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Abstract The three largest Large Igneous Provinces (LIP) of the western Pacific—Ontong Java, Manihiki,
and Hikurangi Plateaus—were emplaced during the Cretaceous Normal Superchron and show strong simi-
larities in their geochemistry and petrology. The plate tectonic relationship between those LIPs, herein
referred to as Ontong Java Nui, is uncertain, but a joined emplacement was proposed by Taylor (2006).
Since this hypothesis is still highly debated and struggles to explain features such as the strong differences
in crustal thickness between the different plateaus, we revisited the joined emplacement of Ontong Java
Nui in light of new data from the Manihiki Plateau. By evaluating seismic refraction/wide-angle reflection
data along with seismic reflection records of the margins of the proposed ‘‘Super’’-LIP, a detailed scenario
for the emplacement and the initial phase of breakup has been developed. The LIP is a result of an interac-
tion of the arriving plume head with the Phoenix-Pacific spreading ridge in the Early Cretaceous. The
breakup of the LIP shows a complicated interplay between multiple microplates and tectonic forces such as
rifting, shearing, and rotation. Our plate kinematic model of the western Pacific incorporates new evidence
from the breakup margins of the LIPs, the tectonic fabric of the seafloor, as well as previously published tec-
tonic concepts such as the rotation of the LIPs. The updated rotation poles of the western Pacific allow a
detailed plate tectonic reconstruction of the region during the Cretaceous Normal Superchron and highlight
the important role of LIPs in the plate tectonic framework.

1. Introduction

The plate tectonic setup of the central and western Pacific since the Cretaceous is a mosaic of multiple small
and short-lived oceanic plates and continental fragments. Plate kinematic reconstructions [e.g., Davy et al., 2008;
Chandler et al., 2012; Seton et al., 2012] struggle to explain all the features of the difficult interplay between Large
Igneous Provinces (LIP), relict spreading centers, subduction, and hot spot volcanism overprinting the area. As
the generation of most of the oceanic crust of the western Pacific takes place during the Cretaceous Normal
Superchron (CNS), no magnetic seafloor-spreading anomalies constrain the plate tectonic reconstructions (Fig-
ure 1). The remnants of the proposed ‘‘Super’’-LIP (Ontong Java Nui) emplacement during the Early Cretaceous
[Taylor, 2006; Chandler et al., 2012, 2013] play an important role in this setup, since two former components of
this Super-’’LIP’’—the Ontong Java Plateau and the Hikurangi Plateau—interact with subduction trenches bor-
dering the Australian Plate (Figure 1) and were possibly individual oceanic plates during the Cretaceous. We sug-
gest that the termination of the subduction at the eastern Gondwana margin is caused by the arrival of the
Hikurangi Plateau at the subduction zone [Davy and Wood, 1994; Luyendyk, 1995; Billen and Stock, 2000; Davy
et al., 2008, 2012; Matthews et al., 2012; Reyners, 2013; Davy, 2014; Timm et al., 2014]. This process initiated a
global plate reorganization event [Matthews et al., 2012]. The third major LIP component, the Manihiki Plateau,
has currently no direct interaction with active plate boundaries, but tectonic deformation at its margins, due to
the possible breakup of Ontong Java Nui and internal fragmentation must have occurred during the Cretaceous
[Winterer et al., 1974]. The internal fragmentation and partitioning of the Manihiki Plateau into three subprovin-
ces has previously been ignored by all published plate tectonic reconstructions. Recent findings reveal distinct
differences in the tectonic and magmatic evolution between the main two subprovinces the Western Plateaus
and the High Plateau [Pietsch and Uenzelmann-Neben, 2015; K. Hochmuth et al., Multiphase magmatic and tec-
tonic evolution of a large igneous province—Evidence from the crustal structure of the Manihiki Plateau, west-
ern Pacific, submitted to Geophysical Journal International, 2015].

In this paper, we analyze the role of the Ontong Java Nui LIPs in the plate tectonic framework of the western
Pacific Ocean and revisit the hypothesis of the coupled emplacement of the major LIPs of the western
Pacific as proposed by Taylor [2006] and Chandler et al. [2012]. By reexamining available seismic refraction/
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wide-angle reflection data along with seismic reflection records and global gravity and bathymetry grids,
we present a more detailed reconstruction of the emplacement of the western Pacific’s LIPs, possible
breakup scenarios, and the role of internal fragmentation of the Manihiki Plateau.

2. Geological Setting

2.1. The Large Igneous Provinces of the Western Pacific
The crustal structure and geodynamic development of LIPs differ greatly from those of normal oceanic
crust. Although the igneous material (basalt in the upper crust, gabbros in the lower crust) is the same, the
crust of LIPs is 3 times thicker on average than that of normal oceanic crust [Coffin and Eldholm, 1994; Ridley
and Richards, 2010]. The Ontong Java Plateau has a crustal thickness of >30 km [Furumoto et al., 1976; Miura
et al., 2004]. Crustal thickness of the High Plateau of Manihiki Plateau is about 20 km (Hochmuth et al., sub-
mitted manuscript, 2015). The Western Plateaus of the Manihiki Plateau show a crust that thins from a maxi-
mum crustal thickness of 17 km in the east to 9 km in the west (Hochmuth et al., submitted manuscript,
2015). The crustal thickness of the Hikurangi Plateau is inferred to be approximately between 17 and 23 km
from gravity modeling [Davy et al., 2008]. All these LIPs experienced phases of secondary magmatic and vol-
canic activity, which partly overprinted tectonic sutures [Davy et al., 2008; Inoue et al., 2008; Hoernle et al.,
2010; Pietsch and Uenzelmann-Neben, 2015].

An important key feature of LIPs is the High-Velocity Zone (HVZ) with P wave velocities between 7.3 and
7.7 km/s within its lower crust. The HVZ is believed to consist of olivine and pyroxene crystal fractionation,

Figure 1. Current plate tectonic setup of the western Pacific Ocean; active subduction zones are shown in brown, transform faults in red
and mid-ocean ridges in black. Black dashed lines are tectonic lineations tracked from magnetic anomaly maps [Maus et al., 2009] and
gravity anomaly maps [Sandwell et al., 2014]. Green and turquois lines indicate fault zones within Jurassic seafloor [Nakanishi et al., 1992]
and Cretaceous seafloor, respectively. The former spreading center at the Osbourn Trough is marked in blue and the Tongareva Triple
Junction Trace is marked in magenta. Isochrons (thin black lines) are taken from Seton et al. [2012] and are shaded in orange for the
M-Series and in yellow for the C-Series on the Pacific Plate. Pacific seafloor emplaced during the CNS is shown in white.
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which is trapped above the crust-mantle boundary (Moho) [Ridley and Richards, 2010; Karlstrom and Rich-
ards, 2011]. The presence of the HVZ indicates the influence of hot mantle upwelling, e.g., due to the pres-
ence of a hot spot or a mantle plume. The configuration of the HVZ along LIP margins allows an insight into
tectonic alteration as well as LIP formation processes (Figure 2). HVZs have been derived from seismic
refraction/wide-angle reflection experiments, which have been carried out on the Ontong Java Plateau [Fur-
umoto et al., 1976; Miura et al., 2004] and on the Manihiki Plateau (Figures 2 and 3) [Winterer et al., 1974;
Hochmuth et al., submitted manuscript, 2015]. In addition to the LIPs of the western Pacific, numerous
active and former hot spot tracks, such as the Louisville seamount chain and the Samoa hot spot, character-
ize the area (Figure 1).

The omnipresence of volcanically altered oceanic crust has an important impact on the plate tectonic mech-
anisms of the western Pacific. For example, buoyancy calculations by Cloos [1993] predict that oceanic pla-
teaus as thick as 17 km can be subducted. Orogenesis by subducting oceanic plateaus requires a broad
volcanic feature (>100 km long and 50 km wide) with a crustal thickness of 30 km [Cloos, 1993]. These cal-
culations indicate that LIPs can play a significant role in the plate tectonic framework, especially in the
Pacific Ocean, since it is surrounded by subduction zones. LIPs influence the behavior of oceanic plates by
volcanic arc polarity reversal [e.g., Musgrave, 1990; Mann and Taira, 2004] or altering subduction patterns
[e.g., Gutscher et al., 1999; Liu et al., 2010].

2.2. The Plate Tectonic Framework of the Pacific During the Cretaceous
The plate kinematics of the Cretaceous Pacific area include countless microplates and past subducted plates
[e.g., Seton et al., 2012]. During the Jurassic, the so-called Pacific Triangle developed, which is the birthplace

Figure 2. Relicts of tectonic alteration on the Manihiki Plateau as seen in seismic reflection lines from SO-224 and KIWI-12 (thin black lines)
and seismic refraction lines (thick black lines) from SO-224. Dashed areas indicate faulted basement. The dotted areas show little to no
faulting within the basement. The yellow line indicates a series of troughs (e.g., Danger Islands Troughs) active during the supposed
breakup of Ontong Java Nui. The orange line marks the Suvarov Trough, which was active after the initial breakup. The red lines on the
seismic refraction profiles indicate the presence and thickness of the High-Velocity Zone (HVZ), within the P wave velocity models. The
position of the seismic refraction profiles shown in Figure 3 is indicated by the light grey boxes.
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of today’s Pacific Plate. The Pacific Triangle was formed by the Izanagi Plate in the northwest, the Farallon
Plate in the northeast, and the Phoenix Plate in the south, which were connected by triple junctions. Mag-
netic seafloor spreading anomalies can be identified from M27 (155 Ma) to M0 (120 Ma) within the Phoenix
lineation northeast of the Ontong Java Plateau [Nakanishi et al., 1992] (Figure 1). After the CNS, magnetic
seafloor spreading anomalies can be traced from C34n (83 Ma) to C1 (0.8 Ma) to the east of the Manihiki

Figure 3. Examples for P wave velocity models crossing the different margins of the Manihiki Plateau. The position of the different profiles
is indicated in Figure 2. (a) The Manihiki Scarp—a sheared margin, (b) the southern High Plateau—a stretched margin with volcanic over-
print, and (c) a part of the Western Plateaus—a stretched margin with little magmatic activity; the small insets depict the corresponding
reflection seismic data of the shown profile. For more information on the experimental setup and a view of whole profiles, see Hochmuth
et al. (submitted manuscript, 2015) and Uenzelmann-Neben [2012].
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Plateau (Figure 1). The whole tectonic reorganization of the Ontong Java Nui LIPs occurred during a time of
a relatively stable magnetic field, which does not allow to trace the motion of individual plates by polarity
reversals of the magnetic field. In this case, the plate motion can be traced either by fracture zones [Mat-
thews et al., 2012], which act as motion paths, or by the variations of the strength of the magnetic field
[Granot et al., 2012].

We introduce two competing models deciphering this time period presented in the literature, and will reex-
amine these models in the light of newly acquired data from the Manihiki Plateau: the ‘‘Super’’-LIP Ontong
Java Nui and the separated formation of the Ontong Java Plateau with a coupled emplacement of Manihiki
and Hikurangi.
2.2.1. The Ontong Java Nui Hypothesis
Taylor [2006] hypothesized that the three major LIPs of the western Pacific Plate were emplaced as a single
‘‘Super’’-Large Igneous Province. This ‘‘Super’’-LIP Ontong Java Nui was formed in the vicinity of the Farallon-
Phoenix-Pacific triple junction approximately at 125 Ma [Timm et al., 2011]. The trace of this triple junction is
imprinted on today’s Pacific Plate by a gravity anomaly called the Tongareva Triple Junction Trace, which is
trackable from the Manihiki Plateau to the Pacific-Antarctic Ridge striking NW-SE [Larson et al., 2002; Viso
et al., 2005] (Figure 1). The breakup of Ontong Java Nui was initiated at all margins of the Manihiki Plateau
between 120 and 118 Ma. To the south, the Osbourn Trough developed as a spreading center, separating
the Hikurangi Plateau from Manihiki [Billen and Stock, 2000; Worthington et al., 2006; Davy et al., 2008]. The
Ontong Java Plateau drifted away to the west by spreading at the Nova Canton Trough [Taylor, 2006; Chan-
dler et al., 2012]. The northeastern fragment of the Manihiki Plateau rifted northeastward on the Farallon
Plate and the eastern part of the Manihiki Plateau was integrated into the Phoenix Plate in a southward
direction [Larson et al., 2002; Viso et al., 2005]. The motion between the Hikurangi Plateau and the Manihiki
Plateau stopped at 100 Ma with the Hikurangi Plateau jamming into the subduction zone at the Chatham
Rise followed by cessation of spreading at the Osbourn Trough [Davy et al., 2008; Davy, 2014]. Other authors
[e.g., Billen and Stock, 2000; Sutherland and Hollis, 2001; Worthington et al., 2006] argue for a longer lifespan
of the Osbourn Trough, but all agree that the cessation of spreading occurred within the CNS (120–83 Ma).
At around 80 Ma, spreading in the Nova Canton Trough between the Ontong Java Plateau and the Manihiki
Plateau terminated [Taylor, 2006], although the Ontong Java Plateau was not subducting at the Solomon
Trench at that time. The opening at the Nova Canton Trough included a rotational component [Chandler
et al., 2013] between 378 and 528 obtained from paleomagnetic reconstructions. This rotation requires either
a decoupling of the Ontong Java Plateau from the Pacific Plate or a yet unrecognized large-scale rotation of
the Pacific Plate between 125 and 83 Ma.

The main objections toward this coupled emplacement of the three LIPs include the different crustal thick-
nesses between the Ontong Java Plateau (>30 km of crust) [Furumoto et al., 1976; Gladczenko et al., 1997;
Richardson et al., 2000; Klosko et al., 2001; Miura et al., 2004] and the conjugate margin at the Manihiki Pla-
teau, the Western Plateaus, which present a gradual decrease of crustal thickness from 17 to 9 km toward
the Nova Canton Trough (Hochmuth et al., submitted manuscript, 2015). If the emplacement was coupled,
the Western Plateaus should have a similar crustal thickness as its conjugate plateau. Additionally, the tec-
tonic fit between the two plateaus cannot be achieved easily since secondary volcanism and tectonic activ-
ity altered the plateaus margins [Pietsch and Uenzelmann-Neben, 2015]. A further complication of the plate
kinematic reconstruction is that the Nova Canton Trough does not show a clear spreading axis, but seems
to consist of multiple small ridges and fracture zones, which point to a scissor-like opening of the basin
[Taylor, 2006; Chandler et al., 2012].
2.2.2. Individual Emplacement of Ontong Java and Manihiki-Hikurangi
Whereas the coupled emplacement of the Hikurangi Plateau and the Manihiki Plateau seems to be a well-
established factor in the plate kinematics of the western Pacific, the fit between the Ontong Java Plateau
and the Manihiki Plateau is still under debate for the reasons mentioned above. Therefore, we give an over-
view of published scenarios, which do not include a coupled emplacement between the Ontong Java Pla-
teau and the Manihiki and Hikurangi Plateaus. Larson and Chase [1972] and Winterer et al. [1974] propose a
plate tectonic setup, where the oceanic plateaus of Ontong Java Nui are situated on the spreading axis
between the Pacific and the Antarctic Plate. The different subprovinces of the Manihiki Plateau are created
by a spreading segment jump [Winterer et al., 1974] or the presence of the Farallon-Antarctic spreading on
the High Plateau [Larson and Chase, 1972]. Larson [1997] propose that individual plumes created the Mani-
hiki Plateau and the Ontong Java Plateau. The Pacific-Phoenix spreading ridge separated these plumes. The
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present Nova Canton Trough was created after the primary magmatism by reheating and extension of the
young lithosphere. This concept highlights the importance of a possible ridge-plume interaction creating
the LIPs of the western Pacific.

3. Overview on Published and Additional Data

Before we reevaluate emplacement mechanisms and tectonic activity, a condensed overview on the rel-
evant data, which is currently available in the western Pacific region, is presented. The main phase of tec-
tonic evolution within this region occurs during the CNS. Small variations within the magnetic field
strength during this time period have been detected in the Atlantic Ocean offshore North Africa [Granot
et al., 2012], but unfortunately these variations cannot be recognized within the western Pacific. The
Nova Canton Trough shows no clear spreading axis, and the Osbourn Trough is magmatically
overprinted by the Louisville hot spot in the south and the smaller Austral-Cook and MacDonald hot
spots in the north [Billen and Stock, 2000]. Therefore, the intensity variations cannot help to reconstruct
the plate reorganization, magnetic data can only be used to frame the crust, which was emplaced during
the CNS.

Chandler et al. [2013] compiled all available paleolatitude data from Deep Sea Drilling Project (DSDP), Ocean
Drilling Project (ODP), and International Ocean Drilling Project (IODP) cores on the Ontong Java Plateau
(Table 1). Their findings point to an emplacement latitude of the Ontong Java Plateau between 178S and
338S with a clock-wise rotation of the plateau of between 378 and 528. This rotation is currently not inte-
grated in any plate kinematic reconstructions and may indicate a large-scale rotation of the Pacific Plate or
an individual motion of the Ontong Java Plateau during the Cretaceous.

Drilled cores reaching the crystalline basement are sparse in the area, and only a very small number have
published basement ages. But along with dredges, e.g., from the Wishbone Scarp [Mortimer et al., 2006] or
the Danger Islands Troughs [Ingle et al., 2007], and rocks outcropping on islands, e.g., Malaita [Ishikawa
et al., 2005, 2007; Musgrave, 2013], they can be used as a valuable references for the timing of local tectonic
events (Table 1).

Further constraints to be considered include tectonic lineations trackable in satellite gravity anomaly maps
and bathymetric maps. Large-scale anomalies such as the Tongareva Triple Junction trace [Larson et al.,
2002], the East and West Wishbone Scarps [Mortimer et al., 2006], and the Manihiki Scarp [Viso et al., 2005]
are relicts of former plate boundaries (Figure 1). Additional information of the plate motion can be extracted
from intraplate fracture zones. Taylor [2006] and Chandler et al. [2012] examined the fracture zones within
the Ellice Basin (Nova Canton Trough), which strike in an East-West direction. North-south striking fracture
zones can be observed north and south of the Osbourn Trough (Figure 1). Fracture zones dissect the Ellice
Basin and the Phoenix lineations [Nakanishi et al., 1992]. The large Pacific Fracture zones, e.g., Galapagos
Fracture Zone or the Clipperton Fracture Zone, further constrain the evolution of the Pacific Plate and the
Pacific-Farallon spreading center.

The LIP itself provides important constraints for the plate reconstruction of the Cretaceous western Pacific.
The current state of these magmatic bodies has been altered by tectonic deformation and volcanism of
later magmatic stages and does not necessarily resemble the LIP at its emplacement. In our reconstruction,
we account for crustal extension due to crustal stretching or massive emplacement of magmatic material as

Table 1. Additional Dated Locations and Paleolatitude Data Used as Constraints for the Plate Kinematic Reconstruction

Latitude Longitude Age Paleolatitude Reference

ODP Leg 130–807 3.6000 156.620 122.3 217.9 6 3.3 Mahoney et al. [1993]
ODP Leg 192–183 21.177 157.015 121 227.9 6 7.2 Riisager et al. [2003]
ODP Leg 192–1184 25.011 164.223 123.5 234.4 6 5 Chambers et al. [2004]
ODP Leg 192–1185 20.358 161.668 121 223.3 6 2.2 Riisager et al. [2003]
ODP Leg 192–1186 20.680 159.844 121 225.2 6 3.5 Riisager et al. [2003]
ODP Leg 192–1187 0.943 161.451 121 222.2 6 2.3 Riisager et al. [2003]
DSDP Leg 33–317 211.0015 2165.263 116.8 6 3.7 247.5 Cockerham and Jarrard [1976]
So168 DR55 240.7508 2160.916 115 Mortimer et al. [2006]
Malaita 28.772 160.916 160 Ishikawa et al. [2005]
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well as for ‘‘lost’’ fragments to the east and north of the Manihiki Plateau [Larson et al., 2002; Viso et al., 2005;
Pietsch and Uenzelmann-Neben, 2015].

4. Possible Breakup Mechanisms on the Manihiki Plateau

The Manihiki Plateau plays an important role in the plate tectonic setup of the Pacific during the Cretaceous,
since it potentially exposes breakup margins toward the other LIPs of the region and the seafloor emplaced
during the CNS. A close examination of the crustal structure along with the magmatic and tectonic activity
displayed in high-resolution seismic reflection data [Pietsch and Uenzelmann-Neben, 2015] and seismic
refraction/wide-angle reflection data (Hochmuth et al., submitted manuscript, 2015) acquired in 2012 [Uen-
zelmann-Neben, 2012] allows us to identify possible breakup mechanisms on the Manihiki Plateau. Addition-
ally, it is important for further reconstructions to incorporate the amount of crustal growth created by later
magmatic stages and tectonic strain (Figure 2).

The Manihiki Plateau was created by a first phase of extrusive volcanism with an approximated minimum
age of 125 Ma [Timm et al., 2011]. Later magmatic stages (<65 Ma) differ between low-volume secondary
magmatism on the Western Plateaus and high-volume emplacement at the High Plateau [Pietsch and Uen-
zelmann-Neben, 2015; Hochmuth et al., submitted manuscript, 2015].

A more important factor for assessing the extension of the crust after the initial emplacement of the LIP is
the tectonic alteration (Figure 2), which is visible by countless faults (e.g., High Plateau) and the decrease of
crustal thickness (e.g., Western Plateaus) [Ai et al., 2008; Pietsch and Uenzelmann-Neben, 2015; Hochmuth
et al., submitted manuscript, 2015]. The potential overlap (o) between the two plateaus can be calculated
by the stretching coefficient (b) and the width of the stretched crust (w) with the following formula:
o 5 w*(b 2 1)/b. Additional information on the extent of the LIP influenced crust can be derived from the
presence of a HVZ with P wave velocities above 7.3 km/s in the lower crust of the plateaus (Hochmuth et al.,
submitted manuscript, 2015) (Figure 3).

We identify four different areas of tectonic characteristics on the Manihiki Plateau. On the central High Pla-
teau, tectonic activity is low and mainly induced by magmatism [Pietsch and Uenzelmann-Neben, 2015] (Fig-
ure 2). The eastern flank of the High Plateau, the Manihiki Scarp, exhibits a north-south trending sheared
margin [Larson et al., 2002; Viso et al., 2005; Pietsch and Uenzelmann-Neben, 2015; Hochmuth et al., submit-
ted manuscript, 2015] with up to eight basement ridges exposing lower crust (Figure 3a). The HVZ termi-
nates below the basement ridges, and crustal thickness decreases from 15 to 4.5 km within 60 km lateral
distance (Figure 3a). Additional crustal material seems to be emplaced by the exposure of lower crustal
material and not by stretching processes.

The southern High Plateau shows multiple normal fault systems, which can be related to rifting activity dur-
ing the Cretaceous and later tectonic stress (40–1.8 Ma) [Pietsch and Uenzelmann-Neben, 2015] (Figure 2).
This area has also been influenced by secondary magmatic stages (>65 Ma) and even younger magmatic
activity (23–10 Ma). The HVZ in the lower crust of the Manihiki Plateau stretches into the Samoan Basin (Fig-
ure 3b). Crustal stretching (b) is evident but relatively small (b 5 1.26).

The western High Plateau and the Western Plateaus show low-volume secondary magmatism [Pietsch and
Uenzelmann-Neben, 2015; Hochmuth et al., submitted manuscript, 2015]. In seismic refraction/wide-angle
reflection data from the Western Plateaus, we observe a constant presence of the HVZ and a decrease in
crustal thickness from 18 km in the East to 9 km in the West (b 5 2) over 400 km distance (Figure 3c). This
indicates a potential overlap with a conjugate margin of 200 km. Small and large offset faults are present
throughout the subprovince (Figures 2 and 3).

Other significant features of the Manihiki Plateau are its internal troughs, the N-S trending Danger Islands
Troughs and the NE-SW trending Suvarov Trough (Figure 2). Seismic reflection data indicate that the
Suvarov Trough is younger than 65 Ma and can therefore not be a result of the initial tectonic activity within
the CNS (R. Pietsch and G. Uenzelmann-Neben, manuscript in preparation, 2015a). Seismic refraction/wide-
angle reflection data reveal the lack of typical upper crustal material within the Danger Island Troughs, but
a relatively undisturbed lower and middle crust (Hochmuth et al., submitted manuscript, 2015). The Danger
Islands Troughs mark, as a series of pull-apart basins a significant border between the two magmatic and
tectonic regimes of the High Plateau and the Western Plateaus. By tracing the exposed fault systems in

Geochemistry, Geophysics, Geosystems 10.1002/2015GC006036

HOCHMUTH ET AL. PLATE TECTONICS OF ONTONG JAVA NUI 7



bathymetry [Weatherall et al., 2015] and global satellite gravity anomaly maps [Sandwell et al., 2014], a rota-
tional component from NNE-SSW striking features in the North to NNW-SSE striking features in the South
can be observed [Nakanishi et al., 2015]. This supports the hypothesis that the Western Plateaus and the
High Plateau acted as individual tectonic plates during part of the Cretaceous.

Similar margin features as described above can be seen on the Ontong Java Plateau and the Hikurangi Pla-
teau (Table 2 and Figure 4). We extrapolated our classification of the breakup margins across these plateaus
by including published seismic reflection and refraction data along with gravity models, gravity anomaly
maps, and bathymetric measurements. In addition to the margins encountered on the Manihiki Plateau, a
tectonically inactive margin and subducting margins are present on the Ontong Java Plateau and the Hikur-
angi Plateau (Figure 4). The Rapuhia Scarp of the western Hikurangi Plateau shows a very narrow transition
zone between LIP crust and normal oceanic crust [Davy and Collot, 2000] and introduces a fourth mode of
rifting within the system.

5. Plate Tectonic Reconstruction of the Cretaceous Western Pacific

The regional plate kinematic reconstruction presented here uses the global plate tectonic GPlates model of
Seton et al. [2012] as its basis. We additionally use the hot spot reference frame W&K08-D by Wessel and
Kroenke [2008] and Chandler et al. [2012]. The model comprises the time frame from 125 to 80 Ma and trans-
lates directly into the model by Seton et al. [2012] for the development after the CNS. An overview on the
modeled tectonic events is provided in Table 3.

5.1. The Emplacement of Ontong Java Nui—Plume-Ridge Interaction and Single ‘‘Super’’-Plume Head
The published data indicate that at least two main eruptive centers were present, on the High Plateau of the
Manihiki Plateau and on the High Plateau of the Ontong Java Plateau, during the initial emplacement of the
LIP [Furumoto et al., 1976; Miura et al., 2004; Hochmuth et al., submitted manuscript, 2015]. The presence of
the thinner Western Plateaus (Figure 3c) and possible eastern Ontong Java Plateau makes the scenario of a
single ‘‘Super’’-plume [Taylor, 2006] surfacing in the area unlikely, since this should create a crust of compara-
ble crustal thickness. Larson [1997] proposed that the oceanic LIPs of the region originated by two individual
plume heads rising at both sides of the Pacific-Phoenix spreading center. Individual plumes would explain the
significant differences in crustal thickness. The Nova Canton Trough, which separates the Ontong Java Plateau
and the Manihiki Plateau, shows a reorientation of the spreading orientation in comparison to its predecessor
the Pacific-Phoenix Ridge from E-W to NE-SW (Figure 5). Even though a clear spreading axis is not detectable

Table 2. Overview on the Different Margins of Ontong Java Nui and Their Individual Features

Margin Characteristica Regional Example Reference Interfered From

Tectonically inactive
margin

Slow decrease in depth, basalt
flows into the oceanic basin,
dip angle< 0.18

Northern Ontong Java Plateau Mochizuki et al. [2005] Seismic reflection, bathymetry,
and gravity anomaly

Subducting margin subduction of LIP crust Ontong Java Plateau—Solomon
Trench
Hikurangi—Chatham Rise

Miura et al. [2004], Davy et al.
[2008], and Davy [2014]

Seismic refraction, reflection
seismic, bathymetry, and
gravity anomaly

Sheared margin Rough topography with multiple
ridges exposing lower crustal
layers, sudden termination of
HVZ

Manihiki Scarp Larson et al. [2002], Viso et al.
[2005], Ai et al. [2008], Pietsch
and Uenzelmann-Neben
[2015], and Hochmuth et al.
(submitted manuscript, 2015)

Seismic reflection, refractions
seismic, bathymetry, and
gravity anomaly

Stretched margin with
little magmatic activity

Countless large and small offset
faults, low-volume secondary
magmatism, constant HVZ,
massive crustal stretching

Western Plateaus (Manihiki Pla-
teau), Rekohu Embayment
(Hikurangi Plateau)

Davy et al. [2008] and Hochmuth
et al. (submitted manuscript,
2015)

Refraction seismic, reflection
seismic, bathymetry, and
gravity anomaly

Stretched margin with
magmatic overprint

Multiple fault systems, massive
magmatic activity during later
magmatic stages, small
amount of crustal stretching

Southern Manihiki Plateau,
Southeast High Plateau
(Hikurangi Plateau)

Davy et al. [2008], Pietsch and
Uenzelmann-Neben [2015],
and Hochmuth et al. (submit-
ted manuscript, 2015)

Refraction seismic, seismic
reflection data, gravity
anomaly, and bathymetry

Rifted margin Short LIP—ocean basin transi-
tion area, sharp boundary,
sudden depth decrease dip
angle> 58

Rapuhia Scarp (Hikurangi
Plateau)

Davy and Collot [2000] and Davy
et al. [2008]

Seismic reflection, bathymetry,
and gravity anomaly

Geochemistry, Geophysics, Geosystems 10.1002/2015GC006036

HOCHMUTH ET AL. PLATE TECTONICS OF ONTONG JAVA NUI 8



[Taylor, 2006; Chandler et al., 2012], it can be inferred that the oblique spreading in the Nova Canton Trough
cross cuts the magnetic spreading anomaly M-Series at M10 in the vicinity of the Ontong Java Plateau and
leaves the M1 spreading center visible northeast of the Manihiki Plateau (Figure 5) [Nakanishi et al., 1992].
Therefore, the spreading in the Nova Canton Trough is distinct from the earlier spreading in the area and is
not caused by an overprinting of a former spreading center during the CNS as suggested by Larson [1997]. In
addition, the possible presence of three areas of mantle upwelling within such a confined area—an Ontong
Java Plume, a Manihiki/Hikurangi Plume and the Pacific-Phoenix ridge—seems geodynamically unrealistic.
However, the concept of the interaction between plumes and the Pacific-Phoenix spreading center appears
to be an important factor in the emplacement of Ontong Java Nui.

A ridge-centered hot spot can currently be observed, for example, on Iceland [e.g., Ito et al., 1996; Darbyshire
et al., 1998] and the interaction between a hot spot and a spreading ridge is present, for example, at the
Galapagos hot spot [e.g., Sinton et al., 2003; Kokfelt et al., 2005]. Modeling of these interactions reveals that

Figure 4. Classification of the margins of Ontong Java Nui in their current setting (main figure) and during their emplacement (inlet
figure).
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the plume-ridge interaction is mainly influenced by the spreading rate at the ridge and the plume flux [Alb-
ers and Christensen, 2001]. Therefore, multiple pulses and the spreading at the ridge between the pulses can
create areas of variable crustal thickness. The nature of the plume-ridge interaction—whether centered or
off axis—also influences the emplacement process. Off-axis plumes have to penetrate a thicker and older
lithosphere and have an up-slope flow toward the ridge [Ribe et al., 1995; Ito et al., 1996; Ribe, 1996; Ribe
and Delattre, 1998; Ito et al., 2003]. To explore the result of a possible interaction of an arriving plume head
at the Pacific-Phoenix ridge, models of hot spot-ridge interactions [e.g., Dyment et al., 2007] and models of
plume-ridge interactions [e.g., Whittaker et al., 2015] can be used. These scenarios differ mostly in the vol-
ume of the emplaced igneous material, which is far larger for a plume scenario. It has also been proposed
that plume-ridge interaction causes asymmetric seafloor spreading [M€uller et al., 1998]. When a spreading
system approaches a hot spot, the magmatic flow is channeled toward the ridge resulting in an additional
production of seamounts. An increased steady magma supply would possibly generate an oceanic plateau
(Figure 6). The main emplacement of the LIP would occur during a phase of a ridge-centered plume with
massive volcanic outpourings and intrusions within the lower crust. As soon as the ridge passes the area of
the plume, the emplacement of igneous material decreases, but channeling toward the ridge is still present,
possibly resulting in an area of thinner, but still overthickened oceanic crust. The former main emplacement
area with its large crustal thickness is rifting away from the ridge (Figure 6). The interplay between ridge
dynamics and a plume might help to understand the observation of the large differences in crustal thick-
ness across the LIP. On the Manihiki Plateau, a strong seismic intrabasement reflection is traceable [Pietsch
and Uenzelmann-Neben, 2015], which can be interpreted to represent an initial formation stage of the pla-
teau. Strong intracrustal seismic wide-angle reflections (Hochmuth et al., submitted manuscript, 2015) can
also be attributed to this layer. The strong reflections within the crust in both data sets might be the result
of the overprinting between an early arrival of the plume and the main emplacement phase during the
time of a ridge-centered plume. A similar setup of pulsating volcanic activity has been reported for the

Table 3. Overview on the Tectonic Events in the Western Pacific From >125 to 83 Ma

Manihiki Plateau Ontong Java Nui Pacific

Prior to 125 Ma Subaerial emplacement as a single
crustal unit by massive volcanic
outpourings

Emplacement by massive volcanic out
pourings with multiple main centers
of activity

Result of plume-ridge interaction

Formation of the Pacific Triangle
(180 Ma)

Seafloor spreading at multiple triple
junctions

120 Ma High magmatic activity on the High
Plateau

Limited magmatic activity on the
Western Plateaus

Initial motion between Manihiki and
Hikurangi rotation and crustal
stretching

118 Ma Initiation of the fragmentation of the
Manihiki Plateau

Creation of the Manihiki Scarp,
spreading north of the High Plateau

Creation of the Danger Islands Troughs
Initiation of crustal stretching at the

Western Plateaus

Development of the Osbourn spreading
center between Manihiki and
Hikurangi

Rotation of the Ontong Java Plateau
along with the Western Plateaus

Triple Juction jump (PAC-FAR-PHO)
(Tongareva Triple Junction)

Reorganization of plate tectonic
framework

Possible initiation of the rotation of the
Pacific Plate

Southward migration of Farallon Phoenix
spreading along Tongareva Triple
Junction trace

115 Ma Incorporation of NE—Manihiki into
Farallon Plate

Incorporation or E-Manihiki into Phoenix
Plate

Initiation of spreading at Nova Canton
Trough

Initiation of ocean—ocean subduction at
West Wishbone Scarp

110 Ma First interaction between Hikurangi
Plateau and Chatham Rise

Rotation of Osbourn Trough
Soft—docking of Hikurangi Plateau with

Chatham Rise
100 Ma Final development of the Danger Islands

Troughs
Establishment of oblique spreading at

Nova Canton Trough
95–83 Ma Cessation of southward subduction of

Hikurangi Plateau
Cessation of spreading at Nova Canton

Trough
Incorporation into Pacific Plate

Full establishment of spreading within
the Bellingshausen Sea

Cessation of subduction at
West Wishbone Scarp
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Southeast African LIP, where the Transkai Rise separates, analog the Western Plateaus of the Manihiki Pla-
teau, two areas of thicker LIP crust, the Agulhas Plateau and the Mozambique Ridge [Gohl et al., 2011].

Since the data indicate a tectonic connection, within the crust of the Western Plateaus between the Ontong
Java Plateau and the Manihiki Plateau and the presented emplacement mechanism does not oppose such a
scenario, we attempt our reconstruction with the reassemblage of Ontong Java Nui, by accounting for rota-
tional components [Chandler et al., 2013; Davy, 2014], the growth of the LIP after breakup by either crustal
stretching or secondary magmatism and incorporating for the characteristics of the breakup margins. Sub-
ducted fragments are added. Here we use the traceable slab of the Hikurangi Plateau below New Zealand
[Reyners, 2013] and the estimated extension of the Ontong Java Plateau by Musgrave [2013]. Since the
northeastern and the eastern fragment of the Manihiki Plateau were subducted, we estimated the extent of
these fragments under the assumption that the emplacement mechanism is similar to that of the northern
Ontong Java Plateau, where basalt flows limit the extent of the Nauru Basin [Mochizuki et al., 2005] (Figure 4).
These assumptions result in an initial size of Ontong Java Nui to be 1.1% of the Earth’s surface, which is larger
than previously anticipated.

Figure 5. (a) Magnetic anomaly map of the Nova Canton Trough after Maus et al. [2009], grey areas indicate the oceanic LIPs (b) tectonic
interpretation with major fracture zones in green from Nakanishi et al. [1992] for the Phoenix lineations and additional smaller fracture zones
at the convergence between the Nova Canton Trough and the Clipperton FZ, fracture zones within the Nova Canton Trough (yellow area)
after Taylor [2006] in black and the magnetic isochrones of M10 (red) and M1 (orange) within the Phoenix lineations [Nakanishi et al., 1992].

Geochemistry, Geophysics, Geosystems 10.1002/2015GC006036

HOCHMUTH ET AL. PLATE TECTONICS OF ONTONG JAVA NUI 11



By comparing the reassembled
LIP with recent global plate tec-
tonic models [e.g., Seton et al.,
2012] and magnetic lineations
[Nakanishi et al., 1992], the pale-
olatitudes calculated for the
Ontong Java Plateau are approx-
imately 400 km farther north
than the reconstructed position
of the Ontong Java Plateau (Fig-
ure 7). Even though only a few
paleolatitude calculations exist,
implying a large error margin,
we investigate further possible
factors for this significant offset.
The mismatch between the
reconstructed and the magnetic
lineations is partly due to the
complicated spreading at the
Pacific-Phoenix-Farallon Triple
Junction, where the presence of
multiple microplates and jump-
ing spreading centers is pro-
posed [Seton et al., 2012]. The
Phoenix lineations show multi-
ple fracture zones (FZ) within
their sequence [Nakanishi et al.,
1992], including the Phoenix FZ
and the central Pacific FZ (Fig-
ures 5 and 7). These induce a
considerable offset between the
magnetic lineations in the vicin-
ity of the Ontong Java Plateau

and are, along with other smaller FZ, traceable within the eastern Nova Canton Trough [Maus et al., 2009;
Sandwell et al., 2014] (Figure 5). The crust of the Nova Canton Trough was emplaced after the oceanic LIPs,
which allows an emplacement of the LIP farther north with later, postemplacement movement toward the
south. From asynchronous bends in the seamount chains of the Gilbert Ridge and the Tokelau seamounts,
Koppers and Staudigel [2005] inferred two short extensional phases within the Nova Canton Trough (67 and
57 Ma), which might be related to a reactivation of the trough or to the activity of fracture zones. If these
fracture zones were active after the Cretaceous spreading in the Nova Canton Trough, they can at least
partly account for the offset between reconstructed and calculated paleolatitudes (Figure 7). We, therefore,
infer an emplacement of Ontong Java Nui between 188S and 408S (Figure 8a).

The absolute plate motion of the Pacific Plate during the Cretaceous is vaguely constrained by direct meas-
urements from basaltic flows, but a hook-like shape of the absolute polar wander path is proposed [Sager,
2006; Wessel and Kroenke, 2008]. Unfortunately, the data from the Ontong Java Plateau do not fit this path.
Sager [2006] suggests a decoupling of the northern and southern Pacific Plate—including the Ontong Java
Plateau—during the Cretaceous. Paleo-plate boundaries are not observed within the Jurassic Pacific Plate,
which makes this uncoupling rather unlikely. If the Pacific Plate and the Ontong Java Plateau were coupled
during the Early Cretaceous, we can infer that the rotation of the Ontong Java Plateau was at least partly
also performed by the Pacific Plate. It is also important to account for the possible Neogene intraplate
motion, which occurred at the Nova Canton Trough [Koppers and Staudigel, 2005]. Unfortunately, the data
needed to distinguish between these scenarios are not available. In addition, the Southern Hemisphere
Pacific is underrepresented in the calculations of the rotation poles [Sager, 2006], which might be a cause
for an underestimate of possible rotations. To be able to constrain the motion of the Pacific Plate before its

Figure 6. Sketch of possible plume-ridge interaction at the Pacific-Phoenix ridge, (top)
surfacing of a plume head in vicinity of the Phoenix-Pacific spreading ridge; (middle)
plume head at the ridge creating a thicker plateau; (bottom) spreading center moved
away from the plume creating rifting of the thick plateau and emplaces a thinner oceanic
plateau between the previously emplaced parts.
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connection to the global plate tectonic circuit, it is necessary to obtain a better insight in the internal plate
motion of the Pacific Plate and a closer grid of basement samples from both hemispheres. In our recon-
struction, we assume a rotation of the Pacific Plate along with the Ontong Java Plateau based on Chandler
et al. [2013].

5.2. The Initial Breakup of Ontong Java Nui—Evaluation of the Breakup Mechanisms
on Oceanic LIPs (120–116 Ma)
The development of breakup margins can be traced along all margins of the Manihiki Plateau. The initial
breakup of the ‘‘Super’’-LIP was rather complex and included multiple tectonic deformations such as shear-
ing and crustal stretching before the establishment of clear spreading centers (Figure 8b). The relicts of
these first movements between the oceanic LIPs and within the Manihiki Plateau are imprinted in the
nature of the different margins (Figure 3). The magmatic activity was still strong on the plateaus [Inoue
et al., 2008; Hoernle et al., 2010; Pietsch and Uenzelmann-Neben, 2015], leading to alteration and magmatic
overprinting of the tectonic sutures.

We present the tectonic mechanisms initiating the breakup of Ontong Java Nui and the fragmentation of
the Manihiki Plateau in an anticlockwise fashion beginning in the south, where the Osbourn Trough is
located (Figure 1) [Billen and Stock, 2000; Worthington et al., 2006; Downey et al., 2007]. The first motion
between the Hikurangi Plateau and the Manihiki Plateau occurred at the southern Western Plateaus and
the conjugate Rapuhia Scarp, where a rifted margin was identified (Figure 4). This rapid separation was fol-
lowed by a phase of crustal stretching at the southern High Plateau and the eastern Hikurangi Plateau, pos-
sibly including an anticlockwise motion (Figure 8b). Normal faults are identified in seismic reflection data

Figure 7. Comparison of paleolatitude data (hatched area of possible emplacement of Ontong Java Nui), calculated isochrons (dashed
lines) [Seton et al., 2012], and magnetic anomaly lineations (continuous lines) [Nakanishi et al., 1992]. The grey area indicates the Ontong
Java Plateau in relation to the magnetic anomaly lineations.
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[Pietsch and Uenzelmann-Neben, 2015]. The presence of a HVZ within the Samoa Basin can be attributed to
the later overprint of the presence of the Tahiti-Society Islands hot spot at the Manihiki Plateau (R. Pietsch
and G. Uenzelmann-Neben, manuscript in preparation, 2015b) (Figure 3b) and is not a relict of the ‘‘Super’’-
LIP breakup. To the east, the Osbourn Trough intersects with the Manihiki Scarp. This shearing zone (Figure
3a) can be traced along the eastern High Plateau and established itself as the eastern plate boundary of the
Manihiki Plateau (Figure 1). As Larson et al. [2002] proposed, the triple junction between the Pacific, Farallon,
and Phoenix Plates jumped to the northeastern corner of the Manihiki Plateau, the northern end of the Ton-
gareva Triple Junction Trace (Figures 1 and 8). This gravity anomaly trace is the relict of the southward
motion of the triple junction.

Seton et al. [2012] in their model divided the Farallon Plate in a northern Farallon Plate north of the Clipper-
ton FZ and a southern Farallon Plate called the Chasca Plate. The Phoenix Plate is called Catequil Plate in
their reconstruction. To allow a better comparison between those reconstructions, we also separate
between a northern and a southern Farallon Plate (Figures 8b and 9a–9c). The eastern fragment of the Man-
ihiki Plateau is incorporated into the Phoenix Plate along the Manihiki Scarp and moves southward (Figures
8b and 9a–9c). The northeastern fragment of the Manihiki Plateau becomes part of the southern Farallon
Plate (Chasca Plate). The northern margin of the Manihiki Plateau is mostly unsurveyed, but bathymetry
[Nakanishi et al., 2015] and gravity data [Sandwell et al., 2014] indicate the presence of massive tectonic
activity, possibly related to shearing processes. We propose a fast clock-wise rotation of the northeastern
fragment of the Manihiki Plateau, resulting in multiple ridges (Figure 1) and the possible extension of the
crust on the northern High Plateau (Figure 2).

Figure 8. Tectonic evolution of the western Pacific during the CNS. The model shows the plate kinematic model of Seton et al. [2012] with updated rotation poles for the western Pacific
region obtained in this study. The fixed plate is the Pacific Plate; gravity anomaly map taken from Sandwell et al. [2014]; plate boundaries (relevant for the reconstruction) are marked in
black, continental fragments are shown in grey with today’s coast lines in black for better orientation; light grey areas shows seafloor, which has been subducted; Ontong Java Nui
related LIPs are marked in orange and yellow for the Manihiki Plateau; the red star indicates the position of the Tongareva Triple Junction; MANI 5 Manihiki Plate, HIK 5 Hikurangi Plate
(a) 125 Ma and (b) 117 Ma.
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Additional to these major breakup scenarios, the Manihiki Plateau is fragmented into its subprovinces. At
the Danger Islands Troughs, the division into the Western Plateaus and the High Plateau is manifested by a
series of pull-apart basins (Hochmuth et al., submitted manuscript, 2015), which show a similar rotation as

Figure 9. Tectonic evolution of the western Pacific during the CNS. The model shows the plate kinematic model of Seton et al. [2012] with
updated rotation poles for the western Pacific region obtained in this study. The fixed plate is the Pacific Plate; gravity anomaly map taken
from Sandwell et al. [2014]; plate boundaries (relevant for the reconstruction) are marked in black, continental fragments are shown in grey
with today’s coast lines in black for better orientation; light grey areas shows seafloor, which has been subducted; Ontong Java Nui-related
LIPs are marked in orange and yellow for the Manihiki Plateau; the red star indicates the position of the Tongareva Triple Junction;
MANI 5 Manihiki Plate, HIK 5 Hikurangi Plate, B.P. 5 Bellingshausen Plate (a) 110 Ma, (b) 100 Ma, and (c) 83 Ma.
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proposed for the Ontong Java Plateau. The Western Plateaus seem to have moved with the Ontong Java
Plateau during the initial phase of breakup (Figure 8b), leading to faulting and stretching of the crust. There-
fore, the thinner crust of the Western Plateaus (Figure 3c) can result from a combination of the emplace-
ment mechanism and tectonic stress during the breakup of Ontong Java Nui (Figures 6 and 8b). The
Hikurangi Plateau and Ontong Java Plateau are separated by the former spreading center between the
Pacific and Phoenix Plate, which possibly developed a transform motion (Figures 8b and 9a). The recon-
struction in this area is very difficult and can only be achieved by crude assumptions of the subducted sea-
floor. Musgrave [2013] proposed an additional triple junction in this area to account for the so-called Malaita
Terranes. In his study, Musgrave [2013] omits the rotation of the Ontong Java Plateau [Chandler et al., 2013].
This rotation enables to reconstruct the Malaita terranes, which lay on 160 Ma old crust [Tejada et al., 2002;
Ishikawa et al., 2005, 2007] without additional plateboundaries.

5.3. Dispersal of Ontong Java Nui Over the Pacific Ocean
After the initial breakup, which involved a tremendous (up to 200 km at the Western Plateaus) amount of
crustal stretching, short-lived spreading centers and rotational forces, the plate boundaries stabilized (Fig-
ure 9a). The timing of the stabilization correlates with the fading of massive volcanic activity on the Manihiki
Plateau [Pietsch and Uenzelmann-Neben, 2015]. Therefore, the influence of the plume ceased and secondary
phases of magmatic stages show a clearly weaker and more localized volcanic emplacement. The Osbourn
Trough developed a spreading half-rate of 10 cm/a (116–100 Ma) and significantly slows down the produc-
tion of new crust after the soft-docking of the Hikurangi Plateau at the Chatham Rise [Davy et al., 2008;
Davy, 2014] (Figure 9b). The interaction with the Chatham Rise also introduces a rotation of the Hikurangi
Plate, which can also be observed in the change in orientation of the Osbourn Trough (Figure 9b) [Davy,
2014]. The morphology of the Osbourn Trough resembles a slow spreading ridge [Billen and Stock, 2000;
Downey et al., 2007]. Therefore, we propose a change in orientation from NW-SE to W-E after the soft-
docking of the LIP crust at the continental Chatham Rise and a slowing of the spreading rate to 3 cm/a,
which is consistent with previous publications calculating spreading rates [Billen and Stock, 2000; Downey
et al., 2007]. The Hikurangi Plate partly subducted beneath the Gondwana Margin at the location of the
Chatham Rise (Figure 9a). This docking event has a great impact on the whole western Pacific and led Mat-
thews et al. [2012] to propose that kinks within fracture zones can be correlated and dated to this event. In
our reconstruction, we also link reorientations of fracture zones observed on the Hikurangi Plate and Mani-
hiki Plate to this time frame (Figure 1).

To the East, the Wishbone Scarp, a short-lived interoceanic subduction zone, develops [Mortimer et al.,
2006], representing the plate boundary between the Phoenix (Catequil) Plate and the Hikurangi Plate (Fig-
ure 9b). The Hikurangi Plate subducts below the Phoenix Plate at this location. The shape of the Wishbone
Scarp gives further indication of a clockwise rotation of the Hikurangi Plate after the initial collision with the
Chatham Rise (Figure 1).

The Manihiki Plateau was decoupled from the Pacific Plate by the Clipperton Fracture Zone and moved
eastward (Figure 9a). The motion at the Danger Islands Troughs stopped at around 110 Ma due to the
establishment of an oblique spreading within the Nova Canton Trough (Figures 9a and 9b). This indicates,
that the different subprovinces of the Manihiki Plateau acted as individual plates for a short time, but still
inherited significant differences within their crustal structure during the initial breakup of Ontong Java Nui.
For the Nova Canton Trough, a scissor-like opening was proposed by Taylor [2006] and Chandler et al.
[2012], separating the Ontong Java Plateau from the Manihiki Plateau with an additional rotational compo-
nent (Figures 9a and 9b).

After the hard docking of the Hikurangi Plateau with the Chatham Rise, subduction at the Gondwana mar-
gin ceased, leading to one of the largest reorganizations within the plate tectonic framework of the Pacific
[e.g., Luyendyk, 1995]. Seafloor spreading ceased around the Manihiki Plateau and between the different
fragments of Ontong Java Nui (Figure 9c). With the establishment of the spreading in the Bellingshausen
Sea [e.g., Eagles et al., 2004; Wobbe et al., 2012], the different plateaus are firmly integrated into the Pacific
Plate. Younger tectonic activity can mainly be related to hot spot volcanism. Koppers and Staudigel [2005]
identified tectonic activity within the area of the Nova Canton Trough at 67 and 57 Ma leading to the reor-
ientation of the Gilbert Ridge and the Tokelau seamount chain, respectively. Multiple fracture zones are
identified at the junction between the Nova Canton Trough and the Clipperton FZ as well as at the central
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Nova Canton Trough (Figure 5). This motion may have been responsible for the southward motion of the
Ontong Java Plateau and the reactivation of the Nova Canton Trough as well as the creation of the Suvarov
Trough on the Manihiki Plateau (Pietsch and Uenzelmann-Neben, manuscript in preparation, 2015b).

In summary, we updated rotation poles (Table 4) for the different plates of the western Pacific by considering
and incorporating concepts such as the rotation of the Ontong Java Plateau and the Hikurangi Plateau and
the presence of a subduction zone at the Wishbone Scarp, which have previously not been modeled in a plate
kinematic context. Our reconstruction is based on the presence of the LIPs in the western Pacific and gives a
detailed history of the early stages of breakup as visible at the plateaus margins. We additionally present evi-
dence for post-Cretaceous tectonic activity in the area of the Nova Canton Trough, which possibly allows the
reconciliation between the reconstructed latitudes and paleolatitudes obtained from rock samples.

6. Conclusions

The Large Igneous Provinces of the western Pacific play an important role within the plate tectonic framework
of the region. By evaluating possible emplacement scenarios of a joined emplacement of the Ontong Java
Nui related LIPs, an interaction between an arriving plume head and the Pacific-Phoenix ridge can explain the
individual crustal structure of the oceanic plateaus. Seismic refraction and reflection data, along with bathym-
etry and gravity measurements shed light on the multifaced breakup mechanisms of the ‘‘Super’’-LIP. The ini-
tial breakup includes short-lived spreading centers to the north and east of the Manihiki Plateau, crustal
stretching at the Western Plateaus, and the southern High Plateau and shearing forces along the Manihiki
Scarp. The subprovinces of the Manihiki Plateau acted as individual plates. Whereas the Western Plateaus
rotated along with the Ontong Java Plateau resulting in the pull-apart basins of the Danger Islands Troughs,
the High Plateau shows clear breakup margins to all parts of Ontong Java Nui. The updated version of rota-
tional parameters for the western Pacific includes the individual plates of the Manihiki Plateau as well as the
rotation of the Ontong Java Plateau and the Hikurangi Plateau, which have so far been excluded from plate
kinematic reconstructions. Late Cretaceous and early Paleocene tectonic activity within the Nova Canton
Trough allows the reconciliation between the paleolatitudes from rock samples and the modeled latitudes.
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