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Motivation | Approach: Nonlinear Ensemble Transform Filter (NETF) [2]

In nonlinear systems, the analysis moments of the J/ocal - Creates new, equally-weighted analysis ensemble such that its
ensemble transform Kalman filter (LETKF)I1] are biased due to the mean and covariance exactly match the Bayesian estimators
Gaussian assumption for prior density and observation. - Deterministic square root filter as the ETKF

The particle filter (PF) performs a non-parametric and Bayesian - Domain localization as in the LETKF

analysis, but suffers from weight divergence. — Qutperforms (L)ETKF in Lorenz63/96 tests with small ensembles [2]

NETF Analysis Step: Analogy to the (L) ETKF

Transform forecast ensemble into analysis ensemble
with exactly specified mean and covariance:

NETF

Analysis ensemble
with Bayesian moments [2]
(Monte Carlo estimators)

ETKF

Analysis ensemble
with KF moments
(Gaussian assumption)

1. Update mean with weight vector w:

W = (wl,...,wm)T - \ Xq = Xf _|_Xffw = w:ml_lTTTY}TR_l(y—?f)
Usual PF weights: ' o< p(y |x}) 2. Update perturbations with transform matrix T:
T — \/a(diag(w) - WWT) 1/2 - | X; — X,fTA = T — (I 4 Y}TR_lY}/(m B 1))—1/2
3. Compose final ensemble: @ Notation \ — obeervation vector
. . X = state vector R = obs. error covariance
“only differ by the explict entries in T & wi X, =X, +X, ~

High-Dimensional Ocean Twin Experiment

Model: NEMO v3.3 State vector Artificial observations!3! Filter setup
- Closed square basin, T, U, V, SSH - each 2" day —» 180 analysis steps - Localization radius: 2.5° (on average
0.25°, 5km depth (on 121x81x11 grid) - SSH on Envisat tracks 100 observations per ocean column)
- Driven by zonal wind - dim(state)=3.3:105 - Argo temperature profiles on 3°x3° grid - Inflation factor: 1.025
- 74 years spin-up - dim(obs)=3300 Initial ensemble
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Results and Evaluation (4]
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Qualitative evaluation Quantitative evaluation — Comparison to LETKF
Snapshots of SSH [m] on day 260: RMSEs (normalized at t=0): with CRPS (averaged
T Truth 3- NETF I CERRETT over T,U,V,55H)
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. - strong error reduction with
.. time compared to free run
. - holds for observed (T, SSH)
and hidden variables (U, V)
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) ) - filter remains stable R || - NETF requires a longer spin-up
) ) . phase than LETKF
e A e ML ey ey res P ey s o B 0 50 100 150 200 250 300 3 - But: better score after convergence
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| | — NETF successfully assi- 5 . — Potential benefits
- NETF reproduces the true circulation  milates the observations "NETF (full) and free run (dashed) of nonlinear analyis

Conclusions and Outlook

Conclusions

— Promising nonlinear filter for high-dim. assimilation
- Simple implementation: analog to (L)ETKF

— Works well in Lorenz to ocean models with small
ensemble sizes: overcomes curse of dimensionality
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