, D. K.
(1998). Modeling light propagation in sea ice. IEEE Transactions on Geoscience and
Remote Sensing, 36(5), 1743–1749.

Nazintsev, Y. L. (1964). Thermal balance of the surface of the perennial ice cover in the
central Arctic (in Russian). Works of Arctic and Antarctic Scientific Research Institute
(Tr. Arkt. Antarkt. Nauchno-Issled. Inst.), 267. (pp. 110–126), 110–126.

Nicolaus, M., Gerland, S., Hudson, S. R., Hanson, S., Haapala, J., & Perovich, D. K. (2010).
Seasonality of spectral albedo and transmittance as observed in the Arctic Transpolar
Drift in 2007. Journal of Geophysical Research, 115, C11011. http://dx.doi.org/10.1029/
2009JC006074.

Perovich, D. K. (1996). The optical properties of sea ice. Report 96-1. Hanover (NH, USA):
US Army Cold Regions Research and Engineering Laboratory (CRREL) (www.dtic.mil/
cgi-bin/GetTRDoc?AD=ADA310586).

Perovich, D. K., Grenfell, T. C., Light, B., Elder, B. C., Harbeck, J., Polashenski, C., et al. (2009).
Transpolar observations of the morphological properties of Arctic sea ice. Journal of
Geophysical Research, 114, C00A04. http://dx.doi.org/10.1029/2008JC004892.

Perovich, D. K., Grenfell, T. C., Light, B., & Hobbs, P. V. (2002). Seasonal evolution of the
albedo of multiyear Arctic sea ice. Journal of Geophysical Research, 107(C10), 8044.

Perovich, D. K., Richter-Menge, J. A., Jones, K. F., & Light, B. (2008). Sunlight, water and ice:
extreme Arctic sea ice melt during the summer of 2007. Geophysical Research Letters,
35, L11501.

Pirazzini, R. (2008). Factors controlling the surface energy budget over snow and ice.
Academic dissertation in meteorology. Helsinki: Finnish Meteorological Institute.

Pistone, K., Eisenmann, I., & Ramanathan, V. (2014). Observational determination of albe-
do decrease caused by vanishing Arctic sea ice. Proceedings of the National Academy of
Sciences of the United States of America, 111(9), 3322–3326. http://dx.doi.org/10.1073/
pnas.1318201111.

Polashenski, C., Perovich, D., & Courville, Z. (2012). The mechanisms of sea ice melt pond
formation and evolution. Journal of Geophysical Research, 117, C01001. http://dx.doi.
org/10.1029/2011JC007231.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes
in C. The art of scientific computing (2nd ed.). Cambridge: Cambridge University Press.

Rösel, A., Kaleschke, L., & Birnbaum,G. (2012).Melt pondsonArctic sea ice determined from
MODIS satellite data using an artificial neural network. The Cryosphere, 6, 431–446.

Rozanov, V. V., Rozanov, A. V., Kokhanovsky, A. A., & Burrows, J. P. (2014). Radiative trans-
fer through terrestrial atmosphere and ocean: Software package SCIATRAN. Journal of
Quantitative Spectroscopy and Radiation Transfer, 133, 13–71.

Schlundt, C., Kokhanovsky, A. A., von Hoyningen-Huene, W., Dinter, T., Istomina, L., &
Burrows, J. P. (2011). Synergetic cloud fraction determination for SCIAMACHY using
MERIS. Atmospheric Measurement Techniques, 4, 319–337.

Schröder, D., Feltham, D. L., Flocco, D., & Tsamados, M. (2014). September Arctic sea-ice
minimum predicted by spring melt-pond fraction. Nature Climate Change, 4,
353–357. http://dx.doi.org/10.1038/nclimate2203.

Serreze, M. C., Barrett, A. P., & Cassano, J. J. (2011). Circulation and surface controls on the
lower tropospheric temperature field of the Arctic. Journal of Geophysical Research,
116, D07104.

Serreze, M. C., Walsh, J. E., Chapin, F. S., III, Osterkamp, T., Dyurgerov, M., Romanovsky, V.,
et al. (2000). Observational evidence of recent change in the northern high latitude
environment. Climatic Change, 46, 159–207.

Shindell, D., & Faluvegi, G. (2009). Climate response to regional radiative forcing during
the twentieth century. Nature Geoscience, 2, 294–300. http://dx.doi.org/10.1038/
ngeo473.

Stroeve, J., Box, J., Gao, F., Liang, S., Nolin, A., & Schaaf, C. (2005). Accuracy assessment of
the MODIS 16-day albedo product for snow: Comparisons with Greenland in situ
measurements. Remote Sensing of Environment, 94, 46–60. http://dx.doi.org/10.
1016/j.rse.2004.09.001.

Tanré, D., Herman, M., & Deschamps, P. Y. (1983). Influence of the atmosphere on space
measurements of directional properties. Applied Optics, 21, 733–741.

Tomasi, C., et al. (2007). Aerosols in polar regions: A historical overview based on optical
depth and in situ observations. Journal of Geophysical Research, 112, D16205. http://
dx.doi.org/10.1029/2007JD008432.

Tschudi, M. A., Maslanik, J. A., & Perovich, D. K. (2008). Derivation of melt pond coverage
on Arctic sea ice using MODIS observations. Remote Sensing of Environment, 112(5),
2605–2614.

Tynes, H., Kattawar, G.W., Zege, E. P., Katsev, I. L., Prikhach, A. S., & Chaikovskaya, L. I. (2001).
Monte Carlo and multi-component approximation methods for vector radiative trans-
fer by use of effective Mueller matrix calculations. Applied Optics, 40, 400–412.

Untersteiner, N. (1990). Structure and dynamics of the Arctic Ocean ice cover. In A.
Grantz, L. Johnson, & J. F. Sweeney (Eds.), The Arctic Ocean region (pp. 37–51). Boulder:
Geol. Soc. of Am.

Warren, S. G., & Brandt, R. E. (2008). Optical constants of ice from the ultraviolet to the
microwave: A revised compilation. Journal of Geophysical Research, 113, D14220.
http://dx.doi.org/10.1029/2007JD009744.

Wiebe, H., Heygster, G., Zege, E. P., Aoki, T., & Hori, M. (2013). Snow grain size retrieval
SGSP from optical satellite data: Validation with groundmeasurements and detection
of snowfall events. Remote Sensing of Environment, 128, 11–20. http://dx.doi.org/10.
1016/j.rse.2012.09.007.

Zege, E. P., Ivanov, A. P., & Katsev, I. L. (1991). Image transfer through a scattering medium.
Heidelberg: Springer-Verlag.

Zege, E. P., Katsev, I. L., Malinka, A. V., Prikhach, A. S., Heygster, G., & Wiebe, H. (2011).
Algorithm for retrieval of the effective snow grain size and pollution amount from
satellite measurements. Remote Sensing of Environment, 115(10), 2674–2685.

http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0005
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0005
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0245
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0245
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0245
http://dx.doi.org/10.1126/science.1231346
http://earth.eo.esa.int/pcs/envisat/meris/documentation/MERIS_Smile_Effect.pdf
http://earth.eo.esa.int/pcs/envisat/meris/documentation/MERIS_Smile_Effect.pdf
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0020
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0020
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0020
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0025
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0025
http://dx.doi.org/10.1029/2005GL025245
http://dx.doi.org/10.1029/2003JC001989
http://dx.doi.org/10.1029/2009JC005568
http://dx.doi.org/10.1029/2012JC008195
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0255
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0255
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0255
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0050
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0050
http://dx.doi.org/10.5194/tc-6-1411-2012
http://dx.doi.org/10.5194/tc-6-1411-2012
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0060
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0060
http://dx.doi.org/10.5194/tcd-8-5227-2014
http://dx.doi.org/10.5194/tcd-8-5227-2014
http://sidarus.nersc.no/content/public-deliverables
http://sidarus.nersc.no/content/public-deliverables
http://dx.doi.org/10.1594/PANGAEA.815111
http://dx.doi.org/10.1364/AO.43.001589
http://dx.doi.org/10.1029/2006JD007693
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0275
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0275
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0280
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0280
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0280
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0085
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0085
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0085
http://dx.doi.org/10.1002/grl.50081
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0100
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0100
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0105
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0105
http://dx.doi.org/10.1029/2009JC005436
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0115
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0115
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0300
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0300
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0300
http://dx.doi.org/10.1029/2009JC006074
http://dx.doi.org/10.1029/2009JC006074
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA310586
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA310586
http://dx.doi.org/10.1029/2008JC004892
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0130
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0130
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0135
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0135
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0135
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0295
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0295
http://dx.doi.org/10.1073/pnas.1318201111
http://dx.doi.org/10.1073/pnas.1318201111
http://dx.doi.org/10.1029/2011JC007231
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0155
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0155
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0160
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0160
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0165
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0165
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0165
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0170
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0170
http://dx.doi.org/10.1038/nclimate2203
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0185
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0185
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0185
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0180
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0180
http://dx.doi.org/10.1038/ngeo473
http://dx.doi.org/10.1038/ngeo473
http://dx.doi.org/10.1016/j.rse.2004.09.001
http://dx.doi.org/10.1016/j.rse.2004.09.001
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0200
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0200
http://dx.doi.org/10.1029/2007JD008432
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0210
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0210
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0210
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0215
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0215
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0220
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0220
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0220
http://dx.doi.org/10.1029/2007JD009744
http://dx.doi.org/10.1016/j.rse.2012.09.007
http://dx.doi.org/10.1016/j.rse.2012.09.007
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0235
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0235
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0240
http://refhub.elsevier.com/S0034-4257(15)00108-X/rf0240

	Algorithm to retrieve the melt pond fraction and the spectral albedo of Arctic summer ice from satellite optical data
	1. Introduction
	2. Retrieval algorithm
	2.1. Physical and optical properties of sea ice with melt ponds
	2.2. Spectral channels
	2.3. MPD algorithm structure
	2.3.1. Atmospheric correction preprocessing block
	2.3.2. Separation of the sea-ice pixels
	2.3.3. Setting the bounds for ice and pond parameters
	2.3.4. The iterative procedure


	3. Algorithm implementation
	3.1. Internal verification
	3.2. Sensitivity of the MPD algorithm to the atmospheric model
	3.2.1. Sensitivity to the water vapor content
	3.2.2. Sensitivity to the aerosol model

	3.3. Estimation of the retrieval error
	3.4. Validation with the field data
	3.5. Implementation of the algorithm for bulk processing

	4. Conclusion
	Acknowledgment
	References


