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Nonlinear Ensemble Transform 
Filter (NETF) for Ocean Assimilation 

Conclusions
→ Promising nonlinear filter for high-dim. assimilation
→ Simple implementation: analog to (L)ETKF
→ Works well in Lorenz to ocean models with small
ensemble sizes: overcomes curse of dimensionality

Results and Evaluation [4]

Conclusions and Outlook

Motivation 
In nonlinear systems, the analysis moments of the local
ensemble transform Kalman filter (LETKF)[1] are biased due to the
Gaussian assumption for prior density and observation. 
The particle filter (PF) performs a non-parametric and Bayesian
analysis, but suffers from weight divergence.

Approach: Nonlinear Ensemble Transform Filter (NETF) [2]

→ Creates new, equally-weighted analysis ensemble such that its
mean and covariance exactly match the Bayesian estimators
→ Deterministic square root filter as the ETKF
→ Domain localization as in the LETKF
→ Outperforms (L)ETKF in Lorenz63/96 tests with small ensembles [2]

Future work
▶More large-scale applications
▶Comparison to EWPF
▶Extension to nonlin. smoother
▶...

NETF

High-Dimensional Ocean Twin Experiment

NETF Analysis Step: Analogy to the (L)ETKF
Transform forecast ensemble into analysis ensemble 
with exactly specified mean and covariance:

1. Update mean with weight vector w:

2. Update perturbations with transform matrix T:

3. Compose final ensemble:

Analysis ensemble 
with KF moments 

(Gaussian assumption)

Model: NEMO v3.3
- Closed square basin,
0.25°, 5km depth
- Driven by zonal wind
- 74 years spin-up
- DA exp. in year 75

Artificial observations[3]

- each 2nd day → 180 analysis steps
- SSH on Envisat tracks
- Argo temperature profiles on 3°x3° grid
→ dim(obs)≈3300

Filter setup
- Localization radius: 2.5° (on average
100 observations per ocean column)
- Inflation factor: 1.025
Initial ensemble
- dim(ens)=120
- from model climatology
→ no information about true flow at t=0

Qualitative evaluation
Snapshots of SSH [m] on day 260:

→ NETF reproduces the true circulation

Quantitative evaluation
RMSEs (normalized at t=0):

- strong error reduction with
time compared to free run
- holds for observed (T, SSH)
and hidden variables (U, V)
- filter remains stable

Comparison to LETKF
with CRPS (averaged 
over T,U,V,SSH)
Considers entire
ensemble distributions

State vector
T, U, V, SSH
(on 121x81x11 grid)
→ dim(state)≈3.3·105

Dynamics
- Double gyre 
circulation
- Central jet
- Mesoscale eddies
- as e.g. in North Atlantic

NETF SSH [m]
(ens.mean) at t=0

Successful development

Usual PF weights:

Analysis ensemble 
with Bayesian moments [2]

(Monte Carlo estimators)

ETKF

Xf

Xa
→ Identical update mechanism: NETF & ETKF

only differ by the explicit entries in T & w!

Notation
x = state vector
m = ensemble size
Xf/a = forecast/analysis ens. 
  matrix = [x1, …, xm]
X' = ens. perturbations

y = observation vector
R = obs. error covariance
H = observation operator
Y = HX,  y = mean(Y)
p(y|x) = likelihood density
Λ = random rotation matrix

Theoretical
justification

Toy
models

Realistic
large-scale 

models

→ Potential benefits 
of nonlinear analyis

→ NETF successfully assi-
milates the observations

→ Generic NETF,
no model-

dependent 
changes

→ Realistic & challenging 
assimilation experiment

Eample of
a T-profle

Relative RMSEs for all variables for
NETF (full) and free run (dashed)

True SSH [m] at t=0

Example of SSH tracks (day 8).
The crosses mark Argo positions.

Truth NETF

CRPS

- NETF requires a longer spin-up 
phase than LETKF
- But: better score after convergence
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