1. ABSTRACT

- We apply a new global climate model supporting multi-resolution ocean grids with local, isotropic refinements (Sidorenko, Rackow et al., 2014; Rackow et al., 2014a, in preparation)

KEY QUESTIONS:

1) Does high spatial resolution in the tropical ocean (0.25°, Fig.1) improve the Equatorial Pacific simulation?

2) If so, is the improvement beneficial for ENSO simulations (index statistics, annual cycle representation, and monthly variance)?

2. OCEAN MODEL SETUPS

- Figure 1: Ocean grid for setup TRO (=0.25° tropical resolution) compared to REF (1°). Outside the tropics, both grids coincide. The atmospheric grid is fixed at 76×47, i.e. 1.85° with 47 levels. Both setups are run for 520 years with constant 1990 greenhouse gas and aerosol concentrations (Sidorenko, Rackow et al., 2014).

3. IMPROVEMENTS DUE TO HIGHER RESOLUTION IN THE OCEAN

- Figure 2: Differences (TRO - REF and REF - OBS) concerning annual mean sea surface temperature (SST, top panel) and interannual SST standard deviation (STD, bottom panel).

- OBS is referring to HadISST (Rayner et al., 2003).

 - The Pacific cold tongue bias does not extend as far to the West with high resolution. Thus warm pool SSTs are higher by up to 3 K.
 - The erroneous warm pool local maximum in STD (present in REF) is absent in TRO (see Fig.3).

4. SPECTRA AND STATISTICS OF NIÑO INDICES

- Figure 3: Top panel SST snapshot for TRO showing resolved Tropical Instability Waves (TIWs). Bottom panel improved interannual SST standard deviation in TRO.

- Figure 4: Meridional section of zonal velocities (m/s) at 155°W (20yr mean). The Eq. Undercurrent (EUC) is stronger in TRO (> 0.9 m/s core speed) compared to REF (0.5 - 0.6 m/s). TRO: Two distinguishable branches of South Eq. Current (SEC1 & SEC2) emerge.

5. ANNUAL CYCLE / MONTHLY VARIANCE

- Figure 5: Power spectral densities [K²/yr] for different Niño indices in TRO, REF and HadISST (1970 to 2012). The 520 model years have been subsampled resulting in 4 realizations for REF and TRO. 1K, 5K, 50K, 95K, and 99% quantiles of 10,000 HadISST fitted AR1-process PSDs are depicted. Insets show (range in) standard devs of TRO, REF, and HadISST.

6. SUMMARY AND CONCLUSIONS

- 1) Due to improved equatorial currents (Fig.4) in TRO, warm pool SST bias is reduced by 1 K; STD bias is reduced by up to 0.4 K (Fig.2) compared to REF; TIWs are better resolved in TRO (Fig.3).

- 2) ENSO statistics tend to improve with TRO (insets in Fig.5).

- N34 annual cycle: Equally good in TRO and REF. N34 monthly variance: TRO shows reduced local maximum in AMJ compared to REF and has a global maximum in NDJ (colored boxes in Fig.6).

- OUTLOOK: Investigate ENSO - annual cycle interaction (Rackow et al., 2014b, in preparation)