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Methane excess in Arctic surface 
water- triggered by sea ice 
formation and melting
E. Damm1, B. Rudels2, U. Schauer1, S. Mau3 & G. Dieckmann1

Arctic amplification of global warming has led to increased summer sea ice retreat, which influences 
gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as 
a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in 
Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. 
We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and 
provide evidence that sea ice is a potential source. We show that methane release from sea ice into 
the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer 
under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as 
buffer in which methane remains entrained. However, in autumn and winter surface convection 
initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results 
demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced 
seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to 
summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic 
Ocean to act as a sink for this greenhouse gas.

The Arctic is considered a region where noticeable and rapid global change is taking place and where 
the effects, particularly on sea ice, are dramatic, albeit that the area is relatively small globally seen1–4. 
Summer sea ice retreat increases exposure of surface water, thus enhancing gas exchange between the 
Arctic Ocean and the atmosphere where formerly sea ice acted as a physical barrier for sea air flux5,6. 
Also gas transfer in the opposite direction is inhibited as ocean freshening due sea ice retreat isolates the 
sea water below the halocline from the atmosphere7. Elevated atmospheric methane concentrations over 
open leads and regions with fractional sea-ice cover in the remote Arctic8 indeed reveal feedbacks as 
yet unaccounted for in biogeochemical cycling of methane between sea ice, sea-ice influenced water and 
the atmosphere. Methane super-saturation recently detected in the vicinity of marginal ice zones, under 
multiyear sea ice and in polynyas9–11 also point to pathways of methane discharge in a partly ice covered 
ocean and focuses the view on a specific sea ice- ocean- atmosphere coupling in addition to the known 
direct sea ice-atmosphere efflux. The fact that sea ice itself constitutes a potential source for efflux has 
now become evident and pivotal, since methane concentrations considerably exceeding the atmospheric 
equilibrium value have been detected therein12. Sea ice- ocean coupling is given when brine rejection 
induced by freezing or melting generates haline convection13–15.

Tracing this process the current study reveals a unique two stage scenario: methane release from sea 
ice into sea water and seasonal efflux to the atmosphere. We combine oceanographic and geochemical 
data and highlight new information on the impact of oceanographic processes i.e. convection and haline 
stratification on the geochemical behaviour of methane, especially considering the pronounced season-
ality resulting in the increasing decline of summer sea ice. Our studies focus on unexpected feedbacks 
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concerning the methane cycle in the Arctic e.g. the buffering capacity of the winter mixed layer in sum-
mer and the isolation of the deeper Arctic Ocean. The permanent isolation influences the sink capacity of 
the Arctic Ocean which becomes relevant for methane released by terrestrial sources in the Arctic. Hence 
aiming on the interaction between sea ice and sea water is fundamental and has up to now not yet been 
considered when it comes to understanding the balancing of trace gas fluxes in the ice covered ocean. 
Concerning the pronounced seasonality in trace gas fluxes our observations highlight the differences 
between trace gas exchanges in ice-covered Polar Regions relative to open water areas in lower latitudes.

Results
The current study is based on the analysis of concentrations, stable carbon isotope ratios and aerobic 
oxidation rates of methane in surface water and sea ice brine coupled with the hydrographic data along 
two transects in the central Arctic Ocean occupied by RV Polarstern between early August and late 
September 2011 (Fig. 1 and methods).

Water masses. Sea ice influenced surface water encompasses the winter mixed layer (WML) and the 
melt water layer (MWL). The MWL comprises the upper 20 m and is formed by melting summer sea ice 
(Fig. 2a,b). The WML is formed by convective overturning due to brine rejection during freezing nota-
bly with temperatures at the freezing point. This temperature minimum is even sustained in summer as 
warming does at many places not reach the depth of this winter mixing thus leaving a local temperature 
minimum and indicating regions where the WML is formed13–15 (Fig. 2a). Isolated by a strong halocline, 
sea water below the WML consists of upper halocline water (UHW, > 60 m). The Arctic Ocean upper 
halocline is being created and advected from the Chukchi shelf and/or from the Bering Sea inflow and is 
not affected by the local surface processes16. The UHW is clearly detectable by the pronounced decrease 
in oxygen concentration (Fig. 3).

Methane super-saturation. In the interior Arctic methane is super-saturated in the WML and MWL 
and under–saturated below the halocline in UHW (> 60 m) (Fig. 4). We suggest that local and seasonal 
processes interacting with sea ice create the heterogeneous levels of methane excess. Along transect 1, 
methane is incorporated at the depth of the pronounced temperature minimum between 40–60 m. By 
comparison at transect 2 the WML contains less methane and also the temperature minimum is clearly 
less pronounced, indicative of lower brine rejection during winter (Figs  2b and 4). These observations 
indicate that sea ice may act as a methane source and brine release as the pathway to transport methane 
into the WML. The brine-released methane remains stored in the WML as haline stratification restricts 
downward mixing. Hence the methane excess in the WML is detected even in the summer while the 

Figure 1. Right: Sea ice concentration in Arctic Ocean showing the minimum ice extent in 2011 (white/
grey) and in 2007 (yellow line) from passive microwave satellite. The red circle encloses the region 
shown in Figure on the left where hydrographic transects 1 (red) and 2 (green) are displayed. Left, cruise 
track during R/V Polarstern cruise ARK-XXVI/3 (TransArc, 2011). The background image gives sea ice 
concentration on 15 September 2011. Dots represent sea ice stations along the track and red bars show 
methane concentrations (nM) in brine samples from core holes (sack holes). Methane equilibrium is 3.5 at 
temperature of − 1 °C and salinity of 40 (see methods). Map and plots are generated with MATLAB 2013b.
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Figure 2. (a) Temperature and salinity profiles on Transect 1. Different colours represent different sections. 
The red dotted rectangle shows the range of the temperature minimum, i.e. the depth of winter mixing on 
the stations with methane excess at this depth. The temperature minimum is formed during winter when 
freezing induces brine rejection and haline convection but is even sustained in summer13–15. The grey dotted 
rectangle at the salinity profiles show the thickness of the layer, which becomes fresher by seasonal ice melt 
and homogenised by wind mixing (Transect 2 see Fig. 2b). Bottom right: Cruise track during R/V Polarstern 
cruise ARK-XXVI/3 (TransArc, 2011) created with JMT. The background image shows sea ice concentration 
on 15 September 2011. (b) Temperature and salinity profiles on transect 2. Different colours represent different 
sections. The red dotted retangle shows the range of the temperature minimum, i.e. the depth of winter mixing 
on the stations with methane excess at this depth. The temperature minimum is formed during winter when 
freezing induces brine rejection and haline convection13–15. The weaker temperature minimum on transect 2 
reflects the fact that the WML is different on the two transects. The grey dotted retangle at the salinity profiles 
show the thickness of the layer, which becomes fresher by seasonal ice melt and homogenised by wind mixing. 
Bottom right: Cruise track during R/V Polarstern cruise ARK-XXVI/3 (TransArc, 2011) created with JMT. The 
background image gives sea ice concentration on 15 September 2011. Maps are generated with MATLAB 2013b.



www.nature.com/scientificreports/

4Scientific RepoRts | 5:16179 | DOi: 10.1038/srep16179

UHW remains isolated and methane under-saturated due to the decoupling (Fig. 4). The MWL (< 20 m) 
is less methane super-saturated than the WML. This perplexing circumstance points to the different 
scenarios, which create the excess in both water masses. Micro bubbles included in the brine may be 
entrained and then re-dissolved in the less saline seawater while the dilution with fresh water doesn’t 
occur in winter. In comparison methane in the MWL is released when basal melting starts but the top of 
the sea ice still remains impermeable inhibiting direct methane release from sea ice to the atmosphere. 
Then seawater flushes the brine channels and gas bubbles included in the brines will be re-dissolved. 
Brine super saturated with methane will then be incorporated into the MWL. However, the MWL is 
also diluted by fresh water from melting sea ice, thus reducing the final methane concentration therein.

δ13C signature from methane. The stable carbon isotopic signature of methane shows that the 
atmosphere and surface water in the central Arctic Ocean is not equilibrated. Deviations in the δ 13C 
signature from the atmospheric background illustrate the strong evidence for the presence of additional 
sources of methane in surface water. We compare the measured data with calculated curves in order to 
establish whether the methane pool in seawater is modified by oxidation and mixing (Fig. 5).

A Rayleigh distillation model. i.e., δ 13CCH4 =  1000* (1/α  −  1)* ln f +  (δ 13CCH4)0 is used to calculate 
the δ 13C signature of methane which results when methane is being microbially consumed (Fig.  5a). 
(α , the isotope fractionation factor, is 1.00810, f is the fraction of methane remaining, (1–f) is the meth-
ane consumed by oxidation and (δ 13CCH4)0 is the initial isotopic composition). RC-1 (Fig.  5a, dashed 
line) shows the δ 13C signature of methane that results when consumption of initial atmospheric meth-
ane, which has equilibrated in surface water, occurs. In that case (δ 13CCH4)0 is − 45‰ corresponding to 
the atmospheric δ 13CCH4 value (− 47‰)17 corrected by the kinetic isotopic fractionation (KIE) effect18. 
Methane residing in UHW (Fig. 5a, open circles) fits to RC-1, and indicates that the isotopic signature 
of this methane corresponds to that of original atmospheric methane. In comparison, methane in the 
winter mixed layer and melt water layer (WML and MWL, 0–60 m, blue open squares) is more depleted 
in 13C and deviates clearly from the RC-1 curve. These values are localized between RC-1 and a second 
Rayleigh curve (RC-2, black line, Fig. 5a), which results from consumption of methane with (δ 13CCH4)0 
− 75‰, i.e. the end member of methane detected in brines (blue squares). A Rayleigh curve describes 
ideal conditions, assuming that only one source and only one sink (oxidation) exists. The measured data 

Figure 3. Oxygen saturation (%) as a function of depth. Clear oxygen under-saturation exists below 60 m, 
which is a signature of the upper halocline water (UHW)16. This signature is formed in the Chukchi Sea 
as Pacific winter water and locally formed shelf bottom water by mineralization of organic matter16. Left: 
Cruise track during R/V Polarstern cruise ARK-XXVI/3 (TransArc, 2011) created with JMT. The background 
image gives sea ice concentration on 15 September 2011. Map is generated with MATLAB 2013b.
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have been compared with calculated curves in order to check if the methane pool in seawater is modified 
by oxidation. Deviations of the measured values from the calculated Rayleigh curves reflect the influence 
of additional processes, i.e. mixing with sources with different isotope signatures and sea-air flux. Since 
not only oxidation but a combination of several processes modifies the isotopic signature of methane in 
sea water we also displayed our data using a Keeling type plot.

A Keeling type plot is used (Fig. 5b) to calculate the mixing between two assumed end-members. The 
calculated mixing trend is compared with the measured values to illustrate potential mixing of meth-
ane of different isotopic signatures. Mixing end points are: atmospheric methane and residual methane. 
Residual methane is the pool of initial atmospheric methane, which has been oxidised up to the thresh-
old value where microbial consumption finally ceases because of substrate limitation. Methane residing 
in UHW scatters around the mixing line between atmospheric and residual methane as end members 
and exerts an important control on the distribution of the isotopic ratio of methane from these pre-
cursors. In comparison methane residing in the WML and MWL does not fit the mixing line, which is 
evidence for the presence of additional sources.

Discussion
Along both transects we observed distinct lateral and vertical variations both in concentration and in the 
δ 13C signature of methane and suggest that the surface Arctic Ocean is not equilibrated with the atmos-
phere. Methane is commonly super-saturated down to the WML. Being isolated by a strong salinity gra-
dient the underlying water masses are homogeneously under-saturated with respect to the atmospheric 
equilibrium concentration (Fig. 4). They mainly consist of upper halocline water (UHW) as indicated by 

Figure 4. Methane concentration (nM), δ13C values (‰) and salinity (from top to bottom) Arrows show 
atmospheric equilibrium, δ13C value of atmospheric methane is −47‰17. Methane concentrations above 
the black arrow reflect super-saturation or under-saturation, respectively. Methane equilibrium concentration 
ranges between 3.7 and 3.9 nM and is calculated as a function of the gas solubility on the basis of the 
measured temperature (between − 1.4 and –1.8 °C) and salinity (34 and 28) properties.
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the low oxygen saturation16 (Fig. 3). This signature is formed in the Chukchi Sea. Consequently, a lateral 
transport of methane in sea water from the shelf areas into the central Arctic can be ruled out.

Compared to the atmospheric background17, methane in sea water is enriched in 13C. The preferred 
microbial use of 12C makes methane consumption the most likely cause of this isotopic shift19. In addi-
tion mixing of methane of different isotopic signatures from other sources may contribute to deviations 
from the background signal. Hence, to trace the isotopic fractionation, which potentially occurs when 
methane with different initial δ 13C signatures is being consumed or mixed, we calculated a Rayleigh 
distillation and Keeling type plot (Fig. 5). Differences between methane residing in UHW and methane 
residing in sea ice-influenced water (i.e. WML and MWL) become obvious by comparing the measured 
values with calculated curves. Methane residing in UHW scatters around an oxidation line and a mixing 
line between atmospheric and residual methane (i.e. threshold value) as end members and exerts an 
important control on the distribution of methane from these precursors. Decoupling from the atmos-
phere and simultaneous long-term methane consumption creates this pool of under-saturated and 13C 
enriched methane. In comparison, methane from sea ice-influenced water (i.e. WML and MWL) is more 
depleted in 13C than methane in UHW and values scatter around an oxidation line with methane from 
brine as end member (Figs 4 and 5).

The large potential of sea ice to discharge methane is evident in methane super-saturation of up to 
8000% in brine (Fig. 1). Furthermore, considerable alterations in the δ 13C signature (− 36‰ to − 75‰) 
of methane in brine are indicative of extensive methane cycling within sea ice i.e. production and con-
sumption, as both processes induce isotopic fractionation. Oxygen depletion in brine channels20 and 
microbial production of up to 300 mg C mg2 d−1 21 favour anaerobic degradation of organic matter and 
are the most likely preconditions for methane production in sea ice.

Methane in sea ice may be present in two phases; dissolved in brine or most likely in small gas 
bubbles formed during freezing. Temperature and salinity changes lead to a sharp decrease in methane 
solubility, in which case a much larger amount of methane will accumulate as gas in the ice12,22. In winter, 
sea ice is to a large extent impermeable and the ice-air gas transfer to the atmosphere becomes severely 
restricted12,23. Then the discharge of methane dissolved in brine becomes relevant. Also micro-bubbles 

Figure 5. (a) Measured methane fitted to Rayleigh distillation curves (RC). Methane from UHW (open 
circles) scatter around RC1 (dashed line) indicating the δ 13C signature resulting in consumption of initial 
atmospheric methane. Methane from WML and MWL (open squares) and from brine (blue squares) 
deviates from RC1 but is localized between RC1 and RC2 (line). RC2 results due to consumption of 
methane depleted in 13C ((δ 13CCH4)0 − 75‰), i.e. the end member of methane detected in brines (blue filled 
squares) (see methods). (b) (below): δ 13CCH4 vs. the reciprocal of the methane concentration (Keeling type 
plot). Red dot shows the atmospheric value. Methane from UHW (open circles) scatters around a line with 
two endpoints: atmospheric methane and residual methane (i.e. atmospheric methane, which has been 
oxidized). Deviations from the mixing line reflect the influence of on-going methane oxidation. Methane 
from WML and MWL (open squares) and from brine samples (blue squares) extends towards higher 
methane concentrations (with respect to the atmospheric equilibrium) and lighter δ 13CCH4 signatures than 
the atmospheric value and do not fit on mixing line (see methods).
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included in the brine may be entrained and then re-dissolved in the less saline sea water. The depth of 
winter mixing by brine rejection is clearly indicated by the temperature minimum even in the following 
summer13–15 (Fig.  2). Hence we conclude that methane ejected with brine during winter becomes dis-
persed in the WML and may remain stored until the following summer (Fig. 4).

In spring, methane in the ice may be released to the MWL, when basal melting starts but the top of 
the sea ice still remains impermeable, inhibiting direct methane release from sea ice to the atmosphere. 
Subsequently, sea water or melt water will flush the brine channels and gas bubbles included in the brines 
will re-dissolve. Several freezing and melting events may contribute to locally different levels of super 
saturation in the MWL (Figs 4 and 6).

In summer, the methane excess remains preserved, as on the one hand, haline stratification restricts 
downward mixing and on the other, the reduced turbulence and restricted gas transfer in the presence of 
sea ice8,24 impedes the efflux (Fig. 6). Excess methane is also conserved by slow methane consumption. 
Seawater sampled directly under the ice shows methane oxidation rates at the lower end of reported 
data (0–820 nM/d)25, i.e. rates with a median 0.013 nM/d using a 3H-CH4 tracer and with a median of 
0.0009 nM/d with a 14C-CH4 tracer, respectively. Although both tracers increase ambient methane con-
centrations by 1.7 nM and 457 nM, respectively, an increase in uptake rate due to an increase in substrate 
was not observed over three days incubation. These pulse chase experiments illustrate that the abundance 
and activity of methanotrophic bacteria is low in the water investigated. Methanotrophs might be limited 
due to unfavourable growth conditions (e.g., low temperature or lack of copper26,27) since only bacteria 
with a low uptake velocity inhabit surface water. A weakly developed methanotrophic community due to 
restricted mixing with other water masses could also prevent the seeding with methanotrophic bacteria28.

In autumn, cooling and freezing generate convective mixing down to the halocline that will both 
homogenize methane excess in surface sea water and initiate methane efflux allowing the cold water to 
equilibrate with the atmosphere. After a new sea ice cover has formed and methane super saturation is 
still present, methane efflux may occur from leads or fractional sea ice cover during the entire winter 
(Figs 4 and 6).

The methane surplus in sea ice-influenced water (i. e. WML and MWL) ranges between 1.5 and 
1.9 nM relative to the methane equilibrium concentration (see methods). By extrapolating the meth-
ane surplus in the top 10 m to the area of seasonal sea-ice melting (6.4 million km2), we calculate that 
between 7.5 and 10 Gg of methane may be stored in sea ice during summer. This estimate should be con-
sidered as being on the low side, since only the surplus methane near the surface is taken into account. 
Methane stored in sea ice will exceed this amount considerably but to confirm this, more measurements 
are needed. Summer sea ice retreat may change the amount of excess methane eventually making esti-
mates of future atmospheric emissions more uncertain. In addition, increasing summer sea ice retreat 
strengthens the density stratification in the upper ocean and consequently the decoupling of sea ice- 
influenced water masses from the UHW. The permanent isolation of the UHW from the atmosphere 
becomes evident by the homogeneous methane under-saturation (Figs 4 and 6). Several years are needed 
for UHW to cross the Arctic Basin29. During that long journey on-going microbial methane consump-
tion, albeit slow, creates isotopic fractionation, which eventually enriches the residual methane in 13C. 
Thus not only does the concentration steadily decrease during the long-term water mass separation, 
but methane also becomes heavier (Fig. 4). We found that methane is consumed down to a concentra-
tion, which corresponds to less than 50% of the saturation level. A depletion of this magnitude results 

Figure 6. Seasonal differences in methane cycling between sea ice, surface water and atmosphere. In 
winter deep convection transports brine, charged with methane, into the WML. Methane efflux may occur 
by convection in leads, while efflux through impermeable sea ice is restricted. In spring, basal melting starts 
and transports methane (dissolved or re-dissolved gas bubbles) into the MWL. In summer, stabilized by 
thermal stratification and less turbulence, methane remains entrained in both layers. In autumn, sea surface 
temperatures drop, enabling methane efflux by surface water convection. Water masses below the WML are 
not affected by this methane cycling.
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in threshold values, i.e. values where consumption finally ceases because of substrate limitation30. The 
depth, at which threshold values is reached differs slightly along transects, i.e. between Atlantic-derived 
and Pacific-derived water and depends on and corresponds to the depth of haline winter convection. 
The permanent isolation of the UHW reduces the capacity of the interior Arctic Ocean to act as a sink 
for increasing atmospheric methane. This decoupling from the deeper ocean reinforces the near surface 
cycling of methane (i.e. between sea ice-influenced water, sea ice and the atmosphere). Summer sea ice 
retreat triggers this pathway with hitherto unknown consequences for the source as well as sink capacity 
for this greenhouse gas in the Arctic.

Methods
Sampling. We measured concentrations, stable carbon isotope ratios and aerobic oxidation rates of 
methane in surface water and sea ice brine along two hydrographic transects in the central Arctic Ocean 
occupied by RV Polarstern between early August and late September 2011. The first transect runs from 
82.5°N, 50o E via the North Pole to the Alpha Ridge, the second transect runs along 84°N over the 
Makarov Basin into the Amundsen Basin (Fig.  1). Covering both Atlantic and Pacific derived water, 
our sampling was carried out in regions with different ice coverage. We use hydrographic data (salinity, 
temperature and oxygen) and water samples down to 100 m depth obtained with a ship-borne CTD 
(Seabird) and a mounted Rosette. Salinity and temperature were measured with a Seabird SBE 911 plus 
CTD. Oxygen was measured with the SBE 43 dissolved oxygen sensor SN 743 and sensor calibration 
was done on water samples using Winkler titration. Water samples from up to six different depths were 
collected during the upcast at each CTD station with 10 L Niskin bottles mounted on a rosette sampler. 
Sea ice brine was collected by extracting ice cores from sea ice to depths of up to 50 cm and not more 
than half way through the ice depth, using a KOVACS Mark II ice corer. The remaining, so called “sack 
holes” were covered and left to allow brine to drain into the holes for a few minutes, after which brine 
was removed with a syringe and treated the same way as water samples. Methane concentrations were 
analysed within a few hours after sampling. The dissolved gas was extracted from the water or brine by 
vacuum-ultrasonic treatment and subsequently measured with a gas chromatograph (Chrompack 9003 
(GC) with a flame ionization detector (FID). For gas chromatographic separation we used a packed col-
umn (Porapac Q 80/100 mesh). The GC oven was operated isothermally (60 °C) and the FID was held at 
250 °C. Two sets of standard gas mixtures were used for calibration. The standard deviation of duplicate 
analyses was 5%. This high overall error is almost exclusively due to the gas extraction procedure and 
not to GC precision, which had an error of only 1%. After GC analyses an aliquot of the extracted gas 
was transferred into pre-evacuated glass containers for analysis of the stable carbon isotopic signature 
on shore.

The δ 13CCH4 values were determined using a Delta XP plus Finnigan mass spectrometer. The extracted 
gas was purged and trapped with PreCon equipment (Finnigan) to pre-concentrate the sample. All iso-
topic ratios were given in a δ -notation relative to the Vienna Pee Dee Belemnite (VPDB) standard using 
conventional delta notation. The reproducibility derived from duplicates was 1–1.5‰.

A significant correlation between 1/methane concentration vs. the δ 13C values (R2 =  − 0.84) is given 
for methane in UHW when y- intercept is − 47‰. In sea ice-influenced water (i.e. WML and MWL) 
a correlation is missing when y- intercept is − 47‰ (R2 =  0.0554) but given when the y- intercept is 
− 55‰. This different correlation refers to deviating methane sources in both water masses.

Methane consumption. Water was sampled directly from the ice floes through ice core holes for 
ex situ tracer incubations in order to quantify the methane consumption. Methane oxidation rates were 
determined from ex situ incubations of water samples in 100 ml serum vials. Samples were incubated 
with 50 μ l gas mixture comprised of 3H-labelled CH4 (200–300 Bq) and a second set was incubated with 
10 μ l of 14C-labelled CH4 (12000–15000 Bq). The samples were subsequently shaken to facilitate tracer 
dissolution and then incubated in the dark at 0 °C. Tracer consumption was measured after 48 h and 
72 h. Incubations with 14C-CH4 were terminated by adding a 5 ml headspace and injecting 0.5 ml of 
10 M NaOH so that the remaining 14C-CH4 accumulated in the headspace and the produced 14C-CO3

2- 
and 14C-biomass was trapped in the aqueous NaOH solution. Separation and activity measurement of 
14C-CH4 and 14C-CO3

2− was carried out analogous to previous measurements of CH4 turnover in sedi-
ments25 (and references therein) . In short, 14C-CH4 in the headspace was combusted to 14C-CO2, while 
14C-CO3

2− was converted to 14C-CO2 through acidification with HCl. In either case, 14C-CO2 was then 
trapped and the radioactivity was measured by wet scintillation counting. Incubations with 3H-CH4: 
Total activity (3H-CH4 +  3H-H2O) was measured in 1 ml of sample aliquot by wet scintillation count-
ing and activity of 3H-H2O was measured after sparging the sample for ≥ 30 min with nitrogen gas 
to remove remaining 3H-CH4. CH4 oxidation rates (rOX) were calculated assuming first order kinetics: 
rOX =  k’ [CH4] where k’ is the effective first order rate constant calculated as the fraction of labelled CH4 
oxidized per unit time and [CH4] is the ambient CH4 concentration. Killed controls resulted in methane 
oxidation rates near zero.
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