

Erosion and Flooding on Herschel Island, Yukon Territory, Canada

An Assessment of Coastal Hazards

Boris Radosavljevic^{1,2}

Hugues Lantuit^{1,2}, Wayne Pollard³, Paul Overduin¹, Nicole Couture⁴, Torsten Sachs⁵, Veit Helm⁶, Michael Fritz¹

Introduction

Permafrost coasts make up 34 % of the world's coasts

Lantuit et al., 2011

arcticcoast.info

Introduction

us Bureau, 2002 and United States department of commerce 1993; Canada: Statistics Canada, 1995 ar Islands: Farce Islands Statistics, 2002; Iceland: Statistics Iceland, 2002; Norway: Statistics Norway, 2002 2002; Russia: State Committee for Statistics, 2003; Republican information and publication center, 1992; S rid Wild Fund (WWF) Norway.

Erosion facts

- Rates as high as 20 m/yr
- Impacts on oil and gas facilities, local community infrastructure, cultural sites

Stefansson's cabin, Beaufort Sea

H. Lantui

Sensitivity to Sea Level Rise

Shaw et al., 1998

Background

- Establish coastal retreat rates for
 - 1952-1970
 - 1970-2000
 - •2000-2011

Shoreline in 2031 and 2061 Coastal Geohazard Map

Assess flooding potential
IPCC RCPs 2.6, 8.5

Shoreline Dynamics

Shoreline Dynamics

Shoreline Dynamics

- 2013 LiDAR
 - < 1 m point spacing
 - Low-pass filtering
 - Derivatives:
 - Elevation
 - Slope

Coastal geohazards

Discussion

• Shoreline change

- Complements Lantuit et al., 2008
- Higher spatial resolution, more insight
- Predictions of shoreline position could be improved

• Flooding potential

- Establishment of tidal datum crucial
- Not dynamic
- Indicates distribution of flood prone areas

Conclusions

- Shoreline dynamics
 - widespread shoreline retreat, acceleration
 - highest rates of erosion \rightarrow highest wave exposure and ice content
 - Very high retreat rates (up to -4.0 m· a⁻¹) in CR3
 - Spit is most dynamic
- Historic settlement vulnerable
- Geohazard maps are useful decision making tools

