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Abstract

We present results from the assimilation of observed oceanic 3-D tempera-

ture and salinity fields into the global coupled Max Planck Institute Earth

system model with the SEIK filter from January 1996 to December 2010.

Our study is part of an effort to perform and evaluate assimilation and pre-

diction within the same coupled climate model without the use of re-analysis

data. We use two assimilation setups, one where oceanic observations over

the entire water column are assimilated, and one where only oceanic observa-

tions below 50 m depth are assimilated. We compare the results from both

assimilations with an unconstrained control experiment. While we do not

find significant improvements due to assimilation in terms of the root-mean-

square error of simulated temperature, 0-700 m heat content, sea surface

height (SSH), and the Atlantic meridional overturning circulation (AMOC)

against observations, we find the variability in terms of correlation with ob-

servations significantly improved due to assimilation, most prominently in

the tropical oceans. Improvements over the control experiment are stronger
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in the sub-50 m assimilation experiment and in integrated quantities (SSH,

AMOC).

Keywords: oceanic data assimilation, EnKF, seasonal-to-decadal

prediction, Earth system modelling, MPI-ESM

1. Introduction1

The natural variability of Earth’s climate is influenced by many factors.2

Their importance varies with the temporal scales associated with the climate3

under investigation. The ocean influences or may even dominate the climate4

variability on time scales larger than a few months due to its large heat ca-5

pacity. Climate predictions on these time scales therefore depend crucially6

on the representation of the oceanic variability by the chosen global coupled7

Earth system model (ESM). At seasonal to decadal time scales, the quality8

of the respective climate prediction is also inherently dependent on the initial9

conditions (Cox and Stephenson, 2007; Branstator and Teng, 2012), and in10

particular on a good initialization of the oceanic state prior to prediction.11

Any initialization should incorporate the available observations of the past12

state of the ocean. Oceanic observations are, however, still irregularly and13

sparsely distributed in both time and space, despite the development of such14

sophisticated profiling programs as Argo (Roemmich et al., 2009). While15

the accuracy of instruments is sufficiently high, the observation uncertainty16

depends on the representativeness of the observations. How representative17

any observation is to the ESM’s grid cell it is falling in remains the subject of18

ongoing research, and only to a certain degree this error can be approximated19

from large observation data sets (Forget and Wunsch, 2007; Oke and Sakov,20
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2008).21

Given the limited number of observations and their large uncertainties to rep-22

resent the variability of the ocean in space and time, it has been argued that23

even the entire oceanic data base might currently be too small to successfully24

constrain an ocean model (Pohlmann et al., 2009). Hence, any oceanic re-25

analysis will represent both the variability seen in the observations, but also26

the variability native to the model that is constrained by the observations.27

When aiming to initialize climate predictions, Pohlmann et al. (2009) ar-28

gued that best results may be gained when both re-analysis (assimilation)29

and forecast are produced with the same model. Such a model inherent ini-30

tialization might keep initialization shocks and model drift in forecast mode31

comparatively small, assuming an assimilation method is employed that does32

not force the model too far away from it’s climatological mean state.33

Popular assimilation methods used with temporally and spatially sparse ob-34

servations are based on the Ensemble Kalman filter (EnKF, Evensen, 1994).35

All EnKFs have in common that they represent the model’s state estimate36

and its uncertainty by an ensemble of model states. The ensemble makes37

the assimilation with large-scale numerical models feasible, because the full38

error covariance matrix is approximated by the ensemble covariance matrix39

computed from an ensemble of model states. They analyze the ensemble in-40

formation together with the observation state and uncertainty to produce an41

updated ensemble representing the optimized model state and uncertainty.42

EnKFs are also known for their straightforward applicability in sequential43

data assimilation and potential efficiency when used on parallel computers44

(Keppenne and Rienecker, 2002). The EnKFs can handle model non-linearity45
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to some extent because the covariance matrix is implicitly propagated in time46

by integrating each ensemble state by the full model. Building on this origi-47

nal Ensemble Kalman filter, alternative types of EnKFs have been proposed48

for oceanic data assimilation, such as the error subspace transform KF (ES-49

TKF, Nerger et al. (2012)) or the singular evolutive interpolated KF (SEIK,50

Pham et al. (1998)).51

In our study we use the SEIK filter to assimilate subsurface and surface52

oceanic temperature and salinity observations into the ocean component of53

the fully coupled global Max Planck Institute Earth System Model (MPI-54

ESM). Our approach is partly similar to recent studies by Karspeck et al.55

(2013), who also assimilated subsurface oceanic data, but only in a loosely56

coupled version of the Community Climate System Model (CCSM4), and by57

Counillon et al. (2014), who assimilated sea surface data but no subsurface58

observations in the fully coupled Norwegian Climate Prediction Model (Nor-59

CPM). Our study extends these studies, on the one hand to a fully coupled60

ESM including a freely running atmosphere, and on the other hand by the use61

of real subsurface temperature and salinity profiles from the EN3 database62

(Ingleby and Huddleston, 2007) for the assimilation.63

We test two implementation strategies, one where oceanic observations over64

the entire water column are assimilated, and one where only oceanic ob-65

servations below 50 m depth are assimilated, in both cases the atmosphere66

is unconstrained. The latter strategy may reduce the discrepancies at the67

ocean-atmosphere boundary, for instance in temperature, which are implic-68

itly introduced when oceanic surface data are assimilated while atmospheric69

surface data remain unconstrained. We apply the SEIK filter on a monthly70

4



basis for a time period of 15 years (1996-2010). We use 8 ensemble members,71

which is considerably smaller than the 30 members used by Counillon et al.72

(2014). The ensemble size is chosen to both comply with our computational73

resources and assess the feasibility, technically and scientifically, of the SEIK74

assimilation within MPI-ESM. However, we are aware that smaller ensemble75

sizes are prone to larger sampling errors and therefore an increased ensemble76

size may be necessary in future implementations.77

The long-term aim of our effort is a model-inherent initialization of decadal78

climate predictions as proposed by Pohlmann et al. (2009), and a contribu-79

tion to the decadal prediction system developed within the German MiKlip80

project (Pohlmann et al., 2013).81

The remainder of this paper is structured as follows: we describe the model,82

observations and filter characteristics used in our experimental setup in Sec. 2.83

Results of our experiments for the temperature field, the heat content, the84

sea surface height and the Atlantic meridional overturning circulation are85

shown in Sec. 3. We discuss our results and their implications to our future86

approach in Sec. 4 and conclude this paper with the main findings in Sec. 5.87

2. Experimental setup88

2.1. Model and ensemble Kalman filter89

We use the Max Planck Institute Earth system model (MPI-ESM, Gior-90

getta et al. (2013)), version 1.0.02, which consists of ECHAM6 (Stevens et al.91

(2013), ECHAM is an acronym for ECMWF, European Centre for Medium-92

Range Weather Forecasts, and Hamburg) for the atmospheric component93

(≈ 2.5◦ horizontal resolution, 47 levels up to 1 hPa), and MPIOM (Max94
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Planck Institute Ocean Model, Jungclaus et al. (2013)) for the oceanic part95

(≈ 1.5◦ horizontal resolution, 40 depth levels), both coupled once a day by96

OASIS3 (Ocean Atmosphere Sea Ice Soil, Valcke (2013)). In this study we97

do not apply any atmospheric assimilation nor nudging.98

We implement the parallel data assimilation framework PDAF (Nerger and99

Hiller, 2013, http://pdaf.awi.de) in its offline mode together with the oceanic100

component MPIOM of MPI-ESM. PDAF has implemented several ensemble101

Kalman filter sub-types, we use the global SEIK filter in our experiments.102

As with other ensemble Kalman filters, the process of assimilating observa-103

tions into MPI-ESM with SEIK can be sub-divided into three steps. Firstly,104

the forecast, where all ensemble members are independently evolved in time105

until an observation data set is going to be assimilated, we call this the “as-106

similation interval”. Secondly, the Kalman update of the ensemble members107

with the observations, which we call the “analysis step”. Thirdly, the “re-108

initialization” of the ensemble based on the updated state and uncertainty109

from the analysis step. Then the re-initialized ensemble enters the forecast110

of the next assimilation interval.111

In the following we give an abridged description of the global SEIK filter112

based on Nerger et al. (2006). A detailed description of the SEIK filter and113

a comparison with other sub-types of the ensemble-based Kalman filters can114

be found in Nerger et al. (2005).115

We assume an already initialized ensemble of states with N members (α =116

1, ..., N) at time ti, with the size of the model state n:117

Xi = {xαi } ∈ Rn×N . (1)
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The non-linear model independently integrates the ensemble members for-118

ward to time tf .119

Xf = {Mf,i (x
α
i )} ∈ Rn×N , (2)

with Mf,i representing the model operator. In the analysis step at time tf , the120

updated ensemble mean state xa of size n , where the operator ... represents121

the ensemble mean, is calculated from the forecast ensemble with122

xa = xf + Lfaf , (3)

where the error subspace associated with the forecast ensemble is represented123

by the columns of Lf , which is the transformed forecast ensemble according124

to:125

Lf := XfT ∈ Rn×(N−1), (4)

T :=

 I(N−1)×(N−1)

01×(N−1)

−N−1
(
1N×(N−1)

)
∈ RN×(N−1), (5)

with the unit matrix I, the null matrix 0, and 1 is a matrix of ones. The126

vector of weights af has the size (N − 1) and is calculated as127

af = Uf (HfLf )
T R−1

f

(
yof −Hfxf

)
(6)

with the observation vector yof of size o and it’s associated measurement128

operator Hf and observation error covariance matrix Rf ∈ Ro×o. The matrix129

Uf is not calculated explicitly. Instead we use the LU-solver DGESV from130

LAPACK (http://www.netlib.org/lapack/) together with U−1
f :131

U−1
f = ρN−1

(
TTT

)−1
+ (HfLf )

T R−1
f HfLf ∈ R(N−1)×(N−1). (7)
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Here ρ represents the forgetting factor, which is proportional to the inverse132

of the inflation factor described in Anderson and Anderson (1999). Hence,133

a forgetting factor ρ smaller than 1 results in an artificial inflation of the134

ensemble spread by a factor larger than 1.135

For the re-initialization the updated ensemble of states is re-sampled accord-136

ing to:137

Xa = Xa +
√
NLfC

T
f ΩT

f , (8)

where Cf ∈ R(N−1)×(N−1) is obtained from a Cholesky decomposition applied138

on U−1
f :139

CfC
T
f = U−1

f , (9)

and Ωf is a N × (N − 1) random matrix with orthonormal columns.140

Please note that neither the forecast nor the updated error covariance matrix141

needs to be calculated explicitly, they are replaced according to142

P = LCTΩTΩCLT , (10)

and thus the SEIK analysis and re-initialization (Eqs. 3 and 8) only requires143

the knowledge of144

the forecast ensemble xαf ,

the observation vector yof ,

the observation error covariance matrix Rf ,

and the forgetting factor ρ.

In our experiments, we did not use artificial inflation, leaving ρ = 1. Also,145

we only use the global variant of the SEIK filter to allow for long-range and146

cross-parameter covariances, no localization has been applied.147
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2.2. Observations148

We assimilate observations of subsurface temperature and salinity from149

EN3 (Ingleby and Huddleston, 2007). In one experiment, we supplement the150

EN3 data with sea surface temperature from HadISST (Rayner et al., 2003),151

the combined data set is henceforth called EN3/HadISST. The EN3 data152

are used in the assimilation as unweighted averages per month and grid cell.153

For any grid cell and any month, all EN3 measurements, which fall within154

the specific grid cell in the specific month, are averaged to obtain one value155

per month and grid cell, both for temperature and salinity. The number of156

measurements within EN3 increased rapidly between 2001 and 2007 with the157

deployment of autonomous profiling floats from the Argo project (Roemmich158

et al., 2009). The HadISST data have been regridded to the MPI-ESM grid159

and supersede any EN3 data at the surface.160

With the exception of the ocean surface, observations on a monthly time161

scale are limited, even in the upper ocean and even in the full Argo era after162

2007. Over the entire assimilation period (1996-2010) and on the MPI-ESM163

grid, EN3/HadISST provides for only 6% of the grid cells temperature data164

and for only 3% of the grid cells salinity data. These numbers slightly im-165

prove to 8% for temperature, and 7% for salinity, when only the Argo period166

(2004-2010) is considered (Fig. 1). In addition to the limited spatial cover-167

age, also the temporal coverage is limited: only a few grid cells are covered168

by observations on at least a yearly basis over the total assimilation time.169

The temporal coverage improves for the Argo era at depths above 2000 m.170

We heuristically chose observation uncertainties of 1 K for all temperatures171

and 1 psu for all salinities, so that the SEIK analysis update remains well172
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within the physically acceptable bounds of the model (-2◦C to 40◦C for tem-173

perature and 0 psu to 52 psu for salinity). We also tested smaller uncertain-174

ties of 0.1 psu for salinity together with 1 K for temperature (not shown),175

as well as depth dependent uncertainties in the range of 0.1 K to 1 K for176

temperature and 0.01 psu to 0.1 psu for salinity (not shown), which showed177

similar gains during the analysis but more often caused updated tempera-178

tures and salinities outside the physically acceptable bounds of the model.179

In the SEIK filter no limitations are applied to the analysed field. Therefore180

it may generate unwanted temperatures and salinities while trying to honor181

sparse observations with small uncertainties, especially in it’s global variant182

and with only 8 ensemble members.183

2.3. Assimilation experiments184

Three experiments are carried out, using the same model setup and the185

same initial conditions: (i) an unconstrained simulation without assimilation186

(NoAssim), (ii) an assimilation experiment using all subsurface temperature187

and salinity observations from EN3 supplemented by HadISST sea surface188

temperature (AllAssim), and (iii) an assimilation experiment using only sub-189

surface temperature and salinity observations from EN3 below 50 m depth190

(SubAssim).191

The experimental configuration is summarized in Tab. 1. All three ex-192

periments are initialized at January 1st, 1996 from the long-term MiKlip193

baseline-1 assimilation (Pohlmann et al., 2013). Here, anomaly restoring194

to the European Centre for Medium-Range Weather Forecasts oceanic re-195

analysis ORAS4 and atmospheric re-analysis ERA and ERA Interim is ap-196

plied to keep the assimilation close to the climatological state of the model.197
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The three experiments consist of eight ensemble members each. The initial-198

ization ensembles for all experiments are calculated from a daily data set of199

baseline-1 in January 1996. For the assimilation experiments we use mini-200

mum second order exact sampling (Pham, 2001; Nerger et al., 2005), such201

that the ensemble mean and covariance matrix of the January 1996 baseline-1202

assimilation is exactly represented by the initialization ensemble. This differs203

slightly from NoAssim, where each of the eight ensemble members has been204

assigned with the state of the baseline-1 experiment at the end of days 1 to205

8 in January 1996. The analysis is conducted at the end of each month, and206

only observations from this month are considered in the SEIK update. All207

experiments are carried out for 15 years (from January 1, 1996 to December208

31, 2010).209

2.4. Model-observation comparison210

In our study our prime interest is in the assimilation of the observed211

oceanic variability in terms of deviations from the seasonal cycle. For the212

comparison with observations, we therefore calculate the monthly averaged213

ensemble mean, which includes the state prior to the analysis step at the end214

of the month, and remove the mean seasonal cycle and any linear trend for215

each experiment, except for the Atlantic meridional overturning circulation,216

see below. Then we compute the root mean square error, RMSE, and corre-217

lation coefficient against observations for each grid cell.218

We calculate RMSE and correlation coefficients for the global average as well219

as for regional averages in the following regions: Northern Atlantic Ocean,220

Indian Ocean, and Niño 3.4. The regions are outlined in Fig. 1.221

For each experiment we compute the significance of the calculated RMSE and222
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correlation coefficient against observations as following: For each grid cell we223

apply a bootstrapping scheme with 500 bootstraps of the 15-year monthly224

averaged ensemble mean. We then calculate the corresponding probability225

distribution and determine the significance at the 95% level with a two-tailed226

test of this distribution.227

For sea surface temperature (SST) and potential temperature at 100 m depth228

(T100), we compare the simulated temperature field against the observations229

from EN3/HadISST. Times and grid cells without EN3/HadISST data are230

omitted. At the surface, in most grid cells the time series consists of 180231

points, since there is an observation from HadISST in each month. At 100 m232

depth, the time series often consists of less than 10 points, given the lack of233

sub-surface oceanic observations (Fig. 1a). Here, and also at larger depths,234

the calculation of a meaningful RMSE or correlation coefficient becomes dif-235

ficult.236

For the ocean heat content (HC700), we compare the simulated heat con-237

tent from the surface down to 700 m depth with the heat content data set238

from the National Oceanic and Atmospheric Administration Ocean Climate239

Laboratory (NOAA OCL) (Levitus et al., 2012). The NOAA OCL data set240

comprises seasonal (3 monthly) heat contents, we apply a 3 month averaging241

to our data accordingly.242

For the simulated sea surface height (SSH), we compare our experiments243

with satellite based measurements of the absolute dynamic topography. The244

altimeter products were produced by Ssalto/Duacs and distributed by Aviso,245

with support from CNES (http://www.aviso.altimetry.fr/duacs/), hereafter246

AVISO.247
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We compare the simulated Atlantic meridional overturning circulation (AMOC)248

time series at 26◦N from 2004 to 2010 at 1020 m with the observations from249

the Rapid Climate Change-Meridional Overturning Circulation and Heatflux250

Array (RAPID-MOCHA, Cunningham et al. (2007); Smeed et al. (2014)).251

In the model, the AMOC is derived from the simulated meridional velocity252

field. There is an overlap of only 6 years between simulations and observa-253

tions. We therefore do not remove the linear trend nor the seasonal cycle254

from the simulated AMOC, rather we apply a three months running mean255

to the time series. We use the ensemble mean time series and its standard256

deviation to estimate significant changes between the experiments.257

258

3. Results259

In this section we assess the simulated temperature, ocean heat content,260

sea surface height and Atlantic meridional overturning circulation in terms261

of RMSE and correlation coefficient against observations and with reference262

to the unconstrained experiment NoAssim.263

3.1. Surface temperature264

The observed SST from EN3/HadISST has been directly assimilated in265

AllAssim, but not in SubAssim. The RMSE of the simulated SST against266

observations shows similar patterns for all three experiments: large RMSE267

(>0.7 K) in the Northern Atlantic, equatorial East Pacific, Northwest Pacific,268

and Southern Ocean, and small RMSE (<0.7 K) in other regions. The mag-269

nitude of the RMSE for the global averaged SST does not differ very much270

between the two assimilation experiments (AllAssim: 0.55 K, SubAssim:271
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0.59 K). However, it is larger in both assimilations than in the unconstrained272

experiment NoAssim (0.45 K, Fig. 2 a,c,e), although the latter is not sig-273

nificant at the 95% level. Areas with significant RMSE values are the trop-274

ical Pacific Ocean, and some parts of the Indian Ocean as well. In the275

Indian Ocean both assimilation experiments degrade the RMSE (0.47 K for276

AllAssim, 0.52 K for SubAssim) compared to NoAssim (0.37 K, Tab 2). In277

the Niño 3.4 region the RMSE is smaller in the assimilation experiments than278

in NoAssim: 0.89 K in AllAssim and 0.82 K in SubAssim, 0.95 K in NoAssim.279

In the Northern Atlantic Ocean the RMSE of the assimilation experiments280

(0.90 K for AllAssim, 1.0 K for SubAssim) is larger than in NoAssim (0.67 K).281

However, these values are not significant at the 95% level.282

It is not surprising that the RMSE is not improved at every individual grid283

cell, however, the degradation of the RMSE on the regional and global scale284

is an issue with regard to the SEIK implementation and will be discussed in285

Sec. 4.286

Compared to the RMSE the patterns for the correlation coefficient of the287

simulated SST against observations show larger differences between the three288

experiments (compare Fig. 2 a,c,e and b,d,f). The correlation of the global av-289

eraged SST is higher for the two assimilation experiments (0.09 for AllAssim,290

0.13 for SubAssim) than for NoAssim (0.06) with a significance level ±0.02291

(Tab. 2). The improvements in both AllAssim and SubAssim are most292

prominent in the Tropics, and are generally stronger in SubAssim than in293

AllAssim. The averaged correlation coefficient in the Niño 3.4 region is 0.14294

for NoAssim, 0.38 for AllAssim, and 0.56 for SubAssim with a significance295

level of ±0.13. In the Northern Atlantic the averaged correlation coefficient296

14



is degraded due to the assimilation (0.04 in AllAssim, 0.02 in SubAssim,297

from 0.05 in NoAssim, although all coefficients are too small to be significant298

(±0.05)). In the Indian Ocean only SubAssim (0.14) shows improvement299

over NoAssim (0.09), the significance level is at ±0.04.300

Hence, for SST, the SEIK assimilation does not improve the RMSE against301

observations, except for the Niño 3.4 region. In contrast, the SEIK assim-302

ilations does improve the correlation coefficient against observations on the303

global average, largest improvements are in the tropical oceans, especially the304

tropical Pacific. The largest region with degradation is in the Northwestern305

Pacific in SubAssim (Fig. 2f).306

307

3.2. Sub-surface temperature308

The observed T100 from EN3 has been directly assimilated in both as-309

similation experiments. The RMSE of the globally averaged simulated T100310

against observations (Fig. 3a,c,e and Tab. 2) is smaller in NoAssim(0.48 K)311

than in either of the assimilations (0.68 K in AllAssim and 0.74 K in SubAssim).312

Even in the Niño 3.4 region the RMSE is smaller in NoAssim (0.90 K) com-313

pared to AllAssim (0.95 K) and SubAssim (1.1 K). However, over most areas314

the RMSE is not significant in either experiment, which may be caused by315

the large undersampling in time of the T100 grid cells due to the sparsity316

of T100 observations. For the same reason the correlation coefficient against317

observations for T100 is spatially very noisy and not significant for almost318

any grid cell (Fig. 3b,d,f).319

For the three selected regions, the depth profiles down to 500 m of the area320

averaged RMSE of simulated temperature against observations show degra-321
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dation due to assimilation (Fig. 4a,c,e). In the Northern Atlantic Ocean and322

in the Indian Ocean the RMSE is for all depths smallest in NoAssim, the323

difference between AllAssim and SubAssim is negligible. In the Niño 3.4 re-324

gion the RMSE is improved due to the assimilation only at the surface. For325

depths below the surface down to 150 m the RMSE is degraded in AllAssim326

and even more in SubAssim when compared to NoAssim. Below 150 m, the327

RMSE is the same in all three experiments. The depth profiles of the area av-328

eraged correlation coefficient of simulated temperature against observations329

(Fig. 4b,d,f) show little difference between the three experiments, except for330

the upper 100 m in the Niño 3.4 region, where both assimilation experiments331

show higher correlation coefficients than NoAssim, and for depths between332

200 m and 300 m in the Niño 3.4 region, where AllAssim shows higher cor-333

relation than both NoAssim and SubAssim.334

335

3.3. Heat content336

The observed 0-700 m heat content (HC700) from NOAA OCL has not337

been directly assimilated in our experiments. The global patterns in HC700338

RMSE against observations (not shown) are similar to those from SST in339

Fig. 2. The SEIK assimilation does not improve the RMSE of the global340

averaged or the regional averaged HC700, except for a small improvement341

in SubAssim in the Niño 3.4 region (Tab. 2. The correlation coefficients342

against observations are shown in Fig. 5. The correlation of the global aver-343

aged HC700 is improved due to SEIK assimilation (0.08 for both AllAssim344

and SubAssim compared to 0.05 for NoAssim), significance level ±0.02. On345

the regional scale, improvements due to the assimilation are confined to the346
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equatorial Pacific, e.g. in the Niño 3.4 region the correlation of the averaged347

HC700 is 0.30 for AllAssim, 0.45 for SubAssim, against 0.08 for NoAssim,348

significance level (±0.22). We find degradations in some parts of the North-349

eastern Pacific and Northeastern Atlantic. The correlation of the averaged350

HC700 over the Northern Atlantic is 0.09 for AllAssim, 0.08 for SubAssim,351

from 0.10 for NoAssim, significance level (±0.05).352

3.4. Sea surface height353

The observed SSH from AVISO has not been directly assimilated in our354

experiments. The RMSE of SSH with respect to observations shows similar355

patterns and significant areas as the RMSE of SST, they are not shown here.356

The averaged RMSE for the three selected regions are given in Tab. 2, there357

is hardly any difference between the three experiments. The global patterns358

in the correlation coefficient against observations resemble those from SST359

in an attenuated form (Fig. 6 versus Fig. 2b,d,f). The SEIK assimilation360

improves the correlation in the global average from 0.05 in NoAssim to 0.09361

in both AllAssim and SubAssim, significance level ±0.01. We find most im-362

provements in the tropical oceans, e.g. the correlation of the averaged SSH363

over the Indian Ocean is increased from 0.00 in NoAssim to 0.12 in AllAssim364

and 0.13 in SubAssim, significance level ±0.04, and the correlation of the365

averaged SSH over the Niño 3.4 region is increased from 0.15 in NoAssim to366

0.36 in AllAssim and 0.51 in SubAssim, with a significance level of ±0.16.367

The SEIK assimilation degrades the correlation in some parts of the Northern368

Pacific, while in the Northern Atlantic there is hardly any difference between369

the three experiments.370

371
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3.5. AMOC372

The observed AMOC has not been directly assimilated in our experi-373

ments. Compared to temperature, HC700, and SSH, the AMOC represents374

a highly integrated quantity.375

The three experiments have a similar 15-year mean AMOC cell (Fig. 7),376

with the maximum AMOC at 35◦N and at 1020 m depth. However, there377

are noticeable small-scale differences between the three experiments. Firstly,378

the maximum strength of the AMOC, which is 22 Sv in NoAssim, 20 Sv in379

AllAssim, and 22 Sv in SubAssim. Secondly, between 20◦N and 50◦N, the380

maximum AMOC in SubAssim is generally larger than 20 Sv, whereas it is381

only 18 Sv in NoAssim and AllAssim. Thirdly, between 20◦N and 50◦N, the382

minimum AMOC of -2 Sv is maintained as far as 40◦N in NoAssim, as far as383

50◦N in AllAssim, but only as far as 25◦N in SubAssim. As a consequence,384

between 20◦N and 50◦N the boundary between positive and negative simu-385

lated AMOC is shifted 100 m up in AllAssim, but 100 m down in SubAssim,386

when compared to NoAssim. There is a noticeable difference in the depth of387

this boundary between the two assimilations of about 200 m.388

As there are no observations available to compare the full AMOC cell with,389

we now turn to the observed 26◦N time series from RAPID-MOCHA (Fig. 8a,390

Tab. 3). The RMSE against observations does not show significant differ-391

ences between the three experiments (3.2 ±0.4 Sv for both AllAssim and392

SubAssim, 3.1 ±0.6 Sv for NoAssim). The correlation with the observed393

AMOC is decreased in AllAssim (0.32 ±0.16) and increased in SubAssim394

(0.59 ±0.17) when compared to NoAssim (0.42 ±0.29), but only the im-395

provement of SubAssim over AllAssim is significant.396
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In our experiments, we do not expect that an unconstrained atmosphere cap-397

tures the correct zonal-mean wind variability. It is therefore not surprising398

that none of our experiments matches the anomalous weak observed AMOC399

in 2009/2010, which was related to anomalous surface winds in 2009/2010400

and the resulting anomalous wind-driven transport.401

We remove the direct atmospheric influence on the AMOC at 26◦N by sub-402

tracting the zonal-mean wind driven transport, which is calculated from403

the simulated zonal wind stress at the ocean’s surface (Mielke et al., 2013).404

Within the three experiments the RMSE of AMOC minus Ekman (Fig. 8b)405

differs more than the RMSE of the full AMOC. It is smallest in SubAssim406

with 2.4 ±0.1 Sv, compared to 2.6 ±0.5 Sv in NoAssim and 3.1 ±0.1 Sv407

in AllAssim. The correlation with observations is smaller in AMOC mi-408

nus Ekman than in the full AMOC. Nevertheless, within the three experi-409

ments the correlation of AMOC minus Ekman with observations is improved410

from 0.23 ±0.38 in NoAssim to 0.28 ±0.04 in AllAssim and 0.41 ±0.04411

in SubAssim. Based on the standard deviation, the improvement of both412

RMSE and correlation against observations in AMOC-Ekman from AllAssim413

to SubAssim are significant, while the other changes are not significant.414

We notice that the standard deviation for RMSE and correlation, along415

with the ensemble spread, is always larger in NoAssim than in AllAssim416

and SubAssim, while the difference between the latter two is negligible. For417

AMOC the standard deviations of NoAssim are larger by a factor of 1.5 to418

2, for AMOC minus Ekman by a factor of 5 to 10 (Tab. 3). The SEIK as-419

similation reduces the RMSE and correlation variability within the ensemble420

for the AMOC, and even more for AMOC minus Ekman, where the direct421

19



atmospheric influence is largely reduced.422

Summarizing the results, for all analyzed variables there is little improve-423

ment over NoAssim due to the SEIK assimilation in the RMSE against ob-424

servations, but some improvement in the correlation against observations.425

However, improvements over NoAssim are more often stronger in SubAssim426

than in AllAssim.427

4. Discussion428

The main questions arising from our results are: Why is the impact of429

the SEIK assimilations AllAssim and SubAssim, when compared to the un-430

restricted experiment NoAssim, small on the global scale? Why are improve-431

ments from assimilation restricted to the correlation of simulated against432

observed temperatures and SSH in the tropical oceans, and to correlation im-433

provements in the AMOC and AMOC minus Ekman at 26◦N in SubAssim?434

Firstly, the atmosphere in our assimilation is as unconstrained as in NoAssim.435

Therefore any change of the oceanic fields due to assimilation is quickly offset436

by the influence of the unconstrained atmosphere, the number of oceanic ob-437

servations is too small to maintain the gains expected from their assimilation438

over the whole assimilation interval, this supports the result of (Pohlmann439

et al., 2009) that there are too few oceanic observations to have an im-440

pact. On a monthly scale, the offset is strong in the mid-latitudes, leading441

to a poorer performance of the assimilation system, and weak in the Trop-442

ics, where assimilation gains are retained over the assimilation interval. A443

shorter assimilation interval than one month would be desirable for the mid-444

latitudes, however, in this case the number of available observations would445
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drop even more. Also, the lower atmosphere’s high frequency variability may446

be in conflict with the upper ocean variability, which leads to the significantly447

poorer performance of AllAssim against SubAssim in terms of SST correla-448

tion. A simultaneously constrained atmosphere may help here, but only if449

it does not destroy the oceanic assimilation effort. The variabilities on both450

side of the atmosphere-ocean boundary have to be addressed in a reconciled451

way, which is beyond the scope of our study.452

Secondly, we are aware of the fact that we only use a basic setup of the SEIK453

filter: the ensemble size of 8 is small, together with the global variant of the454

SEIK filter the covariance matrices are strongly rank-deficient. As a result455

the filter performance is limited, accounting for analyzed temperatures and456

salinities being outside the physical bounds of the model, and also accounting457

for degradation of temperature RMSE on a large scale. A larger ensemble458

size together with the localized variant of the SEIK filter would be more459

appropriate.460

Thirdly, the uncertainty assigned to the oceanic observations, i.e. their rep-461

resentativeness, needs to be properly utilized for the benefit of a better per-462

formance of the SEIK assimilation. For the reason of model stability and463

setup simplicity we chose uncertainties of 1 K for temperature and 1 psu for464

salinity, both independent in time and space. The model uncertainty, which465

is ultimately calculated from the variability within the simulated ensemble, is466

smaller than 1 K or 1 psu at almost any grid cell. Thus, a large weight is put467

on the model and a small one on the observations. We see two possibilities to468

put more weight on observations and improve the SEIK performance without469

compromising the model stability: Firstly, the use of sub-surface observation470
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uncertainties based on either the true or modeled representativeness of ob-471

servations, and secondly, the inflation of the ensemble.472

It is also almost certain that the model’s preferential oceanic circulation pat-473

tern deviates from the one established in the real ocean. An assimilation,474

which puts too strong an emphasis on the observed state may actually coun-475

teract any potential improvement in the circulation pattern. Müller et al.476

(2015) showed that strong restoring of ocean temperature and salinity to477

re-analysis data eventually draws the model’s state closer to the observed478

ocean but results in a wrongly simulated AMOC. In this sense, model errors479

in terms of biases in the circulation cannot and perhaps should not always480

be corrected too strongly by data assimilation.481

Further studies are needed with the ensemble Kalman filter to address the482

direct assimilation of oceanic observations in a global coupled climate model:483

the filter setup needs to be improved (including localization), as well as the484

weighting of the observations and the calibration of the ensemble. However,485

for a successful oceanic assimilation in a coupled climate model the influence486

of the atmosphere needs to be properly handled. In the context of coupled487

data assimilation Zhang et al. (2013) showed that a consistent and balanced488

atmosphere-ocean constraint is mandatory to initialize predictions, especially489

on the decadal scale, the corresponding atmosphere-only and ocean-only as-490

similation, respectively, perform worse than the coupled approach.491

492
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5. Conclusion493

We assimilate temperature and salinity observations with a global en-494

semble Kalman filter into the global coupled model MPI-ESM at a monthly495

time interval over the period 1996 to 2010. Comparing the results of two496

assimilation experiments and an unconstrained experiment, we conclude:497

• For the analyzed quantities, the ensemble Kalman filter assimilation498

improves the model’s sea surface temperature, heat content and sea499

surface height variability with respect to observations in the tropical500

oceans. Improvements due to assimilation are largest for the sea surface501

temperature in the Niño 3.4 region.502

• The assimilation experiment that only incorporates oceanic observa-503

tions below 50 m depth results in larger improvements of the simulated504

variability with respect to observations than the assimilation experi-505

ment that incorporates oceanic observations over the entire water col-506

umn. These results suggest that surface variability in a coupled model507

assimilation with an unconstrained atmosphere can potentially be im-508

proved when the boundary between ocean and atmosphere is not too509

strongly restricted by assimilation, and the variability at the boundary510

is thus determined by the model dynamics.511

• In addition to changes in the directly assimilated temperature field, the512

assimilation experiment with observations only below 50 m depth im-513

proves the variability of the simulated Atlantic Meridional Overturning514

Circulation at 26◦N over the unconstrained experiment.515
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Given the basic implementation of the ensemble Kalman filter we used, our516

study is only the first, and successful, step towards a weakly coupled data517

assimilation system with the global coupled model MPI-ESM.518
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Pohlmann, H., Jungclaus, J. H., Köhl, A., Stammer, D., Marotzke, J., Jul.607

2009. Initializing decadal climate predictions with the GECCO oceanic608

synthesis: Effects on the North Atlantic. J. Climate 22 (14), 3926–3938.609

Pohlmann, H., Müller, W. A., Kulkarni, K., Kameswarrao, M., Matei, D.,610

Vamborg, F. S. E., Kadow, C., Illing, S., Marotzke, J., 2013. Improved611

forecast skill in the tropics in the new MiKlip decadal climate predictions.612

Geophys. Res. Lett. 40 (21), 5798–5802.613

Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander,614

L. V., Rowell, D. P., Kent, E. C., Kaplan, A., 2003. Global analyses of sea615

surface temperature, sea ice, and night marine air temperature since the616

late nineteenth century. J. Geophys. Res. 108 (D14).617

Roemmich, D., Johnson, G. C., Riser, S., Davis, R., Gilson, J., Owens, W. B.,618

Garzoli, S. L., Schmid, C., Ignaszewski, M., 2009. The Argo program:619

Observing the global ocean with profiling floats. Oceanography 22 (2),620

34–43.621

Smeed, D. A., McCarthy, G. D., Cunningham, S. A., Frajka-Williams, E.,622

Rayner, D., Johns, W. E., Meinen, C. S., Baringer, M. O., Moat, B. I.,623

Duchez, A., Bryden, H. L., 2014. Observed decline of the atlantic merid-624

ional overturning circulation 2004-2012. Ocean Science 10 (1), 29–38.625

Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast,626

S., Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,627

Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., Roeckner,628

28



E., 2013. The atmospheric component of the MPI-M earth system model:629

ECHAM6. J. Adv. Mod. Earth Sys. 5 (2), 146–172.630

Valcke, S., 2013. The OASIS3 coupler: a European climate modelling com-631

munity software. Geosci. Model Dev. 6 (2), 373–388.632

Zhang, S., Chang, Y.-S., Yang, X., Rosati, A., 2013. Balanced and coherent633

climate estimation by combining data with a biased coupled model. J.634

Climate 27 (3), 1302–1314.635

29



Table 1: Overview of the three experiments carried out. AllAssim: assimilation of

EN3/HadISST oceanic temperatures and salinities at all model levels, SubAssim: as-

similation of EN3 temperatures and salinities below 50 m only, NoAssim: no assimilation

in the ocean. All three experiments use an identical setup for the remaining components of

MPI-ESM. They are all initialized from the January 1996 MiKlip baseline-1 assimilation

(Pohlmann et al., 2013).

AllAssim SubAssim NoAssim

assim. data
EN3 and EN3 only -

HadISST below 50m -

assim. interval 1 month -

init. method
minimum 2nd order 1 day lagged

exact sampling

init. data January 1996 MiKlip baseline-1

resolution GR15L40 ocean, T63L47 atmosphere

start date 1996-01-01

end date 2010-12-31

ens. size 8
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Table 2: RMSE and correlation of area averaged monthly sea surface temperature (SST,

against HadISST), monthly 100 m potential temperature (T100, against EN3), three-

monthly 0-700 m heat content (HC700, against NOAA OCL heat content), and monthly

sea surface height (SSH, against AVISO) for the three experiments NoAssim, AllAssim,

SubAssim. The quantities have been averaged over the globe and over three selected

regions: Northern Atlantic Ocean, Indian Ocean, and Niño 3.4 region. The units for

RMSE are K (SST, T100), EJ (HC700), cm (SSH). Values, which are not significant at

the 95% level, are written in italics. For each parameter and basin the lowest RMSE and

highest correlation coefficient is underlined.

RMSE correlation

NoAssim AllAssim SubAssim NoAssim AllAssim SubAssim

global

SST 0.45 0.55 0.59 0.06 0.09 0.13

T100 0.48 0.68 0.74 0.03 0.03 0.05

HC700 10 14 15 0.05 0.08 0.08

SSH 6.0 6.5 6.7 0.05 0.09 0.09

North Atl.

SST 0.67 0.90 1.0 0.05 0.04 0.02

T100 0.55 0.93 0.94 -0.01 -0.01 0.03

HC700 7.4 9.4 9.5 0.10 0.09 0.08

SSH 7.5 8.3 8.6 0.01 0.05 0.04

Indian O.

SST 0.37 0.47 0.52 0.09 0.09 0.14

T100 0.64 0.88 0.95 0.03 0.06 0.10

HC700 11 15 16 0.00 0.10 0.15

SSH 7.4 7.5 7.8 0.00 0.12 0.13

Niño 3.4

SST 0.95 0.89 0.82 0.14 0.38 0.56

T100 0.90 0.95 1.1 0.11 0.17 0.18

HC700 15 14 13 0.08 0.30 0.43

SSH 7.5 7.1 6.7 0.15 0.36 0.51
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Table 3: RMSE (in Sv) and correlation of AMOC and AMOC minus Ekman at 26◦N

with respect to RAPID-MOCHA, monthly averaged data 2004-2010 with three month

running mean. The experiment with the lowest RMSE and higher correlation coefficient

is indicated in bold.

RMSE correlation

NoAssim AllAssim SubAssim NoAssim AllAssim SubAssim

AMOC 3.1 3.2 3.2 0.42 0.32 0.59

spread 2.8-4.4 2.8-4.0 2.8-4.0 -0.20-0.60 0.04-0.52 0.25-0.69

std.-dev. 0.6 0.4 0.4 0.29 0.16 0.17

AMOC-Ekman 2.6 3.1 2.4 0.23 0.28 0.41

spread 2.2-3.6 3.0-3.2 2.3-2.6 -0.30-0.60 0.23-0.37 0.32-0.46

std.-dev. 0.5 0.1 0.1 0.38 0.04 0.04
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Figure 1: Number of available temperature observations from EN3 at the model’s 100 m

level as prepared for the monthly assimilation interval for (a) total assimilation time from

January 1996 to December 2010 (180 monthly observations possible), and (b) full Argo

era overlapping with our experiments from January 2007 to December 2010 (48 monthly

observations possible). White grid cells do not contain any EN3 data.
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(a) SST RMSE NoAssim (b) SST correlation NoAssim

(c) SST RMSE AllAssim (d) SST correlation AllAssim

(e) SST RMSE SubAssim (f) SST correlation SubAssim

Figure 2: RMSE (a,c,e) and correlation (b,d,f) over 15 years of potential temperature

with respect to EN3/HadISST in K at the surface for NoAssim (a,b), AllAssim (c,d), and

SubAssim (e,f). Stippling indicates values, which are significant at the 95% level. White

grid cells do not contain any EN3/HadISST data. The black outlines represent the three

regions, which have been closer examined: the Northern Atlantic Ocean, the Niño 3.4

region in the equatorial Pacific Ocean, and the Indian Ocean.
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(a) T100 RMSE NoAssim (b) T100 correlation NoAssim

(c) T100 RMSE AllAssim (d) T100 correlation AllAssim

(e) T100 RMSE SubAssim (f) T100 correlation SubAssim

Figure 3: RMSE (a,c,e) and correlation (b,d,f) over 15 years of potential temperature

with EN3/HadISST at 100 m depth for NoAssim (a,b), AllAssim (c,d), and SubAssim

(e,f). Stippling indicates values, which are significant at the 95% level. White grid cells do

not contain any EN3/HadISST data. The black outlines represent the Northern Atlantic

Ocean, the Niño 3.4 region in the equatorial Pacific Ocean, and the Indian Ocean.
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Figure 4: Area average of 15-year RMSE (a,c,e, in K) and correlation (b,d,f) of potential

temperature with respect to EN3/HadISST for depths down to 500 m for NoAssim (gray),

AllAssim (green), and SubAssim (blue) for the Northern Atlantic Ocean (a,b), the Indian

Ocean (c,d), and the Niño 3.4 region (e,f).
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Figure 5: Correlation over 15 years of 3-month average 0-700 m heat content with NOAA

OCL, (a) NoAssim, (b) AllAssim, (c) SubAssim. Stippling indicates values, which are

significant at the 95% level. White grid cells do not contain any NOAA OCL data. The

black outlines represent the Northern Atlantic Ocean, the Niño 3.4 region in the equatorial

Pacific Ocean, and the Indian Ocean.

37



Figure 6: Correlation over 15 years of sea surface height with AVISO, (a) NoAssim, (b)

AllAssim, (c) SubAssim. Stippling indicates values, which are significant at the 95% level.

White grid cells do not contain any AVISO data. The black outlines represent the Northern

Atlantic Ocean, the Niño 3.4 region in the equatorial Pacific Ocean, and the Indian Ocean.
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Figure 7: The 15-year mean Atlantic meridional overturning circulation in Sv as simulated

by (a) NoAssim, (b) AllAssim, (c) SubAssim.
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Figure 8: (a) Atlantic meridional overturning circulation (AMOC) and (b) AMOC with

zonal-mean wind driven transport removed (AMOC minus Ekman) at 26◦N of NoAssim

(gray), AllAssim (green), SubAssim (blue), and observations from RAPID-MOCHA (red,

Cunningham et al. (2007); Smeed et al. (2014)). A three month running mean filter has

been applied to the monthly data. 40


