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A B S T R A C T

Alexandrium ostenfeldii is an emerging harmful algal bloom species forming a global threat to coastal

marine ecosystems, with consequences for fisheries and shellfish production. The Oosterschelde estuary

is a shallow, macrotidal and mesotrophic estuary in the southwest of The Netherlands with large stocks

of mussels, oysters, and cockles. These shellfish stocks were threatened by a recent A. ostenfeldii bloom in

the Ouwerkerkse Kreek, which is a brackish water creek discharging water into the Oosterschelde. Little

is yet known about the characteristics of the A. ostenfeldii population in this creek. We therefore isolated

20 clones during an A. ostenfeldii bloom in 2013, and characterized these clones on their growth and toxin

profile in their exponential growth phase. The cyclic imines were identified by comparison of A.

ostenfeldii extracts with the retention time and CID spectra of standard solutions, or with published CID

spectra. We furthermore assessed the allelochemical potency and phylogeny of a selection of 10–12

clones. Morphology and molecular phylogeny showed that all clones belong to Group 1 of A.

ostenfeldii. All clones showed comparable growth rates of on average 0.22 � 0.03 d�1. During exponential

growth, they all produced a unique combination of paralytic shellfish poisoning toxins, spirolides and

gymnodimines, of which particularly the latter showed a high intra-specific variability, with a 25-fold

difference between clones with the lowest and highest cell quota. Furthermore, the selected 12 clones

showed high allelopathic potencies with EC50 values based on lysis assays against the cryptophyte

Rhodomonas salina between 212 and 525 A. ostenfeldii cells mL�1. Lytic activities were lower for cell extracts,

indicating an important extracellular role of these compounds. A high intra-specific variability may add to

the success of genotypically diverse A. ostenfeldii blooms, and make populations resilient to changes in

environmental and climatic conditions.

� 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Harmful algal blooms are a global threat to coastal marine
ecosystems, with consequences for fisheries and shellfish produc-
tion (Anderson et al., 2002; Heisler et al., 2008; Wang, 2008).
Alexandrium is among the most common bloom forming toxic
dinoflagellate genera and is generally held responsible for the
outbreak of paralytic shellfish poisoning (PSP; Anderson et al.,
2012). Besides PSP toxins, some Alexandrium species are known to
produce other toxins including different spirolides (SPX) or
gymnodimines (Cembella, 2003; Van Wagoner et al., 2011;
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Borkman et al., 2012; Kremp et al., 2014). These species belong
to different phylogenetic groups of Alexandrium ostenfeldii as
recently defined by Kremp et al. (2014), including Alexandrium

peruvianum. Most A. ostenfeldii strains have been shown to produce
SPX, some strains also produce detectable amounts of PSP toxins,
while only a few strains were reported to combine PSP toxin, SPX
and 12-methylgymnodimine production (Cembella, 2003; Bork-
man et al., 2012; Kremp et al., 2014).

PSP toxins are a group of neurotoxic compounds, including
saxitoxin (STX), neosaxitoxin (NEO), gonyautoxins (GTX), and their
N-sulfocarbamoyl variants the B- and C-toxins (Shimizu, 1996;
Cembella, 1998). STX is highly toxic with an LD50 value (i.p. mice)
of 8 mg kg�1 body weight (Wiberg and Stephenson, 1960). The
addition of a sulfate group at the C-11 position forms GTX, thereby
reducing the toxicity by up to 40%. A further addition of a sulfonyl
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group at the carbamoyl group forms C-toxins, which exhibit a 99%
lower toxicity as compared to STX (Wiese et al., 2010). SPX and
gymnodimines are fast acting highly toxic neurotoxins, with LD50

values (i.p. mice) down to 6.9 and 96 mg kg�1 body weight,
respectively (Munday et al., 2004, 2012). Besides toxicity, various
Alexandrium species were shown to have allelopathic potencies
toward grazers and other phytoplankton species (Tillmann and
John, 2002; Tillmann et al., 2007, 2008; John et al., 2015).

Alexandrium ostenfeldii is globally distributed in brackish and
marine environments, and isolates have been characterized from
locations worldwide (Kremp et al., 2014). A. ostenfeldii is
historically seen as background bloomer (Cembella et al., 2000;
John et al., 2003), however, dense A. ostenfeldii blooms have been
reported recently in the Narragansett Bay and the New River
Estuary in the U.S. east coast (Borkman et al., 2012; Tomas et al.,
2012), the Baltic Sea coast of Finland (Hakanen et al., 2012), along
the Adriatic coast of Italy (Ciminiello et al., 2006), and recently in a
creek of the Oosterschelde estuary in the Southwest of The
Netherlands (Burson et al., 2014). This Oosterschelde estuary is a
shallow, macrotidal and mesotrophic estuary with large stocks of
mussels, oysters, and cockles (Fig. 1A and B; Troost et al., 2010; van
Broekhoven et al., 2014). Because of potential contamination of
these shellfish with phytoplankton toxins, The Netherlands has a
regular monitoring program for toxic compounds in shellfish, as
well as for the occurrence of harmful algal species in the
Oosterschelde estuary (van der Fels-Klerx et al., 2011). A recent
dense A. ostenfeldii bloom in a creek discharging water into the
Oosterschelde threatened the shellfish stocks, and was terminated
by the addition of hydrogen peroxide (Burson et al., 2014). The
bloom, however, recurred in 2013 and reached population
densities of up to 4500 cells mL�1 (Fig. 1C). Little is yet known
about the characteristics of the A. ostenfeldii population in the
creek. We therefore isolated a number of A. ostenfeldii clones
during the bloom in 2013, and characterized the bloom population
in terms of growth, morphology, phylogeny, toxin composition,
and lytic activity.

2. Material and methods

2.1. Field sampling

The Ouwerkerkse Kreek is a small brackish water creek in the
province of Zeeland, Southwest of The Netherlands (Fig. 1A and B;
See also Burson et al., 2014). The inlet of the creek is connected
with ditches that drain the agricultural lands in the area, and water
from the creek is regularly discharged into the Oosterschelde
estuary via a pumping station. The phytoplankton population in
the creek was monitored for Alexandrium ostenfeldii, and weekly
samples were taken for cell counts during the bloom. An integrated
Fig. 1. Overview of the sampling location and the bloom dynamics of Alexandrium oste

specific sampling locations ‘a’ and ‘b’ in the Ouwerkerkse Kreek (B), and the A. ostenfel
water sample was taken of the upper 1 m of the water column at
location ‘a’ (Fig. 1B), and a 1 L sub sample was fixed with Lugol’s
iodine solution (Lugol) to a final concentration of 1%. A. ostenfeldii

cells were counted in a Sedgewick chamber on an inverted
microscope (Olympus Vanox, Hamburg, Germany). Isolates of A.

ostenfeldii cells were sampled at the onset of the bloom on 16 July
2013 from locations ‘a’ and ‘b’ in the creek (Fig. 1B).

2.2. Isolation

Cells of Alexandrium ostenfeldii were picked from small droplets
in a petridish using a Pasteur pipette or a 10 mL mirco-pipette.
Individual cells were cleaned five times in 2 mL droplets of sterile
medium consisting of filtered and diluted North Sea water with a
salinity of about 10, or in sterilized artificial brackish water
medium with a salinity of about 10 (Appendix A). Both media
contained nutrients corresponding to 50% of K-medium (Keller
et al., 1987). A. ostenfeldii cells were subsequently grown in 100 mL
medium mixed in a 1:1 ratio with sterile filtered water from the
creek (0.2 mm membrane filter) in microplate wells. Clones
OKNL1-10 were subsequently cultured in artificial brackish water
medium (Appendix A), and clones ONNL11-22 in diluted North Sea
water medium.

2.3. Culturing of clones

Twenty of the successfully isolated clones were grown in
250 mL Erlenmeyer flasks at 15 8C under an incident light intensity
of 100 mmol photons m�2 s�1 at a light-dark cycle of 16:8. After
acclimation to these growth conditions (i.e. >5 generations), cells
were transferred and growth was monitored by cell counts
performed every second day. At mid-exponential phase
(�6000 cells mL�1) cultures were harvested for analysis of toxins
and for cell size measurements. Cultures were counted again two
days later, confirming that cell sampling two days before was still
during the exponential phase. For toxin sampling, 15 mL samples
were taken for extraction of SPX and gymnodimines, and 50 mL
samples each were taken for PSP toxin and DNA extraction.
Samples were centrifuged at 6800 � g for 15 min (SL16, Thermo
Scientific, Waltham, USA) and after removal of the supernatant the
pellets were stored at �20 8C.

2.4. Cell counts and measurements

Cell densities of Alexandrium ostenfeldii cultures were deter-
mined by using sedimentation chambers for settling 0.2–1 mL of
culture suspension, and subareas with at least 400 cells were
counted with an inverted microscope (20X, Zeiss Axiovert 40C).
Observation and documentation of live and fixed cells was carried
nfeldii in Rhine-Muesse-Scheldt delta, Southwest of The Netherlands (A). With the

dii population densities during the 2013 bloom sampled from location ‘a’ (C).
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out with either an inverted microscope (Axiovert 200M, Zeiss,
Germany) or a Zeiss Axioskop 2 (Zeiss, Germany), both equipped
with epifluorescence and differential interference contrast optics.
Length and width of cells (n > 50 from each clone) were measured
on freshly Lugol-fixed cells (1% final concentration) with the
program AxioVs40 (v.4.8., Zeiss, Göttingen, Germany) using
micrographs taken with a digital camera (Axiocam MRc, Zeiss,
Göttingen, Germany).

Growth rates were estimated for each clone by means of an
exponential function fitted through all cell counts over time (n = 4),
according to Nt = N0 exp

mt, where Nt refers to the cell concentra-
tions at time t, N0 to the cell concentrations at the start of the
experiment, and m to the growth rate.

2.5. Cell morphology and morphometry

Pattern, shape and dimension of thecal plates were examined
using epifluorescence microscopy of calcofluor-stained cells
according to the method of Fritz and Triemer (1985). Morphomet-
ric measurements were performed for four randomly selected
clones (OKNL11, 12, 14, 19). Cells of exponentially growing
cultures were fixed with neutral Lugol (1% final concentration) for
1 h and then collected by centrifugation at 3220 � g for 10 min
(Eppendorf 5810R, Hamburg, Germany). Cells were resuspended
in a drop of filtered seawater and a drop of a 1 mg mL�1 solution of
Fluorescence Brightner 28 (Sigma–Aldrich, St. Louis, MO, USA) on
a microscope slide. Cells were inspected at 1000� magnification
(Zeiss, Axioskop 2, Göttingen, Germany) and photographed with a
digital camera (Axiocam MRc, Zeiss, Göttingen). Measurements of
size and area of selected diagnostic plates were performed with
the program AxioVs40 (v.4.8., Zeiss, Göttingen). Shape of the first
apical plate and the anterior sulcal plate was scored into
categories given by Kremp et al. (2014).

2.6. Toxins

2.6.1. Toxin extraction

Freeze dried cell pellets were suspended in 500 mL 0.03 M
acetic acid for PSP toxin analysis and with methanol for SPX
analysis, respectively. The samples were subsequently transferred
into a FastPrep tube containing 0.9 g of lysing matrix D. The
samples were homogenized by reciprocal shaking at maximum
speed (6.5 m s�1) for 45 s in a Bio101 FastPrep instrument (Thermo
Savant, Illkirch, France). After homogenization, samples were
centrifuged (Eppendorf 5415 R, Hamburg, Germany) at 16,100 � g

at 4 8C for 15 min. The supernatants were transferred to spin-filters
(pore-size 0.45 mm, Millipore Ultrafree, Eschborn, Germany) and
centrifuged for 30 s at 800 � g. The filtrates were transferred to
HPLC vials and stored at �20 8C until measurement. Variation in
cellular toxin quota and composition was tested by growing four
clones in triplicate.

2.6.2. Toxin analysis

2.6.2.1. PSP toxins. The aqueous extracts were analyzed for PSP
toxins by reverse-phase ion-pair liquid chromatography with
fluorescence detection (LC-FLD) and post-column derivatization
following minor modifications of previously published methods
(Diener et al., 2006; Krock et al., 2007). The LC-FLD analysis was
carried out on a LC1100 series liquid chromatography system
consisting of a G1379A degasser, a G1311A quaternary pump, a
G1229A autosampler, and a G1321A fluorescence detector (Agilent
Technologies, Waldbronn, Germany), equipped with a Phenom-
enex Luna C18 reversed-phase column (250 mm � 4.6 mm id,
5 mm pore size) (Phenomenex, Aschaffenburg, Germany) with a
Phenomenex SecuriGuard precolumn. The column was coupled to
a PCX 2500 post-column derivatization system (Pickering Labora-
tories, Mountain View, CA, USA). Eluent A contained 6 mM
octanesulfonic acid, 6 mM heptanesulfonic acid, 40 mM ammoni-
um phosphate, adjusted to pH 6.95 with dilute phosphoric acid,
and 0.75% tetrahydrofurane. Eluent B contained 13 mM octane-
sulfonic acid, 50 mM phosphoric acid, adjusted to pH 6.9 with
ammonium hydroxide, 15% acetonitrile and 1.5% tetrahydrofur-
ane. The flow rate was 1 mL min�1 with the following gradient: 0–
15 min isocratic A, 15–16 min switch to B, 16–35 min isocratic B,
35–36 min switch to A, 36–45 min isocratic A. The injection
volume was 20 mL and the autosampler was cooled to 4 8C. The
eluate from the column was oxidized with 10 mM periodic acid in
555 mM ammonium hydroxide before entering the 50 8C reaction
coil, after which it was acidified with 0.75 M nitric acid. Both the
oxidizing and acidifying reagents entered the system at a rate of
0.4 mL min�1. The toxins were detected by dual-monochromator
fluorescence (lex 333 nm; lem 395 nm). The data were processed
with Agilent Chemstation software and calibrated against external
standards. Standard solutions of PSP toxins were purchased from
the Certified Reference Material Program of the Institute of Marine
Biosciences (National Research Council, Halifax, NS, Canada).

2.6.2.2. Lipophilic toxins.

2.6.2.2.1. Selected reaction monitoring (SRM) experiments. Mass
spectral experiments for lipophilic toxin detection and quantifica-
tion were performed on a 4000 Q Trap (AB-SCIEX, Darmstadt,
Germany), triple quadrupole mass spectrometer equipped with a
TurboSpray1 interface coupled to an Agilent (Waldbronn,
Germany) model 1100 LC. The LC equipment included a solvent
reservoir, in-line degasser (G1379A), binary pump (G1311A),
refrigerated autosampler (G1329A/G1330B), and temperature-
controlled column oven (G1316A).

After injection of 5 ml of sample, separation of lipophilic toxins
was performed by reverse-phase chromatography on a C8 column
(50 � 2 mm) packed with 3 mm Hypersil BDS 120 Å (Phenomenex,
Aschaffenburg, Germany) and maintained at 25 8C. The flow rate
was 0.2 mL min�1 and gradient elution was performed with two
eluents, where eluent A was water and eluent B was methanol/
water (95:5, v/v), both containing 2.0 mM ammonium formate and
50 mM formic acid. Initial conditions were elution with 5% B,
followed by a linear gradient to 100% B within 10 min and isocratic
elution until 10 min with 100% B. The program was then returned
to initial conditions within 1 min followed by 9 min column
equilibration (total run time: 30 min).

Mass spectrometric parameters were as follows: curtain gas:
20 psi, CAD gas: medium, ion spray voltage: 5500 V, tempera-
ture: 650 8C, nebulizer gas: 40 psi, auxiliary gas: 70 psi, interface
heater: on, declustering potential: 121 V, entrance potential:
10 V, exit potential: 22 V, collision energy: 57 V. SRM experi-
ments were carried out in positive ion mode by selecting the
following transitions (precursor ion > fragment ion): m/z
508 > 490 for gymnodimine A, 522 > 504 for 12-methylgymno-
dimine, 692 > 164 for 13-desmethylspirolide C (SPX-1), and
694 > 164 for 13-desmethylspirolide D. Dwell times of 40 ms
were used for each transition. Standard solutions of SPX-1 and
gymnodimine A were purchased from the Certified Reference
Material Program of the Institute of Marine Biosciences
(National Research Council, Halifax, NS, Canada), and 12-
methylgymnodimine was kindly provided by Kirsi Harju,
VERIFIN, Department of Chemistry, University of Helsinki,
Finland.
2.6.2.2.2. Product ion spectra. Product ion spectra were recorded
in the Enhanced Product Ion (EPI) mode in the mass range
from m/z 120 to 550. Positive ionization and unit resolution mode
were used. The mass spectral parameters were as in SRM
experiments.
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2.7. Rhodomonas salina bioassays

Clonal isolates of Alexandrium ostenfeldii (OKNL11-22) were
grown in batch cultures in 100 mL Erlenmeyer flasks at standard
culture conditions described above. Growth was followed by
counting Lugol-fixed (1% final concentration) samples every second
or third day using an inverted microscope. At late exponential phase,
at a population density of 8–12 � 103 cells mL�1, cells were
harvested for estimating both lytic capacity of whole cell cultures
and of cell extracts. A subsample of 20 mL live sample was taken for
whole cell lytic activity. A subsample of 50 mL was collected by
centrifugation (Eppendorf 5810R, Hamburg, Germany at 3220 � g

for 10 min). The cell pellet was transferred to a 1 mL microtube,
centrifuged again (Eppendorf 5415, 16,000 � g, 5 min), and stored
frozen (�20 8C) until use.

Lytic activity of whole cell culture and cell extract were both
estimated by a Rhodomonas salina lysis assay (Tillmann et al., 2009).
For this bioassay, R. salina (strain KAC30, Kalmar culture collection,
Sweden) was pre-adapted to and subsequently grown in 10 PSU
medium for at least four weeks. For testing the variation in lytic
activity, a full dose-response-curve of lytic activity of whole culture
and cell extract was recorded for triplicate cultures of clone OKNL19.
Here, nine different dilutions ranging from 4000 to 50 cells mL�1 and
from 30,000 to 100 cells mL�1 for whole culture and cell extract,
respectively, were prepared in triplicate and processed as described
below. Lytic activity of all other clones was estimated with a reduced
number of dilutions. For whole cell culture lysis estimates, four
different dilutions of the Alexandrium ostenfeldii live samples were
prepared (undiluted, 3000, 1000, and 250 cells mL�1; final concen-
tration in the assay) in triplicate volumes of 3.9 mL in 6 mL glass
vials. Each sample was spiked with 0.1 mL of a pre-adjusted culture
of R. salina yielding a final concentration of 10 � 104 cells mL�1. The
first of two negative controls contained only K-medium, whereas the
second negative control was performed with Alexandrium tamar-

ense, strain Alex5, a strain which previously was shown to be non-
lytic (Tillmann and Hansen, 2009). Vials were then incubated at
15 8C in the dark. After 24 h, samples were fixed with Lugol (2% final
concentration), and concentrations of intact cells of both species
were determined under an inverted microscope.

For estimating lytic activity of cell extracts, cell pellets were
thawed and re-suspended in 1 mL filtered seawater. Cellular
extracts were prepared by sonicating the cell suspension with a
Sonoplus HD70 disintegrator equipped with a MS73 sonotrode for
1 min on ice using the following settings: 50% pulse cycle, 70%
amplitude. Based on the known number of cells in the pellet, the
extract was used to prepare four concentrations of ‘‘Alexandrium

ostenfeldii cells’’ in the 4 mL volume used in the bioassays (15,000,
7000, 3000, and 1500 cells mL�1). The bioassays were then
performed as described above except that just intact cells of
Rhodomonas salina were counted.

All results were reported as final concentration of Rhodomonas

salina expressed as percent of the seawater control. The data from
each clone were plotted as log-transformed cell concentrations of
Alexandrium ostenfeldii and corresponding percentage survival of R.

salina (mean of three replicates). Data, even if a limited number of
dilutions were performed, followed a sigmoid curve and were
fitted as a dose–response curve with Eq. (1) in order to estimate the
EC50 of A. ostenfeldii, defined as the concentration of A. ostenfeldii

cells resulting in a mortality of 50% of the R. salina population.

Y ¼ 100

1 þ X
EC50

� �k
(1)

Here, Y is the concentration of intact Rhodomonas salina cells (as
percentage of the control), X is log-transformed cell concentration
of Alexandrium ostenfeldii, and EC50 and k are fitted parameters.
For the cell extract of clone OKNL18, EC50 calculation by curve
fitting failed as the highest dose (15,000 cells mL�1) yielded just
41% cell lysis. EC50 here was defined as ‘‘>15,000 cells mL�1’’.

2.8. Phylogeny

Ribosomal DNA sequence data for the phylogenetic analyses
were obtained from Alexandrium ostenfeldii clones OKNL11-22.
Initially, 50 mL samples of exponentially growing cells were
collected by centrifugation at 3220 � g for 15 min at room
temperature (Eppendorf 5810R, Hamburg, Germany). The cell
pellets were frozen at �20 8C for 20 min before extraction of total
DNA with the DNeasy Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. The purity and
quantity of the DNA was assessed by UV-spectroscopy with a
NanoDrop ND-1000 system (Peqlab, Erlangen, Germany) and the
integrity of DNA was confirmed using 1% agarose gel electropho-
resis where a majority of the extracted genomic DNA exceeded
20 kilobases.

The D1/D2 regions of the 28S large subunit (LSU) ribosomal
DNA and the internal transcribed spacer region, including the ITS1,
5.8S subunit, and ITS2 sequences loci were amplified from each
total DNA extract by polymerase chain reaction (PCR). The forward
and reverse primers for LSU amplification were: D1R-F (50-ACC
CGC TGA ATT TAA GCA TA-30) and D2C-R (50-CCT TGG TCC GTG TTT
CAA GA-30), respectively. The forward and reverse primers for ITS/
5.8 amplification were: ITS a (50-CCA AGC TTC TAG ATC GTA ACA
AGG (ACT)TC CGT AGG T-30) and ITS b (50-CCT GCA GTC GAC
A(GT)A TGC TTA A(AG)T TCA GC(AG) GG-30), respectively. Reaction
conditions were as follows: HotMasterTaq1 (5Prime, Hamburg,
Germany) buffer 1X, 0.1 mM of dNTPs, 0.1 mM of each forward and
reverse primer and 1.25 units of Taq polymerase were added to 10–
30 ng of the extracted genomic DNA in total reaction volumes of
50 mL. For 28S rDNA amplifications, the reactions were subjected
to the following thermo cycling conditions: one cycle at 95 8C for
7 min, 35 cycles at 94 8C for 45 s, at 54 8C for 2 min, and at 70 8C for
1.5 min, and a final extension at 70 8C for 5 min. The thermal
cycling conditions for the ITS/5.8 amplifications were: one cycle at
94 8C for 4 min, 9 cycles at 94 8C for 50 s, at 60 8C for 40 s and at
70 8C for 1 min, and 29 cycles at 94 8C for 45 s, at 50 8C for 45 s, and
at 70 8C for 1 min, and a final 5 min extension step at 70 8C.
Samples were kept at 10 8C until analysis on 1% agarose gel, in
order to ensure the expected amplification products were present.
After PCR amplification and subsequent cloning into the vector
provided with the TOPO TA Cloning1 kit (Invitrogen, Carlsbad,
California, USA), 3–8 clones per amplicon were sequenced using
the M13 vector primers supplied with the kit. Sequencing was
conducted with a standard cycle sequencing chemistry ABI 3.1
(Applied Biosystems, Darmstadt, Germany). Cycle sequencing
products were analyzed on an ABI 3130 XL capillary sequencer
(Applied Biosystems, Darmstadt, Germany) and the generated
sequences were assembled with CLC main workbench version 6.0
(www.CLCbio.com). The resulting sequences were submitted to
GenBank (Appendix B).

The LSU and ITS/5.8S sequences were then combined with those
available in GenBank (Appendix B) and a combined alignments of
LSU and ITS sequences was constructed in order to conduct
phylogenetic analyses (Appendix C). The data set was aligned with
MAFFT using the q-insi option (Katoh et al., 2005). The full ML
analysis (GTRGAMMA, 1000 bootstrap replicates) was conducted
with RAxML (Stamatakis et al., 2005).

2.9. Statistical analysis

Normality of cell size parameters (length, width, length/width
ratio, and volume), toxins (PSP toxins, SPX and gymnodimines) and

http://www.clcbio.com/
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lytic activity was tested using the Shapiro–Wilk test. Significance
of differences between clones was tested using a one-way ANOVA
if the data was normal distributed, and a Kruskal–Wallis test if the
distribution was non-normal. The associations between the
cellular quota of the different toxins were tested using Pearson
product-moment correlation.

3. Results

3.1. Growth, morphology, morphometry, and phylogeny

Growth rates for all isolates were comparable and ranged
between 0.16�1 and 0.26�1 with an average of 0.22 � 0.03 d�1
Fig. 2. Alexandrium ostenfeldii morphology. (A–K) Bright field images of a living cell (A), an

(L–Ad) Epifluorescence images of calcofluor stained cells showing the plate pattern (L–R)

plate (Y–Ad). Plate labels according to the Kofoidean system. Sulcal plates abbreviations:

sulcal plate. s.m.p. = median posterior sulcal plate. s.d.a. = right anterior sulcal plate. s.s.a

anterior sulcal plate. s.a. = anterior sulcal plate.
(n = 20). Generally, cells were round to ellipsoid in shape (Fig. 2A–
F). The epitheca was slightly variable in shape with an outline ranging
from sigmoid to dome-shape or round (Fig. 2B–F). The generally
round hypotheca occasionally was slightly asymmetric (Fig. 2K).
Within and among clones there was also a considerable variability in
size (Fig. 2G–K, Table 1). Cell length of all measured cells ranged from
26.3 to 53.4 mm, the width from 30.6 to 40.5 mm, and the length/
width ratio from 0.9 to 1.2 with significant differences among clones
in mean cell length (Kruskal–Wallis test; H = 259; df = 19; P < 0.001),
width (Kruskal–Wallis test; H = 322; df = 19; P < 0.001), and length/
width ratios (Kruskal–Wallis test; H = 175; df = 19; P < 0.001).

The plate pattern with a pore plate, 4 apical, 6 precingular,
5 postcingular, 2 antapical, 6 cingular, and 8 sulcal plates
d Lugol-stained cells (B–K) to show variability in cell shape (A–F) and cell size (G–K).

, and details of the 600 place (S and T), the 10 plate and ventral pore (U–X), and the s.a

 s.p. = posterior sulcal plate. s.s.p. = left posterior sulcal plate. s.d.p. = right posterior

. = left anterior sulcal plate. s.ac.a. = anterior accessory sulcal plate. s.m.a. = median



Table 1
Size measurements of all tested OKNL clones with length (L), width (W), and L/W

ratio. Values show mean � SD with the number of analyzed cells (n).

Clone L (mm) W (mm) L/W ratio n

OKNL1 41.7 � 4.1 38.4 � 3.4 1.09 � 0.06 50

OKNL2 41.1 � 2.8 38.0 � 3.2 1.08 � 0.06 50

OKNL3 43.1 � 3.9 39.3 � 3.1 1.10 � 0.05 50

OKNL4 39.9 � 3.2 37.7 � 3.4 1.06 � 0.05 42

OKNL7 40.1 � 3.1 37.8 � 2.9 1.06 � 0.06 40

OKNL8 40.9 � 3.0 39.0 � 3.0 1.05 � 0.04 40

OKNL9 38.6 � 3.5 33.6 � 2.7 1.15 � 0.07 50

OKNL10 41.9 � 3.8 37.9 � 2.5 1.11 � 0.07 50

OKNL11 42.1 � 2.9 40.5 � 2.3 1.04 � 0.03 56

OKNL12 39.1 � 4.5 37.0 � 4.3 1.06 � 0.05 56

OKNL13 37.9 � 6.1 35.3 � 5.4 1.07 � 0.05 56

OKNL14 40.6 � 4.2 38.8 � 3.7 1.04 � 0.04 55

OKNL15 42.7 � 4.4 40.4 � 3.5 1.06 � 0.05 53

OKNL16 41.3 � 3.8 38.8 � 3.1 1.07 � 0.05 55

OKNL17 40.2 � 3.9 38.9 � 3.1 1.03 � 0.04 55

OKNL18 34.4 � 3.8 32.6 � 3.4 1.06 � 0.05 56

OKNL19 42.3 � 4.1 40.1 � 3.2 1.06 � 0.05 55

OKNL20 39.8 � 4.4 37.3 � 4.2 1.07 � 0.05 55

OKNL21 32.5 � 4.2 30.6 � 4.1 1.06 � 0.04 54

OKNL22 40.8 � 3.3 39.3 � 2.6 1.04 � 0.05 56

Overall mean 40.1 � 2.6 37.6 � 2.6 1.07 � 0.03 20
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(Fig. 2L–R) was typical for the genus Alexandrium and the typical
shape of the first apical plate and the large ventral pore (Fig. 2L–N)
clearly identified all isolates as Alexandrium ostenfeldii. Detailed
morphometric analyses of four isolates indicated some variability in
shape of the diagnostic plates 10, 600 and s.a. (Table 2). For most of the
cells the right anterior margin of the first apical plate 10 was straight
(Fig. 2L and M), however for all four clones there were cells (up to
27% for clone OKNL11) with curved or irregular margins (Fig. 2U and
V). A significant number of cells ranging from 22% to 43% had an
anteriorly extended 10 plate (Fig. 2W and X), which can explain some
of the variability of the 10 area (Table 2). The mean ventral pore area
ranged from 2.3 to 4.6 mm2 and was different between the four
analyzed clones (Table 2). The shape of the anterior sulcal plate s.a.
was found to be variable within all four analyzed clones. For the
majority of cells the shape was classified as ‘‘A-shaped’’ (Fig. 2Aa and
Ab), but about 20% and 30% of the cells of each isolate had a ‘‘door-
latch’’ shaped (Fig. 2Y and Z) and a ‘‘horse-shoe’’ shaped (Fig. 2Ac and
Ad) s.a. plate, respectively (Table 2). The s.a. plate was more wide
than high with the width/height ratio of about 1.3 being quite similar
for the four clones (Table 2). The terminal precingular plate 60 was
found to be quite variable in its width/height ratio (Fig. 2S and T),
with a mean being even below one for clone OKNL12 (Table 2). Based
on the ITS/LSU phylogenetic analyses (Fig. 3), the tested clones
belonged to Group 1 of A. ostenfeldii.

3.2. Toxins and lytic activity

All 20 isolates of Alexandrium ostenfeldii produced PSP toxins
with cellular quota ranging between 9.5 and 51 pg cell�1
Table 2
Diagnostic plate features of four OKNL clones. Values show mean, and mean � SD, with

Clone Shape 10 plate 10 extension Shape s.a 

% Straight (n) % Yes (n) % Door-latch % A-shaped % Horses

shaped

OKNL11 72.6 (62) 21.9 (64) 16.1 55.4 28.6 

OKNL12 86.5 (37) 22.2 (45) 24.4 40.0 35.6 

OKNL14 92.1 (63) 42.9 (63) 17.9 53.8 28.2 

OKNL19 93.8 (96) 33.3 (99) 14.4 58.9 26.7 
(Fig. 4A). The total PSP content was significantly different (one-
way ANOVA; F3,11 = 21.3; P < 0.001) between the four replicated
clones (OKNL11, 12, 15 and 19), with an average relative standard
deviation (i.e. the standard deviation relative to the average PSP
content of each clone) of 10 � 5%. The GTX and C1/C2 toxins were the
predominant analogs in all clones, the latter comprising around
84 � 5% of the total PSP content (Fig. 4B). The relative contribution of
GTX2/3 was also largely comparable between all clones contributing
to around 9.6 � 2% of the total PSP content, while STX showed a much
larger variability contributing between 2.4% and 18% of the total PSP
content (Fig. 4B). Among the cyclic imine toxin group, 13-
desmethylspirolide C (SPX-1) and gymnodimine A (data not shown),
and 12-methylgymnodimine could be identified by comparison of
retention time (Fig. 5) and CID spectra (Fig. 6) from A. ostenfeldii

extracts with those from standard solutions. 13-desmethylspirolide D
was identified by comparison with a previously published CID
spectrum (Sleno et al., 2004).

The total gymnodimine content (i.e. gymnodimine A and 12-
methylgymnodimine) showed a large variation between clones
with a 25-fold difference between the lowest and highest values
(Fig. 7A). The total gymnodimine content differed significantly
between the four tested clones (one-way ANOVA; F3,11 = 98.2;
P < 0.001), with an average relative standard deviation of 7 � 3%.
All clones predominantly produced gymnodimine A, while most
clones also produced 12-methylgymnodimine with relative contri-
butions ranging between 0.2% and 37% (Fig. 7A). The cellular quota of
total SPX (expressed as SPX-1 equivalents) generally ranged between
2.4 and 4.4 pg cell�1, with three clones containing less than
1.8 pg cell�1 (Fig. 7B). The SPX included 13-desmethylspirolide C
(76% to 86%) and 13-desmethylspirolide D (14% to 24%, Fig. 7B). All
clones also produced trace levels of several unknown SPX-like
compounds (data not shown). The total SPX content significantly
differed between the four tested clones (one-way ANOVA;
F3,11 = 37.1; P < 0.001), with an average relative standard deviation
of 8 � 2%. We observed a significant correlation between the cellular
quota of total PSP toxins and total SPX (r = 0.568; n = 20; P = 0.009),
total PSP toxins and total gymnodimines (r = 0.472; n = 20; P = 0.031),
and total SPX and total gymnodimines (r = 0.526; n = 20; P = 0.017).

All 12 selected clones induced lysis of Rhodomonas salina, with
EC50 values ranging between 212 and 525 Alexandrium ostenfeldii

cells mL�1 (Fig. 8A and B). The lytic response toward cellular
extract were less pronounced and corresponded to 1222 to 5839 A.

ostenfeldii cells mL�1, and was even beyond the highest tested cell
concentration of 15,000 cell mL�1 for stain OKNL18 (Fig. 8C). A
quantitative comparison of cell lysis between whole cell culture
and cell free supernatant of strain OKNL21 showed that about 70%
of the total lytic activity is present without the cells (data not
shown). We did not observe a significant correlation between the
EC50 values and the different cellular toxin quota.

4. Discussion

The morphological characteristics show a high variability
within the population, supporting earlier descriptions of members
 the number of analyzed cells (n).

Area vp (mm2) Area 10 (mm2) 600 ratio w/h s.a ratio w/h

hoe- n

56 4.6 � 1.6 (44) 76.6 � 16.2 (36) 1.3 � 0.2 (45) 1.3 � 0.2 (38)

45 3.0 � 0.8 (21) 52.6 � 13.5 (16) 0.9 �0.1 (37) 1.2 � 0.2 (21)

78 2.3 � 1.0 (58) 70.1 � 16.2 (48) 1.1 � 0.2 (64) 1.2 � 0.2 (68)

90 3.3 � 1.0 (115) 76.3 � 16.7 (90) 1.1 � 0.1 (97) 1.3 � 0.2 (88)
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from Group 1 of Alexandrium ostenfeldii. The high variability in cell
size within each clone, in combination with a relatively consistent
length/width ratio of 1.1, is in line with earlier findings for clones
belonging to Group 1 (Kremp et al., 2014). About 30% of the
investigated cells showed an anteriorly extended 10 plate, more
common for Group 2. Previously considered as an important
diagnostic plate, our analysis shows a variety of shapes for the s.a.
plate within the clones, dominated by A-shaped plates generally
accounting for 52%, but also with up to 36% of the cells containing a
horseshoe-shaped s.a. plate, previously ascribed to Alexandrium

peruvianum. We thus confirm the conclusions by Kremp et al.
(2014) that the diagnostic characters originally defined to separate
A. ostenfeldii and A. peruvianum are more variable than previously
assumed and can show considerable intra- and inter-strain
variability. Furthermore, Kremp et al. (2014) showed that A.

ostenfeldii and A. peruvianum morphotypes often had nearly
identical rDNA sequences indicating that they represent extreme
ends in a continuum of A. ostenfeldii morphotypes (Kremp et al.,
2014). Nevertheless, Kremp et al. (2014) also showed that selected
plate features, when tested statistically, as well as toxin profiles,
differed significantly among phylogenetic clusters. Our morpho-
metric analysis thus indicate a designation of the Dutch A.

ostenfeldii population as members of the Group 1 (see also Kremp
et al., 2014), a conclusion clearly supported by both the molecular
data and the presence of PSP toxins.

The phylogenetic analysis reveals a close relationship of the
Dutch Alexandrium ostenfeldii population with isolates covering a
wide geographical distribution, ranging from the coastal areas in
the Baltic Sea to embayments in the North-East coast of the US
(Fig. 3). This geographically wide distribution may indicate recent
anthropogenic-driven dispersal, or that the phylogenetic clade
comprises globally distributed populations with a broad trait range
similar to the Groups (I-V) of the former Alexandrium tamarense

species complex (John et al., 2014). The emergence of A. ostenfeldii

in the Ouwerkerkse Kreek seems to have occurred only recently,
although some sporadic observations of Alexandrium sp. in the area
were made in the last decade during monitoring programs
(unpublished data). However, only in depth population genetics
will help to evaluate a common origin and/or the potential
dispersal routes of the A. ostenfeldii Group 1 populations.

Interestingly, within Alexandrium ostenfeldii Group 1, toxin
profiles of the isolates from The Netherlands are most comparable
to two isolates from North America, which are the only
representatives which also produce PSP toxins, SPX, and gymno-
dimines (Van Wagoner et al., 2011; Borkman et al., 2012; Tomas
et al., 2012). The Dutch isolates, however, differ in their
gymnodimine composition. Specifically, the isolates from North
America were reported to only produce 12-methylgymnodimine,
while the OKNL isolates produce both 12-methylgymnodimine as
well as gymnodimine A, a compound previously known from
Karenia only (Seki et al., 1995; MacKenzie et al., 1996; Miles et al.,
2000). It thus seems that the clones we report here are the first
record of gymnodimine A for A. ostenfeldii, and possess a unique
combination of toxins. Whether the isolates from North America
are not producing gymnodimine A, or if the levels are below
detection limit requires further analyses. Generally, taking into
account that advancing analytical techniques will lower the limit
of detection for a multitude of toxins, future studies may show that
more complex toxin profiles might generally be common for A.

ostenfeldii populations.
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Fig. 5. Ion chromatograms (m/z 522 > 406) of (A) a 12-methylgymnodimine

standard and (B) an A. ostenfeldii extract (clone OKNL3).

Fig. 6. CID spectra (m/z 522) of (A) a 12-methylgymnodimine standard and (B) an

Alexandrium ostenfeldii extract (clone OKNL3).

D.B. Van de Waal et al. / Harmful Algae 49 (2015) 94–104 101
The cellular quota of PSP toxins fell within the range of earlier
reported Alexandrium ostenfeldii and Alexandrium tamarense clones
(Tillmann et al., 2009; Suikkanen et al., 2013). The predominance of
C1/C2 has been earlier reported for A. ostenfeldii clones, though the
PSP toxin composition differs between isolates (Kremp et al.,
2014). B1 toxins were not found in clones OKNL4, 12, 13, and 14,
which may indicate that these clones lack the ability to produce B1,
or that the values were below the level of detection
(<0.1 pg cell�1). Both the cellular quota of SPX and gymnodimines
are relatively low as compared to an earlier reported A. ostenfeldii

clone (then designated to Alexandrium peruvianum) from the US
East Coast (Tatters et al., 2012), while SPX quota fell within the
range of several A. peruvianum clones from the NE Atlantic
(Suikkanen et al., 2013). SPX consisted mainly of 13-desmethyl-
spirolide C, which was largely consistent with other clones in
Group 1 and 2 of the A. ostenfeldii species complex (Kremp et al.,
2014), though all OKNL clones also contained some 13-desmethyl-
spirolide D. Clones OKNL13 and OKNL22 did not produce 12-
methylgymnodimine, or only very low amounts that fell below the
limit of detection (<0.1 pg cell�1). We furthermore observed
differences between clones with the lowest and highest detected
toxin quota of about 5-fold for PSP toxins, 4-fold for SPX and
25-fold for gymnodimines. Thus, our results demonstrate a high
intraspecific variability in toxin quota, which is in line with earlier
reports on Alexandrium sp. populations (Gribble et al., 2005;
Tillmann et al., 2009; Alpermann et al., 2010; Tillmann et al., 2014).
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This variability cannot be explained by differences in growth
conditions or growth phase, as all cultures were grown under the
same conditions and harvested during the mid-exponential
growth phase. The observed variability in toxin quota thus seems
the result of genetic differences between clones.

In addition to the production of PSP toxins, spirolides, and
gymnodimines, all isolates produced alleochemicals with the
capacity to lyse cells of the target species Rhodomonas salina. Lytic
activity of extracellular secondary metabolites is rather wide-
spread in the genus Alexandrium (Tillmann and John, 2002) and has
been shown for various Alexandrium ostenfeldii clones (Hansen
et al., 1992; Tillmann et al., 2007; Tomas et al., 2012; Hakanen
et al., 2014; Tillmann et al., 2014). Our correlation analyses confirm
earlier comparative approaches that have shown that lytic activity
is unrelated to PSP toxin (Tillmann and John, 2002) and spirolide
content (Tillmann et al., 2007), and also a comparison of
gymnodimine cell quota and lytic activity gave no obvious
evidence that gymnodimines might contribute to the observed
cell lysis of R. salina.

With EC50 values from 0.18 to 0.5 � 103 cells mL�1 the Dutch
population seem to possess a comparable lytic activity as other
Alexandrium ostenfeldii isolates of other phylogenetic groups. Their
EC50 values have been shown to range from 0.2 to
1.9 � 103 cells mL�1 (Tillmann et al., 2007; Hakanen et al., 2014)
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suggesting comparable lytic activities within the species A.

ostenfeldii. EC50 values for hemolyis of A. ostenfeldii Group I from
the USA coast given by Tomas et al. (2012) and Tatters et al. (2012)
for the same isolate (14 � 103 and 7 � 103 cells, respectively;
values given as ‘‘cells’’ and not as a concentration) are more
difficult to compare and refer to cell extracts. By using an
erythrocyte lysis assay, Tomas et al. (2012) found only limited lysis
in cell free supernatant of the A. ostenfeldii clones from coastal
North Carolina, whereas particularly cell pellets had the highest
lytic activity. The authors thus concluded that the lytic agents were
most likely intracellular or membrane bound (Tomas et al., 2012).
However, our data clearly show that lytic activity of cellular
extracts was, with a mean factor of 12 (range: 4–30), remarkably
lower compared to the lytic activity of whole cell cultures. The
observed 30% loss of lytic activity when removing the cells might
indicate a continuous release of lytic compounds during the
bioassay incubation, but might also be due to loss of lytic
compounds during the centrifugation step, as such compounds
have been shown to adsorb to plastic material (Ma et al., 2009,
2010). In any case, our data show that the majority of lytic activity
of A. ostenfeldii is excreted and acting extracellular, underlining a
rather unspecific role in grazer impairment and competition
(Cembella, 2003; Legrand et al., 2003). Nevertheless, lytic
compounds produced by A. ostenfeldii may also be involved in
cell-to-cell interactions, e.g. in prey capture and resource acquisi-
tion via mixotrophy.

Whole cell lytic activity varied roughly two-fold among clones.
The intraspecific variability in lytic activity thus seems to be
smaller as compared to multi-clone comparisons of Alexandrium

tamarense (Alpermann et al., 2010) and Alexandrium ostenfeldii

(Hakanen et al., 2014; Tillmann et al., 2014), and might indicate
that high lytic activity was a trait positively selected for in the
sampled bloom population. During the bloom period in the
Ouwerkerkse Kreek, cell concentrations of A. ostenfeldii were well
above 1000 cell mL�1 (Fig. 1C) and thus far above the concentra-
tion that was shown to cause significant cell lysis of Rhodomonas

salina in our bioassays. Although the role of lytic compounds for
bloom initiation, at much lower cell concentrations, is more
difficult to evaluate, deleterious effects of lytic extracellular
compounds on both competitors and grazers likely play an
important role in the success of Alexandrium blooms (John et al.,
2015).

From a human health perspective, the toxicity of an Alexan-

drium bloom is determined by the population densities, and the
amounts and relative toxicities of toxins that are produced. The
Alexandrium ostenfeldii population in the Ouwerkerkse Kreek
reached very high cell densities of up to 4500 cells mL�1

(Fig. 1C), and will be of particular risk if dominated by the clones
with high cellular toxin quota. However, the toxin composition in
all clones consisted predominantly of the least toxic C1/C2. These
C-toxins are hardly found in molluscs as they are readily
desulfonated by enzymatic activity (Krock et al., 2007). This will
convert C-toxins into the more toxic GTX which may potentially
lead to high toxicities of exposed shellfish. The population of A.

ostenfeldii for Ouwerkerkse Kreek produces two different toxin
classes at the same time, and interactive effects among both toxin
classes cannot be ruled out as, to the best of our knowledge, no
studies have been conducted to investigate synergistic effects
between different classes of neurotoxins, such as PSP toxins and
cyclic imine toxins. Risks of blooms may furthermore be affected
by environmental driven changes in the cellular toxin quota, for
instance induced by changes in nutrient availabilities, pCO2 and
temperature (Kremp et al., 2012; Tatters et al., 2013; Van de Waal
et al., 2013, 2014).

In conclusion, our study shows that the dense bloom in The
Netherlands was formed by Group 1 of the Alexandrium ostenfeldii
species complex and thus highlights a new example of the bloom
forming potency of this group around the world. The population
contained a highly diverse cocktail of various neurotoxins, which
underlines the threat of these blooms for important shellfish
production areas in The Netherlands. Growth of isolates from this
bloom under fixed laboratory settings was relatively slow,
suggesting that allelopathy and presumably a reduced population
loss by grazing, played a substantial role in bloom formation and
persistence. Our data also demonstrate a high intra-specific
variability with respect to toxin quota in the Dutch A. ostenfeldii

population, as was earlier also reported for other Alexandrium

populations (Alpermann et al., 2010). Such a high phenotypic
variability may add to the success of genotypically highly diverse A.

ostenfeldii blooms, and make populations resilient to changes in
environmental and climatic conditions.
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