A multi-model study on Southern Ocean CO₂ uptake and the role of the biological carbon pump in the 21st century

Models

- **MAREM/CMIP5 models**
 - Atmospheric CO₂ according to RCP8.5 scenario
 - five fully coupled and three ocean-ice-ecosystem models
 - models differ widely in mixed layer depth (MLD) definitions

- **two additional RECoM2 simulations**
 - CONST: with constant preindustrial atmospheric CO₂ * changing climate
 - RCP85: with constant climate and increasing atm CO₂

- **Box model**
 - Prognostics: DIC and ALK concentration and CO₂ flux.
 - Forcing: output from RECoM2 RCP8.5 simulation, averaged over periods 2012-2031 and 2081-2100 as forcing: prescribed temperature, salinity, deep DIC and ALK, export as gross primary production (GPP) minus respiration minus remineralization, sea ice area. Wind speed from MIROCS to calculate Ekman transport and up-/ downwelling from mass balance. Atmospheric CO₂ from RCP8.5

Results

Multi-model mean CO₂ flux (positive into ocean). Regions 44-58°S and south of 58°S will contribute more to Southern Ocean (south of 30°S) CO₂ flux in the future due to larger impact of biology at high Revelle factor (Hauck & Völker, 2015) and increase in export. The larger uptake in the south limits uptake in the north (northward Ekman transport).

Conclusions

No agreement among models whether system south of 44°S will be controlled by SAM or warming signal. In the temperate region 30-44°S the warming signal with shallower mixed layer depths dominates.

The largest impact on future CO₂ uptake is by the atmospheric CO₂ increase.

Roles of biology. Increase of biologically-driven CO₂ uptake until 2100 and twice as large (not shown) as F_NPP increase due to increased export production before interaction between biology and Revelle factor (Hauck & Völker, 2015, GRL).

Without biology red/orange bars: Southern Ocean would be source of CO₂ to the atmosphere.

Possible scenarios for export production and CO₂ flux

- Shallow MLD: more light (less nutrients) less NPP and export enhanced summer CO₂ uptake
- Deeper MLD: less light (more nutrients) less NPP and export reduced summer CO₂ uptake

Motivation

- Which signal will be dominant in the future?
- What does that mean for export production?
- And how will that translate into CO₂ flux?

Causes for export production changes

1. No model agreement on dominance of SAM or global warming signal, but agreement on increase of export in spring or summer in the region south of 58°S
2. No model agreement on dominance of SAM or global warming signal, no agreement on sign of export change in the region 44-58°S
3. Model agreement on dominance of global warming signal, nutrient-driven decrease of export production in the region 30-44°S

Global warming signal

<table>
<thead>
<tr>
<th></th>
<th>Today</th>
<th>Year 2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST</td>
<td>+/−</td>
<td>++/+++</td>
</tr>
<tr>
<td>Mixing</td>
<td>+/−</td>
<td>++/+++</td>
</tr>
<tr>
<td>Stratification</td>
<td>+/−</td>
<td>++/+++</td>
</tr>
<tr>
<td>Nutrient input</td>
<td>+/−</td>
<td>++/+++</td>
</tr>
</tbody>
</table>

SAM signal

<table>
<thead>
<tr>
<th></th>
<th>Today</th>
<th>Year 2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST</td>
<td>+/−</td>
<td>++/+++</td>
</tr>
<tr>
<td>Mixing</td>
<td>+/−</td>
<td>++/+++</td>
</tr>
<tr>
<td>Stratification</td>
<td>+/−</td>
<td>++/+++</td>
</tr>
<tr>
<td>Nutrient input</td>
<td>+/−</td>
<td>++/+++</td>
</tr>
</tbody>
</table>

Figure

- Export production (PgC month⁻¹)
- (A) Export production (PgC month⁻¹)
- (B) MLD (m)
- (C) Nutrient limitation (%)