PhD Student Poster Contest

Nonlinear Ensemble Transform 🎱 八 🖊 UNIVERSITÄT FRANKFURT AM MAIN FILTER (NETF) for Ocean Assimilation

J. Tödter (toedter@iau.uni-frankfurt.de)¹, P. Kirchgessner², L. Nerger² and B. Ahrens¹

¹Institute for Atmospheric and Environmental Sciences, Goethe University, Frankfurt/Main, Germany, ²Alfred Wegener Institute, Helmholtz, Centre for Polar and Marine Research, Bremerhaven, Germany

Motivation

In nonlinear systems, the analysis moments of the *local* ensemble transform Kalman filter (LETKF)^[1] are biased due to the Gaussian assumption for prior density and observation. The *particle filter* (PF) performs a non-parametric and Bayesian analysis, but suffers from weight divergence.

Approach: Nonlinear Ensemble Transform Filter (NETF)^[2]

→ Creates new, equally-weighted analysis ensemble such that its mean and covariance *exactly* match the Bayesian estimators

- \rightarrow Deterministic square root filter as the ETKF
- \rightarrow Domain localization as in the LETKF
- \rightarrow Outperforms (L)ETKF in Lorenz63/96 tests with small ensembles ^[2]

NETF Analysis Step: Analogy to the (L) **ETKF**

Transform forecast ensemble into analysis ensemble

Analysis ensemble

Longitude [°]

-55 -50 -45 -40 -35

Longitude [°]

-50

 \rightarrow NETF reproduces the true circulation

-60

-30

 \rightarrow NETF successfully assimilates the observations

 \rightarrow Potential benefits of nonlinear analyis

Conclusions and Outlook

Conclusions

 \rightarrow Promising nonlinear filter for high-dim. assimilation \rightarrow Simple implementation: analog to (L)ETKF \rightarrow Works well in Lorenz to ocean models with small ensemble sizes: *overcomes curse of dimensionality*

Successful development

Future work

► More large-scale applications ► Comparison to EWPF ► Extension to nonlin. smoother ▶...

References

[1] Hunt, B. R., E. Kostelich, I. Szunyogh (2007): Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112-126. [2] Tödter, J., B. Ahrens (2015): A second-order exact ensemble square root filter for nonlinear data assimilation. MWR, 143, 1347-1367. [3] Yan, Y., A. Barth, J. M. Beckers (2014): Comparison of different assimilation schemes in a sequential Kalman filter assimilation system. Ocean Modelling, 73, 123-137. [4] Tödter, J., P. Kirchgessner, L. Nerger, B. Ahrens (2015): Assessment of a nonlinear ensemble transform filter for high-dimensional data assimilation. MWR, under review. Presented at the Marine Environmental Monitoring, Modelling And Prediction Symposium (Liège, May 2015)

Support by the projects MiKlip (BMBF, Germany) and SANGOMA (EU) is acknowledged.