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a b s t r a c t

Carbon fixation by phytoplankton plays a key role in the uptake of atmospheric CO2 in the Southern
Ocean. Yet, it still remains unclear how efficiently the particulate organic carbon (POC) is exported and
transferred from ocean surface waters to depth during phytoplankton blooms. In addition, little is known
about the processes that control the flux attenuation within the upper twilight zone. Here, we present
results of downward POC and particulate organic nitrogen fluxes during the decline of a vast diatom
bloom in the Atlantic sector of the Southern Ocean in summer 2012. We used thorium-234 (234Th) as a
particle tracer in combination with drifting sediment traps (ST). Their simultaneous use evidenced a
sustained high export rate of 234Th at 100 m depth in the weeks prior to and during the sampling period.
The entire study area, of approximately 8000 km2, showed similar vertical export fluxes in spite of the
heterogeneity in phytoplankton standing stocks and productivity, indicating a decoupling between
production and export. The POC fluxes at 100 mwere high, averaging 26715 mmol C m�2 d�1, although
the strength of the biological pump was generally low. Only o20% of the daily primary production
reached 100 m, presumably due to an active recycling of carbon and nutrients. Pigment analyses indi-
cated that direct sinking of diatoms likely caused the high POC transfer efficiencies (�60%) observed
between 100 and 300 m, although faecal pellets and transport of POC linked to zooplankton vertical
migration might have also contributed to downward fluxes.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The Southern Ocean is an important sink for atmospheric CO2

accounting for about 15–20% of the global oceanic uptake (Gruber
et al., 2009; Takahashi et al., 2002), with a significant contribution
from phytoplankton that fix CO2 to organic carbon (Hauck et al.,
2013). However, the strength and efficiency of the biological pump
(i.e. export efficiency and transfer efficiency, respectively), as well
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as their controlling factors are poorly understood, especially dur-
ing phytoplankton blooms (Buesseler and Boyd, 2009).

The export efficiency (i.e. the fraction of production that is
exported from the upper ocean, usually taken as the base of the
euphotic zone or 100 m) is low in much of the global ocean (o5–
10%), but it is typically about 50% for blooms at high latitudes
(Buesseler, 1998). However, previous studies have reported lower
export efficiencies during high-productive events in the Southern
Ocean (Jacquet et al., 2011; Planchon et al., 2015; Rutgers van der
Loeff et al., 1997; Savoye et al., 2008). Furthermore, iron-fertilised
blooms in the Southern Ocean show high variability in the fraction
of production being exported from the ocean surface. As an
example, during SOFeX-South (66°S) the export efficiency was low
(o10%, Buesseler et al., 2005), while during EIFEX it was
approximately 60%, indicating a very strong biological pump
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(Smetacek et al., 2012). A number of factors may explain the dif-
ferences observed in export efficiencies, including phytoplankton
community composition and study time frame. Diatoms are key
exporters of carbon from the ocean surface to deep waters and
sediments, and hence play an essential role in reducing the CO2

content in the atmosphere (Smetacek, 1999). Previous studies have
shown that very low macronutrient concentrations, specifically of
silicic acid, prevent the development of diatom blooms in benefit
of flagellates, resulting in low particulate organic carbon (POC)
export fluxes from the ocean surface (Jacquet et al., 2011; Martin et
al., 2013). Further, diatoms in the Southern Ocean contribute dif-
ferently to POC export according to their life cycle strategy in
which the degree of silicification is relevant (Assmy et al., 2013;
Quéguiner, 2013). Moreover, since export lags production, the time
scale of the studies may often be too short to quantitively estimate
the strength of the biological pump during bloom events (Bues-
seler et al., 2004; Charette and Buesseler, 2000).

The transfer efficiency (i.e. the fraction of shallow export that is
transferred to depth) indicates the attenuation of the flux that
takes place within a certain depth range. While it is known that
the attenuation of POC fluxes is sharpest in the upper twilight
zone, i.e. 100–300 m below the euphotic zone depth, our under-
standing of the processes affecting sinking particles throughout
this layer is still poor (Buesseler and Boyd, 2009). The vertical flux
of organic matter throughout the water column is dominated by
large particles such as marine snow and faecal pellets (Ebersbach
et al., 2011; Fowler and Knauer, 1986; Laurenceau-Cornec et al.,
2015) that can be attenuated to a large extent by zooplankton and
microbial degradation (Giering et al., 2014; Iversen et al., 2010;
Kiørbe, 2000; Smith et al., 1992). However, packaging of slowly
sinking phytoplankton cells into large faecal pellets may play a key
role in increasing the export and transfer efficiencies in the
Southern Ocean (Cavan et al., 2015; Le Moigne et al., 2014).
Mineral ballasting also appears to alter the efficiency by which
POC is transported to depth (e.g. Iversen and Robert, 2015; Klaas
and Archer, 2002).

Thorium-234 (234Th, half-life¼24.1 d) is widely used as a par-
ticle tracer, mainly of POC, since it is particle reactive and its half-
life allows studying events occurring over short time scales, ran-
ging from days to weeks, such as phytoplankton blooms (e.g.
Buesseler et al., 1992; Rutgers van der Loeff et al., 1997). A deficit of
234Th with respect to its parent 238U is typically found in the upper
ocean. Once the 234Th downward flux at a specific depth is
Fig. 1. Study area and sampled stations for 234Th, POC and PON analyses. C represents the
See Table 1 for further details regarding sampling dates. The satellite plot represents t
sampling period (29 January to 17 February 2012).
quantified, this flux can be converted to POC and particulate
organic nitrogen (PON) fluxes by determining the POC/234Th and
PON/234Th ratios, respectively, in sinking particles (Buesseler et al.,
2006; Cochran and Masqué, 2003).

This study focuses on the decline of a vast diatom bloom that
occurred in the Antarctic Circumpolar Current (ACC) region of the
Southern Ocean (around 51°S 13°W) during the late austral sum-
mer in 2012. Our objectives were to evaluate the export efficiency
and transfer efficiency of POC between 100 and 300 m, as well as
identify the main mechanisms that had an influence on particle
fluxes. Particle fluxes were quantified by means of two different
techniques, as highly recommended given the uncertainties asso-
ciated with each collection method (e.g. Puigcorbé
et al., 2015; Turner, 2015). We used the disequilibrium between
the natural radionuclides 234Th and 238U to determine the export
fluxes of POC and PON in parallel with the use of surface-tethered
drifting sediment traps. Export fluxes were related to the evolu-
tion of chlorophyll a (Chl-a) and POC concentrations in the water
column, as well as to pigments in sinking particles, following the
decline of the bloom during three weeks. Net primary production
(NPP) measured during the same cruise (Hoppe et al., 2017) was
used to assess the export efficiency.
2. Methods

2.1. Study area

Samples were collected from 29 January to 17 February 2012
during the ANT-XXVIII/3 expedition in the Atlantic sector of the
Southern Ocean (7 January–11 March, 2012; R/V Polarstern; Wolf-
Gladrow, 2013). The sampling was carried out to study a massive
bloom with high spatial and temporal resolution over an area of
about 8000 km2 located between the Antarctic Polar Front (APF)
and the Southern Polar Front (SPF; Leach et al., 2017 and Strass et
al., 2017). Time-series measurements of 234Th, POC, PON, Chl-a,
other pigments and NPP were carried out at a station located in
the centre of the study area at 51.21°S 12.67°W (hereafter “central
station”, indicated by a ‘C’ in front of the station number). The
location and sampling dates of the stations sampled for 234Th, POC
and PON fluxes are given in Fig. 1 and Table 1.
central station, which was occupied 7 times: C91, C98, C99, C114, C128, C136, C140.
he mean Chl-a concentration from the OC-CCI Chl-a product version-2 during the
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2.2. Total 234Th and 238U

Total 234Th activities were determined from 4 L seawater
samples obtained from Niskin bottles attached to a CTD rosette.
Samples were collected from 11 to 13 depths down to 500–750 m
at 14 stations, with the highest resolution in the upper 200 m of
the water column. Three seawater profiles were taken at the
central station on 3, 12 and 17 February (C91, C128, C140,
respectively). In addition, replicates of deep samples (2500 m)
were collected for calibration purposes (Rutgers van der Loeff
et al., 2006). The samples were processed according to the MnO2

co-precipitation technique (Buesseler et al., 2001b), using 230Th as
a chemical yield tracer (Pike et al., 2005). The precipitates were
filtered through QMA quartz fibre filters, dried overnight at 50 °C
and prepared for beta counting. The counting was done on board
using low background beta counters (Risø National Laboratories,
Denmark). Samples were re-measured after 10 months to quantify
the background counts. All filters were processed to determine
230Th by inductively coupled plasma mass spectrometry (ICP-MS)
using 229Th as an internal standard. Briefly, filters were spiked
with 229Th and precipitates were dissolved in 10 mL of 8 M HNO3/
10% H2O2 solution. Samples were sonicated for 30 min before
allowing them to rest for at least 6 h. Prior to the ICP-MS analyses
the samples were filtered through Acrodisc 0.2 μm syringe filters
Table 1
Location and date of the stations sampled for 234Th, POC and PON analyses. C
indicates the central station.

Station Lon. (°W) Lat. (°S) Date (2012)

86 12.00 52.00 29–30 Jan.
87 13.16 50.84 2–3 Feb.
93 12.67 50.81 4 Feb.
95 12.00 51.19 5 Feb.
102 12.67 51.60 7 Feb.
106 13.31 51.18 7 Feb.
115 12.67 50.99 9 Feb.
119 12.33 51.20 10 Feb.
129 13.00 50.60 13 Feb.
137 12.17 51.04 14–15 Feb.
139 12.99 51.00 15–16 Feb.
C91 12.67 51.21 3–5 Feb.
C98 12.67 51.21 5–6 Feb.
C99 12.67 51.21 6–8 Feb.
C114 12.67 51.21 8–11 Feb.
C128 12.67 51.21 12–13 Feb.
C136 12.67 51.21 14–15 Feb.
C140 12.67 51.21 16–17 Feb.

Table 2
Sampling of particles using sediment traps and in-situ pumps: location, depth, date, du

Station Deployment sediment traps

Depth (m) Date (2012) Duration (h)

86 100, 300 29 Jan. 23
87 100, 300 2 Feb. 20
137 120, 320 14 Feb. 15
139 120, 320 15 Feb. 19
C91 100, 300 3 Feb. 53
C98 100, 300 5 Feb. 18
C99 100, 300 6 Feb. 50
C114 100, 300 8 Feb. 72
C128 120, 320 12 Feb. 29
C136 120, 320 14 Feb. 22
C140 120, 320 16 Feb. 18
and reconstructed with 2.5% HNO3/0.01% HF. The average chemical
recovery of the analytical process was 9474% (n¼173), and the
uncertainty of the 230Th/229Th ratios averaged 1.570.6% (n¼173).
The activity of 238U was derived from salinity using the relation-
ship given by Owens et al. (2011). The 234Th activity uncertainties
were calculated by propagating uncertainties associated with
counting, detector background and calibration, ICP-MS measure-
ments and 238U activities, and were always o10% (average:
8.970.3%, n¼173). All data of total 234Th and 238U activities are
available at http://dx.doi.org/10.1594/PANGAEA.848823.

2.3. 234 Th, POC and PON in particles

Sinking particles were collected using surface-tethered sedi-
ment traps deployed for 1–3 days (Table 2). The sediment traps
(ST) were attached to a drifting array with a surface buoy equipped
with a GPS satellite transmitter, two surface floats and 12 buoy-
ancy balls acting as wave breakers in order to reduce the hydro-
dynamic stress on traps. The ST array was equipped with two sets
of four gimbal mounted collection cylinders positioned at nominal
depths of 100–120 m and 300–320 m, respectively. At each depth,
three cylinders were filled with an unpoisoned brine solution for
biogeochemical analyses and one cylinder with a viscous gel to
preserve sinking particles in their original shape. This type of array
was deployed a total of 11 times, including 7 deployments at the
central station (C91, C98, C99, C114, C128, C136, C140) between
3 and 17 February. One of the cylinders for biogeochemical ana-
lyses was used after picking off swimmers under a binocular
microscope: (i) one half was filtered through a pre-combusted
QMA filter to analyse 234Th, POC and PON on the same filter as
recommended by Buesseler et al. (2006); and (ii) the other half
split was filtered using a pre-combusted GF/F filter to analyse POC
and PON. The total POC and PON fluxes collected with the ST were
determined as the average of the fluxes obtained from samples
(i) and (ii). Additionally, four Challenger in-situ pumps (ISP) were
deployed at 100, 150, 300 and 400 m at two stations (C91 and 139)
to collect particles using 53-μm pore size nylon mesh screens
(Table 2). Particles were subsequently rinsed with filtered sea-
water and re-filtered through a pre-combusted QMA filter to
analyse 234Th, POC and PON after removing swimmers from the
filters. The activity of 234Th in particles was first measured on
board and re-measured at the home laboratory 10 months later as
described for the water samples. POC and PON were determined
with an EuroVector Elemental Analyser, pre-treating the filters
with diluted HCl (Knap et al., 1996). The samples were corrected
for POC and PON blanks (1.38 and 0.20 μmol, respectively), which
ration of the deployment (sediment traps) and filtered volume (in-situ pumps).

Deployment in-situ pumps

Depth (m) Date (2012) Volume (L)

100, 150, 300, 400 16 Feb. 250–900
100, 150, 300, 400 3 Feb. 450–1200
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on average represented about 2% of the POC and PON
measurements.

2.4. Pigments in sediment traps

One-fifth of a ST cylinder dedicated to biogeochemical analyses
was used to analyse pigments after picking off swimmers. Diluted
ST samples were filtered through GF/F filters, under low-vacuum
pressure (below 20 kPa). Filtered samples were then immediately
shock-frozen in liquid nitrogen and stored at �80 °C until further
analyses by high performance liquid chromatography (HPLC) at
the Alfred Wegener Institute in Bremerhaven, Germany. Pigments
from ST samples were analysed based on the HPLC method of
Barlow et al. (1997) as detailed in Cheah et al. (2017). The samples
were measured using a Waters 600 (Waters, USA) controller
combined with a Waters 2998 photodiode array detector, and a
Water 717plus auto sampler. 100 μL of canthaxanthin was added
to each sample as internal standard. Pigments were identified and
quantified using the EMPOWER software provided by Waters.
Three pigment-based phytoplankton size classes (micro-, nano-,
and picophytoplankton) were estimated following the method of
Uitz et al. (2009), which has been tested for the Southern Ocean
waters. Microphytoplankton corresponded to phytoplankton with
size 420 μm, nanophytoplankton between 2 and 20 μm, and
picophytoplankton between 0.2 and 2 μm.

2.5. Chl-a and POC in the water column

Seawater samples for Chl-a (Chl-aSW) and POC determination
were obtained from Niskin bottles attached to the CTD rosette
from 5 to 6 depths in the upper 100 m at 33 stations. For Chl-aSW
analysis, samples were filtered onto GF/F filters at pressure below
20 kPa. Filters were immediately transferred to centrifuge tubes
with 10 ml 90% acetone and 1 cm3 of glass beads. The tubes were
sealed and stored at �20 °C for at least 30 min. Chl-a was
extracted by placing the centrifuge tubes in a grinder for 3 min
followed by centrifugation at 0 °C. The supernatant was poured in
quartz tubes and measured for Chl-a content in a Turner 10-AU
fluorometer. The fluorometer was calibrated at the beginning and
at the end of the expedition. Chl-a content was calculated using
the equation given in Knap et al. (1996) using average parameter
values from both calibrations. For POC analysis, samples were fil-
tered onto pre-combusted GF/F filters at pressure not exceeding
20 kPa. Filters were immediately transferred to pre-combusted
glass Petri dishes and dried overnight at 50 °C. Dried filters were
stored at �20 °C until analysis at the home laboratory using an
EuroVector Elemental Analyser. The samples were corrected for
POC blanks and the uncertainty of the POC measurements was
1.9% based on three reference standards.

2.6. Satellite Chl-a concentration

Satellite Chl-a concentrations were taken from the merged
daily OC-CCI Chl-a data (ESACCI-OC-L3S product, �4 km, version-
2, http://www.oceancolour.org) and averaged over the time period
of the study sampling. The OC-CCI data product combines the
Medium Resolution Imaging Spectrometer (MERIS) on the Envisat
satellite, the Moderate Resolution Imaging Spectrometer (MODIS)
on the Aqua satellite and the Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) on the OrbView-2 satellite to one Chl-a product.
This data product improves coverage of satellite Chl-a data in polar
regions by a factor of two to three as compared to using the pro-
ducts of one single sensor. More details on the processing steps
can be found in the product user guide (OC-CCI, 2015).
3. Results

3.1. Study area

Detailed hydrographic information can be found in Strass et al.
(2017) and Leach et al. (2017). The study area was placed between
the APF and the SPF within the ACC and around a central station
located at 51.21°S 12.67°W. The main water masses identified
were: Winter Water (WW, minimum potential temperature,
θmin¼1.1–1.9 °C, 100–200 m), Upper Circumpolar Deep Water
(UCDW, θmax¼2.1–2.4 °C, 400–500 m) and Antarctic Bottom
Water (AABW, θmin��0.2 °C). The mixed layer depth (MLD) var-
ied from 24 to 98 m (average: 67718 m, n¼73, Strass et al., 2017).
At the central station the structure of the upper water column
varied over time: (i) the MLD ranged from �75 to 100 m, and
some profiles did not show a homogeneous surface layer; (ii) the
location of the WW θmin fluctuated several tens of metres above
and below 150 m; (iii) many profiles showed temperature inver-
sions below the θmin depth and fluctuations of salinity and density
within the depth range 200–300 m during the second half of the
sampling period. Moreover, at the central station currents flowing
to the NE were intensified over time with speeds averaging from
2 to 10 cm s�1 for the top 500 m (Strass et al., 2017).

Satellite-derived Chl-a concentrations during the sampling
period were, on average, lower than 1.5 mg m�3 (Fig. 1), whereas
at the peak of the bloom, during the first half of January, the Chl-a
concentrations were �3 mg m�3 (Hoppe et al., 2017). The
euphotic zone depth ranged between 36 and 66 m (average:
4577 m, n¼40, Cheah et al., 2017). Nutrient concentrations and
deficits are described in Hoppe et al. (2017). On average, macro-
nutrient concentrations within the euphotic zone were �21 mmol
NO3 m�3, �1.4 mmol PO4 m�3 and �6.6 mmol Si(OH)4 m�3. High
iron concentrations that allowed the development of the massive
bloom likely reached the study site via advection through the ACC
(L.M. Laglera, pers. comm.). Concentrations of dissolved iron
(o0.2 μm) were on average 0.1270.03 nM within the top 100 m
of the water column (Hoppe et al., 2017), suggesting that dissolved
iron was already depleted by phytoplankton activity during our
sampling.

3.2. 234 Th activity profiles and fluxes

The vertical profiles of 234Th and 238U activity in the water
column are shown in Fig. 2. Significant deficits of 234Th with
respect to 238U were present in surface waters down to 100–170 m
at all stations, with 234Th/238U ratios averaging 0.6770.11
throughout the upper 100 m. In most cases, the base of these
deficits matched well with the base of the primary production
zone (PPZ, Fig. 2), defined as the depth at which fluorescence
reaches 10% of its maximum value (Owens, 2013). The PPZ
extended, on average, down to 117712 m, and the NPP at 100 m
(deepest depth for NPP determination) ranged from 0.09 to
0.44 mmol C m�3 d�1, confirming that primary production was
occurring at least until 100 m (C. Hoppe, pers. comm.). Below the
PPZ, significant excesses of 234Th (234Th/238U ratio41.1) were
detected at stations C91 and 106 at one single depth (500 m).
Significant 234Th deficits (234Th/238U ratioo0.9) below the PPZ
were also found at single depths at stations 93, C128, 137 and 139
(150, 750, 500 and 400 m, respectively). The central station
showed a larger 234Th deficit along the top 100 m during the
second and third visits (C128 and C140: (9076) �103 and
(8676) �103 dpm m�2, respectively) compared to the first sam-
pling (C91: (7176) �103 dpm m�2).

234Th fluxes (FTh, in dpm m�2 d�1) are attributed to scavenging
of 234Th onto particles sinking out of surface waters. Here, we
estimated these fluxes using two methods: (i) from seawater



Fig. 2. Vertical activity profiles for 234Th (black diamonds) and 238U (dotted line) from 10 to 500–750 m depth. Grey shaded area indicates surface 234Th deficits respect to
238U. 238U was derived from salinity (Owens et al., 2011). Primary production zone (PPZ, dashed grey line) is defined as the depth at which fluorescence reaches 10% of its
maximum value (Owens, 2013).
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samples (FTh,SW), and (ii) directly from sediment traps (FTh,ST). The
FTh,SW were calculated using a steady state (SS) model, neglecting
advective and diffusive fluxes (Buesseler et al., 1992):

FTh ¼ λTh AU�AThð Þ ð1Þ
where λTh is the decay constant of 234Th (0.029 d�1) and (AU�ATh)
is the integrated 234Th deficit in the upper water column
(dpm m�2). We obtained the integrated 234Th deficit with rec-
tangular integration for two different horizon depths (100 and
300 m), allowing comparison with the 234Th fluxes obtained
directly from ST (Table 3).

Additionally, since the central station was sampled several
times and the activity of 234Th may have changed over time as a
consequence of the sinking of the phytoplankton bloom (e.g.
Savoye et al., 2006), 234Th fluxes were also calculated using a non-
steady state (NSS) model at 100 and 300 m (Table 4). This model
assumes that the same water masses are sampled at all visits and
ignores advective and diffusive fluxes of 234Th (Savoye et al.,
2006):

FTh ¼ λTh
AU 1� e�λΔt

� �þATh1e�λΔt�ATh2

1� e�λΔt

" #
ð2Þ

where AU is the activity of 238U, Δt is the time interval between
two visits of a single station and ATh1 and ATh2 are the activities of
234Th at the first and second visits, respectively.

FTh,SW and FTh,ST estimates at 100 and 300 m are presented in
Tables 3 and 4 and Fig. 3. Though some traps were placed 20 m
deeper than the seawater sampling, we will still use 100 and
300 m to refer to 100 or 120 m and 300 or 320 m, respectively.

The SS estimates of FTh,SW at 100 mwere relatively homogeneous
over the entire study area and not significantly different from those
at the base of the 234Th deficit (�120 m, Wilcoxon test, p40.05),
ranging from 19607210 to 31007180 dpmm�2 d�1 (average:
23907340 dpmm�2 d�1, n¼14). Fluxes at 300 m had greater
uncertainties than those at 100 m, and ranged from 14907710
to 38707700 dpmm�2 d�1 (average: 26507610 dpmm�2 d�1,
n¼14). The FTh,SW over the study area showed no significant dif-
ferences between 100 and 300 m (t-test, p40.05) (Fig. 3). Focusing
on the central station, FTh,SW increased from C91 to C128 at both 100
and 300 m depth, reaching �3000 and 4000 dpmm�2 d�1,
respectively. The FTh,SW at station C140 were not significantly dif-
ferent from those at station C128 (Table 3). According to the NSS
model, the FTh,SW decreased substantially from C91–C128 to C128–
C140, especially at 300 m (Table 4).

FTh,ST at 100 m ranged from 1050790 to 40007
320 dpm m�2 d�1 (average: 17207890 dpm m�2 d-1, n¼10)
(Table 3). A flux reduction of about 40% between 100 and 300 m
was found at most stations, except at C128 and C140, where no
significant differences were observed. At the central station, FTh,ST
at 100 m were relatively constant from C91 to C140, with an
average of 13307170 dpm m�2 d�1 (n¼6). FTh,ST at 300 m were
also similar during the entire sampling time, averaging
9007200 dpm m�2 d�1 (n¼6).



Table 3
234Th export fluxes derived from seawater (FTh,SW) assuming steady state condi-
tions, together with the fluxes derived directly from the sediment traps (FTh,ST) at
different depths.

Station Depth (m) FTh,SW (dpm m�2 d�1) FTh,ST (dpm m�2 d�1)

86 100 19607210 17007140
300 14907710 970780

87 100 23607170 40007320
300 23507710 19907170

93 100 20807180
300 25307630

95 100 22207180
300 25107620

102 100 21507180
300 23607640

106 100 20907190
300 24407660

115 100 24807170
300 28607470

119 100 24407170
300 30207640

129 100 25207170
300 29107520

137 120 31007180 10907100
300–320 36207620 620760

139 120 25107200 24407200
150 25407260
300–320 23407660 18707160
400 26607900

C91 100 20507180 14707120
150 20707270
300 19807660 900770
400 19107910

C98 100 14307120
300 790770

C99 100 13707110
300 960780

C114 100 12007100
300 590750

C128 120 29507200 1050790
300–320 38707700 920780

C140 120 26007210 14507130
300–320 28007650 12207110

Table 4
234Th export fluxes derived from seawater (FTh,SW) at 100 and 300 m at the central
station assuming non-steady state conditions. t2�t1 is the time interval between
two occupations of the central station.

Stations t2�t1 (days) Depth (m) FTh,SW (dpm m�2 d�1)

C91–C128 10 100 42907880
300 960073400

C128–C140 4 100 160072000
300 �550077600
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Globally, the 234Th fluxes estimated using the SS approach and
ST were comparable at 100 m (Wilcoxon test, p40.05, FTh,SW/FTh,
ST¼1.770.9, n¼7), whereas at 300 m the FTh,SW were higher than
the FTh,ST estimates by an average factor of 2.671.7 (n¼7).
3.2.1. Impact of physical transport processes on the FTh,SW estimates
The physical transport processes can be parameterised as (e.g.

Savoye et al., 2006):

V ¼ 7u
∂ATh

∂x
7v

∂ATh

∂y
7w

∂ATh

∂z
7Kx

∂2ATh

∂x2
7Ky

∂2ATh

∂y2
7Kz

∂2ATh

∂z2
ð3Þ

where advective and diffusive components are included along the
x, y and z directions. Velocities are denoted by u, v and w, ∂ATh

∂x ;
∂ATh
∂y

and ∂ATh
∂z are the 234Th activity gradients and Kx, Ky and Kz are the

diffusion coefficients. Vertical advection needs to be considered in
areas of established upwelling, while horizontal advection should
be taken into account in ocean margins, where this process likely
plays a relevant role (Savoye et al., 2006). During our survey the
vertical advection was presumably negligible, while horizontal
advection was significant with mean currents of about 7 cm s�1 for
the top 100 and 300 m (V. Strass, pers. comm.). Buesseler et al.
(1994) showed that advection is dominant over diffusion in the
horizontal transport of 234Th in open waters. Therefore, we focused
our attention on the horizontal advection in order to have a first
estimate of the importance of the physical transport in the present
study or, in other words, to test the accuracy of our 234Th export
estimates. We addressed this issue considering: (i) the mean u and
v velocities over the area 50.67–51.67°S and 11.92–13.50°W for the
top 100 and 300 m: u¼5.6 cm s�1, v¼4.3 cm s�1 and
u¼5.7 cm s�1, v¼3.9 cm s�1, respectively (V. Strass, pers. comm.);
(ii) the 234Th activity gradients for the top 100 and 300 m
(excluding station 86): ∂ATh

∂x ¼(6.377.9) �10�2 dpmm�3, ∂ATh
∂y ¼

(7.476.1) �10�2 dpmm�3 and ∂ATh
∂x ¼(2.473.0) �10�1 dpmm�3,

∂ATh
∂y ¼(0.972.2) �10�1 dpmm�3, respectively. In this way, the
negligence of horizontal advection would lead to an error on the
FTh,SW estimates of 5807440 dpmm�2 d�1 at 100 m and
150071700 dpmm�2 d�1 at 300 m. Thus, the physical processes
would have a smaller impact on the FTh,SW estimates at 100 m
(�25%) than at 300 m (�50%) at the investigated stations due to
the smaller spatial variability of 234Th activities in the upper 100 m.

Additionally, we have tested the influence of vertical diffusivity
on 234Th export using an intermediate Kz value of 10�4 m2 s�1 at
100 m (Strass et al., 2017; Leach et al., 2017), obtaining a maximum
contribution of this process of 30–180 dpm m�2 d�1. Thus, the
contribution of the vertical diffusivity to the FTh,SW estimates at
100 m must have been very small, generally lower than the
uncertainties associated with the estimates. It was not possible to
reproduce this exercise at 300 m due to the low 234Th resolution
around that depth.

3.2.2. SS vs. NSS models at the central station
At the central station we determined the 234Th export with

both SS and NSS models. However, changes in the upper water
column properties occurred during the sampling period, especially
evident when station C128 was occupied (see Section 3.1 and
Strass et al., 2017), indicating that different water masses with
particular scavenging histories were likely sampled. Furthermore,
we have quantified an appreciable impact of advection on the FTh,
SW estimates, especially at 300 m (see Section 3.2.1). This has led
us to discard the use of the NSS approach since it can produce
large errors when spatial variability is misinterpreted as temporal
variability, improving 234Th export estimates only if sampling is
conducted in a Lagrangian framework (Resplandy et al., 2012).
Additionally, the results obtained from the NSS model (Table 4) are
not consistent with results from the ST, which tend to be more
constant. Thus, we consider that the SS model gives the best
estimate of 234Th export in this study.



Fig. 3. 234Th export fluxes derived from seawater at 100 m (in white) and 300 m (in grey) assuming steady state conditions. The negligence of horizontal advection would
lead to an error on these estimates of 5807440 dpmm�2 d�1 at 100 m and 150071700 dpmm�2 d-1 at 300 m (i.e. �25% and �50%, respectively, see text for further
details).
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3.3. POC/234Th and PON/234Th ratios in particles

POC/234Th and PON/234Th (C/Th and N/Th) ratios in particles
from ST (C/ThST and N/ThST) and in particles 453 μm collected
using ISP (C/ThISP and N/ThISP), usually considered to be sinking
particles (e.g. Buesseler et al., 2006), are presented in Table 5.
Table 5
POC/234Th and PON/234Th (C/Th and N/Th) ratios in particles collected using sediment tr
(FC and FN) estimated using the ST, SWST and SWISP methods at different depths (see t

Station Depth (m) C/Th (μmol dpm�1) N/Th (μmol dpm�1)

ST ISP (453 μm) ST ISP (4

86 100 10.870.9 1.470.1
300 8.370.7 0.8570.07

87 100 1371 1.570.1
300 10.370.9 1.0570.09

137 120 1772 2.270.2
320

139 100–120 10.670.9 2972 1.270.1 5.27
150 2072 2.87
300–320 7.170.6 9.970.9 0.8970.07 1.17
400 9.070.8 1.37

C91 100 1671 1371 1.970.2 2.17
150 1271 1.77
300 7.970.6 7.670.6 0.9070.07 1.37
400 4.370.3 0.737

C98 100 1972 2.470.2
300 1772 1.870.2

C99 100 1571 1.870.1
300 9.170.8 1.0670.09

C114 100 1471 1.970.2
300 9.870.8 1.370.1

C128 120 1171 1.670.1
320 1271 1.170.1

C136 120
320

C140 120 1171 1.370.1
320 8.670.8 1.170.1

a Calculated from the filter used for POC analysis. The filter used for 234Th and POC
carbon, presenting an unusually high C/N molar ratio (14) compared with the overall s
C/ThST and N/ThST ratios at 100 m averaged 1473 and
1.770.4 μmol dpm�1 (n¼10), respectively, and were about 30%
lower at 300 m depth (1073 and 1.170.3 μmol dpm�1, n¼9,
respectively). C/ThISP and N/ThISP ratios also decreased with depth
between 100–150 and 300–400 m, by about 60%. At the central
station, C/ThST and N/ThST ratios at 100 m decreased by 30% from
aps (ST) and in-situ pumps (ISP, particles 453 μm), and POC and PON export fluxes
ext for further details).

FC (mmol m�2 d�1) FN (mmol m�2 d�1)

53 μm) ST SWST SWISP ST SWST SWISP

16 2173 2.0 2.670.4
7.3 1276 0.74 1.370.6

44 3173 5.1 3.670.4
16 2478 1.7 2.570.8

15 5476 1.8 6.770.7
a6.3

0.4 23 2673 6778 2.5 2.970.3 1271
0.3 5277 771
0.1 11 1775 2377 1.3 2.170.6 2.670.8
0.1 2478 371

0.2 17 3374 2673 2.0 4.070.5 4.270.5
0.1 2574 3.570.5
0.1 6.5 1675 1575 0.74 1.870.6 2.570.9
0.06 874 1.470.7

25 3.1
12 1.2

16 2.0
7.5 0.88

16 2.3
5.8 0.77

13 3474 1.7 4.670.5
11 50710 1.0 4.370.9

11
6.3

13 2873 1.6 3.570.4
8.6 2476 1.1 3.070.8

analyses has not been considered because it was likely contaminated with organic
ample average (871).
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the beginning until the end of the study, but no significant change
was observed at 300 m.

ST and ISP ratios (C/Th and N/Th) were in reasonable agreement
(within a factor of 1.4), except at station 139 at 100 m depth,
where the ISP ratios were about 3–4 times higher than the ST
ratios. The molar C/N ratio was 871 for ST ratios (n¼19) and 771
for ISP ratios (n¼8).

3.4. POC and PON fluxes

We used three methods to estimate POC and PON fluxes (FC and
FN, respectively) (Table 5): (i) measured directly with the ST (ST
method: FC,ST and FN,ST), (ii) combining the FTh,SW and the ST ratios
(SWST method: FC,SWST and FN,SWST), and (iii) combining the FTh,SW
and the ISP ratios (SWISP method: FC,SWISP and FN,SWISP). For (ii)
and (iii) we used the SS estimates of FTh and the C/Th (or N/Th)
ratios in sinking particles, as:

FC ¼ FTh C=Th
� � ð4Þ

The average FC,ST and FN,ST at 100 m were 1979 and
271mmol m�2 d�1 (n¼11), respectively, with maxima at station 87.
FC,ST and FN,ST at 300 m averaged 973 and 1.070.3 mmol m�2 d�1

(n¼11), respectively, about 60% less than the fluxes at 100 m except at
stations C128, C136 and C140. During the occupation of the central
station, FC,ST and FN,ST at 100 m decreased by 25% over the study
period, while they increased by 30% and 50%, respectively, at 300 m.

FC,SWST and FN,SWST at 100 m averaged 30710 and
471mmol m�2 d�1 (n¼7), respectively. Fluxes at 300m averaged
20710 and 271mmol m�2 d�1 (n¼6), respectively, about 40% less
than the fluxes at 100 m except at stations C128 and C140. FC,SWST and
FN,SWST estimates at the central station showed changes o5% with
time at 100 m, whereas the fluxes at 300 m were more variable, with
a maximum FC,SWST of 50710mmol m�2 d�1 at C128.

The SWISP method was used at the two stations where ISP were
deployed. FC,SWST and FN,SWST at station 139 were higher than at C91 by
a factor of about 2, at both 100–150m and 300–400m. Fluxes at
300 m were lower than those at 100 m by 40% (C91) and 70% (139).

Overall, the FC and FN estimated by using SW samples (FC,SWST, FN,
SWST and FC,SWISP, FN,SWISP) were greater than those measured with ST
by a factor of 2.071.0 and 2.371.3 (n¼17), respectively, at 100 m,
and 2.471.0 and 2.571.0 (n¼17), respectively, at 300 m.
Fig. 4. POC vs. Chl-a: (A) inventories in the upper 100 m of the water column and (B
3.5. Chl-a and POC in the water column

The Chl-aSW inventories down to 100 m were, in most instan-
ces, larger than 100 mg m�2 (Fig. 4A), with highest inventories
(4180 mg m�2) at the SE quadrant of the study site, while sta-
tions 87 and 139, located to the NW, presented the lowest values
(�50 mg m�2). At the central station the Chl-aSW inventories
ranged from 130 to 200 mg m�2, decreasing by about 30% from
the beginning until the end of sampling, with fluctuations over
time. The POC inventories down to 100 m ranged from 10 �103 to
26 �103 mg m�2, showing a strong positive correlation with
Chl-aSW (po0.001; Pearson correlation coefficient, r¼0.84; n¼20;
Fig. 4A).
3.6. Pigments and POC in sediment traps

In contrast to the water column, there was no significant cor-
relation between the fluxes of Chl-a measured with ST (Chl-aST)
and FC,ST, neither at 100 m (p40.05; Spearman correlation coef-
ficient, ρ¼�0.03; n¼11) nor 300 m (p40.05, ρ¼0.26, n¼11,
Fig. 4B). Both Chl-aST fluxes and FC,ST decreased with depth (except
Chl-aST flux at station C114), although the decrease was stronger
for POC at most stations (Fig. 5A and Table 5).

Maximum Chl-aST flux was recorded at station C98
(0.79mgm�2 d�1 at 100 m), whereas minimum Chl-aST flux was
observed at station 86 (0.11 mgm�2 d�1 at 300 m). Fluxes of total
pheopigments (TPheo, i.e. sum of pheophytin-a, pyropheophytin-a,
pheophorbide-a, and pyropheophorbide-a pigments) were generally
higher at 100 m than at 300m except at stations C91 and C114
(Fig. 5A). Maximum TPheo fluxes were recorded at station 87 (2.67 and
1.27 mgm�2 d�1 at 100 and 300 m, respectively). Ratios of TPheo/Chl-
aST were generally higher at 100 m than at 300 m except at station
C91. TPheo/Chl-aST ratios above 1 were recorded at most of the
investigated stations except at 137, 139, C98, C136 and C140 (Fig. 5A).
Among the marker pigments, fluxes of fucoxanthin were much higher
than other pigments (Fig. 5B) and the phytoplankton size classification
showed that more than 80% of the phytoplankton were micro-
phytoplankton (Fig. 5C).
) fluxes measured with sediment traps at 100 m (in white) and 300 m (in black).



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
hl

−a
ST

, T
Ph

eo
 (m

g 
m

− 2
 d

− 1
)

0

1

2

3

4

5

6

TP
he

o/
C

hl
−a

ST

Chl−aST 100 m
Chl−aST 300 m
TPheo 100 m
TPheo 300 m
TPheo/Chl−aST 100 m
TPheo/Chl−aST 300 m

Central Station

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pi
gm

en
t (

m
g 

m
−2

 d
−1

) Fuco 100 m
Fuco 300 m
19−Hex 100 m
19−Hex 300 m
Zea 100 m
Zea 300 m

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Micro 100 m
Micro 300 m
Nano 100 m
Nano 300 m
Pico 100 m
Pico 300 m

Station
86 87 137 139 C91 C98 C99 C114 C128 C136 C140

Fig. 5. Pigment composition of sediment trap samples at 100 and 300 m: (A) Chl-aST fluxes, total pheopigment (TPheo) fluxes, and ratios of total pheopigment to Chl-aST
fluxes (TPheo/Chl-aST); (B) fucoxanthin (Fuco), 19-hexanoyloxyfucoxanthin (19-Hex), and zeaxanthin (Zea) fluxes; (C) percentage of phytoplankton size classes: micro-
phytoplankton (Micro), nanophytoplankton (Nano) and picophytoplankton (Pico).

M. Roca-Martí et al. / Deep-Sea Research II 138 (2017) 102–115110
4. Discussion

4.1. 234Th fluxes

4.1.1. Seawater approach vs. sediment traps
In this study, the 234Th fluxes were estimated using the sea-

water approach and sediment traps. The SW approach integrates
about 5 weeks before sampling (234Th mean life¼35 days), while
ST provide information at the sampling time. In general, as shown
in Section 3.2, the 234Th fluxes based on these techniques were not
significantly different at 100 m. This agreement indicates a sus-
tained export rate in the weeks prior to and during the sampling
period, suggesting export fluxes at steady state.

At 300 m the FTh,ST were about 3 times lower than the FTh,SW. A
review by Buesseler et al. (2007) suggested that 234Th-bearing
particles were under-trapped by a factor of about 2 and suggested
some processes that could be sources of trap error, such as under-
collection of slow settling particles by hydrodynamic bias, particle
solubilisation within the trap before sample processing, and
“swimmer” related artefacts. Haskell et al. (2013) reported that ST
collected about r20% of the FTh,SW in two consecutive years and
proposed that the main cause of this mismatch was the under-
trapping of small, 234Th-enriched slow sinking particles. Addi-
tionally, the active transport of surface-derived particles to hun-
dreds of metres down via zooplankton migration (e.g. Angel, 1989)
is another factor that may lead to underestimation of the particle
export based on ST. Here, we tried to minimise the sources of error
by using two surface floats and 12 buoyancy balls as wave
breakers, while the cylinders of the ST were gimbal mounted. In
addition, samples were processed within 24 h after collection to
decrease the impact of solubilisation and zooplankton swimmers
on material, which were picked under a binocular microscope.

Buesseler et al. (2007) also suggested that the mismatch
between the SW approach and ST could be related to the use of
inaccurate assumptions in the 234Th model. The exclusion of
physical processes in our study could introduce a significant error
on the FTh,SW estimates at 300 m (�50%, see Section 3.2.1).
Besides, in a late stage of a bloom, the SS assumption may lead to
an overestimation of the FTh,SW if higher export occurred before
sampling (within the 234Th time scale). However, similar FTh,SW
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were found over the entire study area at both 100 and 300 m
(Fig. 3), irrespectively of phytoplankton biomass (see Section 3.5).
This indicates that 234Th fluxes probably did not change sig-
nificantly during the weeks before our arrival and, therefore, the
SS model gives reasonable estimates of 234Th export flux.

4.1.2. Results and comparison with other studies
On average, 234Th fluxes at 100 and 300 m were 21007700

and 200071000 dpm m�2 d�1, respectively. Hence, the fluxes
were high and quite similar over the entire study area, despite the
differences observed in Chl-aSW inventories (see Section 3.5) and
production rates (Hoppe et al., 2017). However, satellite images
show widespread high Chl-a concentrations in January 2012 (data
not shown). Thus, stations with low phytoplankton biomass and
production rates (e.g. stations 139 and C136) but high FTh evi-
denced a temporal decoupling between production and export.
Buesseler et al. (2003, 2001a), Rutgers van der Loeff et al. (2011)
and Henson et al. (2015) showed that export lags production by up
to 1–2 months in the Southern Ocean, which is a time frame
compatible with the present study.

Our FTh estimates at 100 m are within the range of values for
blooms during their peak and/or decline occurring in the Southern
Ocean, either in land remote areas (Rutgers van der Loeff et al.,
1997) or near islands (Morris et al., 2007; Savoye et al., 2008). In
contrast, our estimates are higher than the FTh of
r1000 dpm m�2 d�1 reported during the onset of a bloom by
Planchon et al. (2015), and during the artificial iron fertilisation
experiments SOIREE (Charette and Buesseler, 2000), EisenEx
(Rutgers van der Loeff and Vöge, 2001) and LOHAFEX (Martin et
al., 2013). However, the SOFeX-South experiment revealed an
increase of particle fluxes after fertilisation, which resulted in FTh
of �1800 dpm m�2 d�1 at the MLD (Buesseler et al., 2005, 2004).
The variability within the plankton community structure and dif-
ferent sampling time strategies among these experiments most
likely played a crucial role in the variety of results obtained (Boyd
et al., 2007; Buesseler et al., 2004).

A release of 234Th from sinking particles, either via reminer-
alisation or disaggregation, was evidenced by a 40% decrease of
the FTh,ST between 100 and 300 m at the majority of the stations.
However, the seawater approach did not show excesses of 234Th in
the depth range 100–300 m at any station. As a result, 234Th flux
attenuation from 100 to 300 m estimated using the two methods
was different at 3 out of 7 stations, taking into account the large
uncertainties of the FTh,SW estimates at 300 m (16–48%, Table 3).
The potential impact of advection on the FTh,SW estimates at 300 m
(see Section 3.2.1) together with a low resolution of the seawater
sampling between 100 and 300 m (2–3 samples) likely explain
most of the disagreement between the ST and SW approaches on
this issue. Remineralisation and/or particle break-up was also
indicated in previous studies in the Southern Ocean (Buesseler et
al., 2005; Planchon et al., 2013; Rutgers van der Loeff et al., 2011;
Savoye et al., 2004; Usbeck et al., 2002). In our study, FTh,ST were
attenuated between 100 and 300 m at the first 4 visits of the
central station, but not at stations C128 and C140 (Table 3), indi-
cating that attenuation of FTh,ST in this depth range became neg-
ligible at the end of the sampling period. This observation is
similar to one of the major findings of the SOFeX-South experi-
ment: the attenuation of FTh with depth disappeared as the bloom
progressed (Buesseler et al., 2005). This was attributed to changes
in the nature of the sinking particles (less labile or more rapidly
sinking) and/or less efficient biological and physical processes
responsible for particle break-up and consumption below
the bloom.
4.2. POC/234Th and PON/234Th ratios in particles

C/Th and N/Th ratios were 410 μmol C dpm�1 (average:
1575 μmol C dpm�1) and 41 μmol N dpm�1 (average:
271 μmol N dpm�1), respectively, in all samples collected either
with ST or ISP (453 μm) at 100 m. Overall, these values were
higher than those reported by most studies conducted in the
Southern Ocean (Buesseler et al., 2005, 2001a; Coppola et al.,
2005; Jacquet et al., 2011; Martin et al., 2013; Morris et al., 2007;
Planchon et al., 2013; Rutgers van der Loeff et al., 2011, 1997;
Savoye et al., 2008), but similar to others (Cochran et al., 2000;
Puigcorbé et al., 2017; Rutgers van der Loeff et al., 2002; Smetacek
et al., 2012). Multiple factors may have played a role in shaping the
C/Th and N/Th ratios, such as particle source, sinking velocity, Th
speciation and remineralisation of C, N and 234Th associated with
sinking particles (Buesseler et al., 2006). Buesseler (1998) and
Buesseler et al. (2006) hypothesised that high C/Th ratios
encountered in productive regimes and high latitude areas may be
related to the dominance of sinking of large cells, such as diatoms.
This was explained by the fact that diatoms have a high volume
relative to surface area (V:SA), and hence high C/Th ratios because
C varies as a function of volume, whereas Th adsorption varies as a
function of surface area. In our study, the dominance of fucox-
anthin, a marker pigment for diatoms, and microphytoplankton in
trap material (Fig. 5B and C) revealed that diatoms were the major
phytoplankton group contributing to vertical fluxes. Additionally,
according to microscopic analyses (C. Klaas, pers. comm.), the
needle-shaped Pseudo-nitzschia lineola and the large centric dia-
tom Dactyliosolen antarcticus dominated the bloom, with sig-
nificant contributions from Fragilariopsis kerguelensis as well as
other Pseudo-nitzschia, Rhizosolenia and Chaetoceros species. Thus,
diatoms with a high V:SA, including Dactyliosolen antarcticus and
Chaetoceros spp. played a relevant role in the bloom, which could
be responsible for the high ratios observed.

C/Th and N/Th ratios at 300 m were, on average, about 30%
lower than at 100 m. The reduction of C/Th ratios with depth is
commonly observed (Buesseler et al., 2006). It is likely due to the
production of 234Th in the entire water column leading to addi-
tional adsorption of 234Th onto particles at depth, which com-
pensates its decay, and a preferential remineralisation of POC with
respect to 234Th (Rutgers van der Loeff et al., 2002). The same
reasons would apply to PON.

The C/N ratios averaged 871 and 771 for ST and ISP samples,
respectively, and were within the range of values previously
reported during bloom events (Martin et al., 2013; Morris et al.,
2007; Savoye et al., 2008), with a diverse composition of the
dominant particle type (diatoms: Salter et al., 2007; faecal mate-
rial: Ebersbach and Trull, 2008; Ebersbach et al., 2014).

4.3. POC and PON fluxes at 100 m

POC and PON export fluxes at 100m averaged 26715mmol
C m�2 d�1 (range: 11–67mmol C m�2 d�1) and 472mmol
Nm�2 d�1 (range: 1.6–12mmol Nm�2 d�1, Table 5), respectively.
The FC are high in relation to the average fluxes compiled by Le
Moigne et al. (2013) and Maiti et al. (2013). Le Moigne et al. (2013)
reported an average FC of 9713mmol C m�2 d�1 (n¼726; range:
o0–125mmol C m�2 d�1) for the global ocean, and 13714mmol
C m�2 d�1 (n¼196; range: 0–91mmol C m�2 d�1) for the Southern
Ocean. Maiti et al. (2013) reported a range of FC from 1 to 50mmol
C m�2 d�1 for the Southern Ocean, averaging 1178mmol
C m�2 d�1 (n¼140).

Considering other natural blooms observed in the Southern
Ocean, our estimates of FC are comparable to those reported in
KEOPS (average: 2374 mmol C m�2 d�1, Savoye et al., 2008), the
JGOFS Southern Ocean expedition (range: 20–39 mmol C m�2 d�1,
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Rutgers van der Loeff et al., 1997), and the CROZEX project (aver-
age: 1474 mmol C m�2 d�1, Morris et al., 2007). Our estimates of
FN are also similar to the results from KEOPS and CROZEX (Morris
et al., 2007; Savoye et al., 2008). In contrast, the FC are higher than
those reported in KEOPS II (average: 772 mmol C m�2 d�1,
Planchon et al., 2015) for a bloom during its growing stage. On the
other hand, the FC determined during SOIREE (Charette and
Buesseler, 2000), SOFeX-South (Buesseler et al., 2005) and LOHA-
FEX (Martin et al., 2013) were clearly lower (average r8 mmol
C m�2 d�1) than in this study. In the case of LOHAFEX, it was
explained by silica limitation that prevented diatom growth. The
low FC measured during SOIREE and SOFeX-South were likely due
to a limited sampling period. However, the artificially induced
bloom during EIFEX (Smetacek et al., 2012) led to an extra-
ordinarily high FC (�80 mmol C m�2 d�1) with a high export
efficiency. Thus, the high export fluxes found in our study are
comparable to other studies of the later stages of natural and iron
fertilised blooms in the Southern Ocean that were not silica
limited.
Table 6
Export and transfer efficiencies using the POC export estimated from the ST, SWST
and SWISP methods (see text for further details).

Station Export efficiency (%) Transfer efficiency (%)

ST SWST SWISP ST SWST SWISP

86 7.5 1071 45 60730
87 37 80730
137 13 4775 43
139 34 4075 100710 47 60720 30710
C91 7.2 1472 1171 38 50720 60720
C98 47
C99 46
C114 8.1 35
C128 9.2 2473 84 140730
C136 12 58
C140 7.6 1772 68 90720

Fig. 6. (A) POC export fluxes (FC) at 100 m vs. integrated net primary production (NPP)
lines indicate the export and transfer efficiencies in (A) and (B), respectively. POC expo
SWISP (circles, see text for further details).
4.4. Export efficiency

The export efficiency is a useful parameter to illustrate the
strength of the biological pump, even though production and
export operate at distinct time scales (Buesseler and Boyd, 2009).
It should also be noted the temporal mismatch between the
measurements of production and export: 24 h incubation for NPP
(Hoppe et al., 2017), 15–72 h deployment for ST and several weeks
of integration for the SW approach. We assessed the export effi-
ciency by dividing the FC at 100 m, either from the SW methods or
ST, by the NPP integrated down to 100 m (Hoppe et al., 2017).

The export efficiency within the bloom averaged 23724%
(range: 7–100%; Table 6 and Fig. 6A), taking into account all the
techniques used to estimate the export of POC (ST, SWST, SWISP).
The export efficiency was around 10% according to the ST, which is
common in the open ocean (Buesseler, 1998), whereas it was
around 25% considering the SWST method. Besides these differ-
ences, the export efficiency was always r50% for the ST and SWST
methods, contrasting with export efficiencies 450% reported
during blooms at high latitudes, mostly characterized by large
diatoms (Buesseler, 1998; Smetacek et al., 2012) and a combination
of Phaeocystis and diatoms (Buesseler et al., 2003; Poulton et al.,
2007). Other Southern Ocean studies (Buesseler et al., 2005;
Planchon et al., 2015) have also reported export efficiencies of
�10% during not yet declining diatom blooms, where low POC
export fluxes were measured (7–8 mmol C m�2 d�1). In contrast,
during our study the bloom was declining, which led to high
downward fluxes. We propose that this relatively low strength of
the biological pump was likely related to an active recycling of
carbon and nutrients in surface waters. Only for one station (139),
which evidenced a temporal decoupling between production and
export (lowest Chl-aSW inventories and NPP rates), the export
efficiency was 430% according to all techniques. Indeed, we
found an inverse relationship between export efficiency and NPP
(po0.05; ST method: ρ¼�0.95, n¼8; SWST method: ρ¼�0.89,
n¼6) supporting recent observations (Cavan et al., 2015;
Laurenceau-Cornec et al., 2015; Maiti et al., 2013). This relation-
ship could be explained by a combination of temporal decoupling
between primary production and export (Henson et al., 2015;
Puigcorbé et al., 2017), and other processes such as zooplankton
at 100 m, and (B) POC export fluxes at 300 m vs. POC export fluxes at 100 m. Solid
rt fluxes were estimated using three methods: ST (diamonds), SWST (squares) and
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grazing (Cavan et al., 2015), bacterial activity and recycling effi-
ciency (Maiti et al., 2013).

4.5. Transfer efficiency

The upper 300 m of the water column is where intense biolo-
gical and physical processes transform the size distribution of
particles and thus modify the flux of particles to the mesopelagic
layer (Guidi et al., 2009). To account for the change of the FC
magnitude within the upper twilight zone, we estimated the
transfer efficiency by dividing the FC at 300 m by those at 100 m.

The transfer efficiency averaged 59726% (range: 35–4100%;
Table 6 and Fig. 6B) with a general discrepancy among techniques
o30%. Most of the transfer efficiencies were higher than the
estimates presented by (i) Schlitzer (2002): 40% for the same
depth range using an inverse model based on observations of
temperature, salinity and nutrient concentrations; and (ii) Guidi
et al. (2009): o42% when microphytoplankton dominated the
phytoplankton community based on a world–ocean analysis. Guidi
et al. (2009) showed that maximum values of FC at 400 m were
associated with a dominance of microphytoplankton in the
euphotic zone, although the flux experienced a sharp decrease
from 100 to 300 m. In our study, the transfer efficiency at the
central station was lower during the first 4 visits (C91–C114:
4276%) than during the last 3 (C128–C140: 70710%) according
to the ST results (Table 6). This change coincided with a decrease
of the TPheo/Chl-aST ratio in the trap material from the first group
of stations to the second: from 2.571.1 to 0.970.8 at 100 m and
from 3.571.7 to 0.370.2 at 300 m (Fig. 5A). Pheopigments are
degraded Chl-a products that are associated with grazing activity
and phytoplankton senescence (Wright et al., 2010). Thus, this
observation indicates that when the transfer efficiency was higher,
the organic material being exported was fresher. Indeed, there is a
negative relationship between TPheo/Chl-aST ratios at 100 m and
the transfer efficiency of POC from 100 to 300 m derived from ST
(po0.01; ρ¼�0.77, n¼10). This correlation highlights the rele-
vance of the particle composition sinking out from the ocean
surface in shaping the efficiency of the biological pump. Buesseler
and Boyd (2009) pointed out that very high transfer efficiencies
are attributed to direct sinking of algae with low flux attenuation.
Here, more than 60% of the Chl-aST and fucoxanthin fluxes at
100 m reached 300 m (Fig. 5A and B), which highlights the con-
tribution of diatoms to vertical fluxes in the study area. In parti-
cular, the direct sinking of diatoms might be the main explanation
for the high transfer efficiencies at stations C136 and C140, since at
these locations the high fucoxanthin fluxes at 100 m
(40.4 mg m�2 d�1) showed a decrease of only �10–20% at
300 m, and the TPheo/Chl-aST ratios were o1 (Fig. 5A and B).
Indeed, a study by Cedhagen et al. (2014) from the same cruise
showed that abyssal benthic foraminifera at �4000 m were
feeding on fresh phytodetritus. This indicates that at least part of
the phytoplankton was transported to the seabed.

The lack of relationship between Chl-aST and FC,ST at both 100
and 300 m depth (Fig. 4B), however, indicated that reprocessed
material or dead phytoplankton also contributed significantly to
the export fluxes at most stations. The high fluxes of pheopig-
ments (40.6 mg m�2 d�1) together with TPheo/Chl-aST ratios41
(Fig. 5A) at stations 87, C91, C99 and C114 at 100 and 300 m may
be associated with grazing activity and, hence, indicate the con-
tribution of faecal pellets to sinking fluxes. Preliminary results
confirmed a significant abundance of faecal pellets in trap material
during our survey (Iversen and Klaas, 2013), although this should
be validated by quantitative analyses in the future. Specifically, at
station C114 the TPheo, Chl-aST and fucoxanthin fluxes increased
from 100 to 300 m (Fig. 5A and B), which may have been due to
zooplankton consumption of diatoms in the euphotic zone and
release of faecal pellets between 100 and 300 m. Therefore, pro-
duction of faecal pellets and zooplankton vertical migration might
have modulated the transfer efficiency in this study. Similar con-
clusions have been reached by Buesseler and Boyd (2009) and
Cavan et al. (2015).
5. Conclusions

We measured downward fluxes of POC and PON during the
decline of a vast diatom bloom in a land-remote area of the
Atlantic sector of the Southern Ocean. Our main conclusions are:

) The simultaneous use of sediment traps and the 234Th/238U
proxy evidenced that 234Th export rates at 100 mwere high and
constant in the weeks prior to and during the survey.

) Stations distributed over an area of 8000 km2 showed similar
vertical export fluxes in spite of the heterogeneity in phyto-
plankton standing stocks and productivity, indicating a decou-
pling between production and export.

) The diatom bloom led to high POC export fluxes at 100 m
(26715 mmol C m�2 d�1), although the export efficiencies
were generally low (o20%) in comparison to other diatom
blooms at high latitudes. An active recycling of carbon and
nutrients in surface waters was likely the reason for the low
export efficiencies.

) In contrast to the low export efficiencies at 100 m depth, the
transfer efficiency of POC between 100 and 300 m was high
during the entire study period (�60%), partly driven by the
sinking of fresh diatoms. Faecal pellets and the active transport
of POC linked to zooplankton vertical migration may have also
contributed significantly to vertical fluxes. If we are to under-
stand the efficiency of the biological pump in the Southern
Ocean, these processes should be further investigated in the
future.
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