The Airborne Measurements of Methane Fluxes (AIRMETH)
Arctic Campaign

Andrei Serafimovich*1, Stefan Metzger2,3, Jörg Hartmann4, Katrin Kohnert1, Sebastian Wieneke5, Torsten Sachs1

1 GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
2 National Ecological Observatory Network, 1685 38th Street, Boulder, CO 80301, USA
3 University of Colorado, 1560 30th Street, Boulder, CO 80303, USA
4 Alfred Wegener Institut – Helmholtz Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
5 Institute of Geophysics and Meteorology, Cologne University, 50969 Cologne, Germany
Background

Global CH4 budget for the past three decades [$Tg(CH_4) yr^{-1}$]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top-Down</td>
<td>Bottom-Up</td>
<td>Top-Down</td>
</tr>
</tbody>
</table>

[IPCC, The Fifth Assessment Report AR5]

- Wetlands are the dominant natural source of CH$_4$ over the globe
- Still large range of wetland emission estimates
- Permafrost wetlands not separately assessed
- Process-based models tend to be calibrated at individual wetland sites and then applied across the globe
- Spread in top-down approach is due to a lack of observations
Background

Global CH4 budget for the past three decades [Tg(CH$_4$) yr$^{-1}$]

<table>
<thead>
<tr>
<th>Tg(CH$_4$)yr$^{-1}$</th>
<th>1980 - 1989</th>
<th>1990 - 1999</th>
<th>2000 - 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top-Down</td>
<td>Bottom-Up</td>
<td>Top-Down</td>
</tr>
</tbody>
</table>

[IPCC, The Fifth Assessment Report AR5]

- Wetlands are the dominant natural source of CH$_4$ over the globe
- Still large range of wetland emission estimates
- Permafrost wetlands not separately assessed
- Process-based models tend to be calibrated at individual wetland sites and then applied across the globe
- Spread in top-down approach is due to a lack of observations

Eddy Covariance & Chamber measurements

- Continuous in-situ observations of the surface-atmosphere exchange
- Well suited for local process studies and for investigating the temporal variability of fluxes

But:
- Rare in the Arctic permafrost zone
- Site selection is bound by logistical constraints among others
- These observations cover only small areas that are not necessarily representative of the region of interest
Airborne Flux Measurements

AIRMETH 2012, North Slope of Alaska, 28 June - 2 July 2012
24 flight hours out of Barrow / 3500 km / 40 vertical profiles

- Closing the gap between tower and satellite measurements
- Assessing heterogeneity of sources and sinks

But:
- Expensive and provide a snapshot at a particular time
Research Aircraft POLAR5

Los Gatos RMT-200
CH_4, precision: 3 ppb @ 10 Hz

messWERK GmbH
3D wind, precision: 0.1 m/s @ 100Hz
Temperature, precision: 0.01 K @ 100 Hz

- Inertial Navigation System
- GPS
- Radar altimeter
- Laser altimeter
- Radiation thermometer
- Pyranometer
- Pyrgeometer
- Total Temperature Sensor
- Humidity / Temperature sensors
- Photo / Video cameras
Workflow

Aims
• Link the measurement to surface properties
• Land cover specific CH$_4$ flux
• Maps of the predicted CH$_4$ fluxes
• CH$_4$ budget and budget uncertainty
Workflow

Aims
- Link the measurement to surface properties
- Land cover specific CH_4 flux
- Maps of the predicted CH_4 fluxes
- CH_4 budget and budget uncertainty

Low-level flights
- 3D location
- 3D wind vector
- CH_4 concentration
- Humidity
- Air pressure & temperature
Workflow

Aims
- Link the measurement to surface properties
- Land cover specific CH$_4$ flux
- Maps of the predicted CH$_4$ fluxes
- CH$_4$ budget and budget uncertainty

Low-level flights
- 3D location
- 3D wind vector
- CH$_4$ concentration
- Humidity
- Air pressure & temperature

Time-frequency wavelet analysis
- Spatially resolved turbulence statistics
- Spatially resolved turbulent fluxes
Workflow

Aims
- Link the measurement to surface properties
- Land cover specific CH$_4$ flux
- Maps of the predicted CH$_4$ fluxes
- CH$_4$ budget and budget uncertainty

Low-level flights
- 3D location
- 3D wind vector
- CH$_4$ concentration
- Humidity
- Air pressure & temperature

Time-frequency wavelet analysis
- Spatially resolved turbulence statistics
- Spatially resolved turbulent fluxes

Footprint modelling
- Spatially resolved contributions of land cover, LST, EVI, NDVI, albedo to each observation of CH$_4$ flux
Workflow

Aims
- Link the measurement to surface properties
- Land cover specific CH$_4$ flux
- Maps of the predicted CH$_4$ fluxes
- CH$_4$ budget and budget uncertainty

Low-level flights
- 3D location
- 3D wind vector
- CH$_4$ concentration
- Humidity
- Air pressure & temperature

Time-frequency wavelet analysis
- Spatially resolved turbulence statistics
- Spatially resolved turbulent fluxes

Footprint modelling
- Spatially resolved contributions of land cover, LST, EVI, NDVI, albedo to each observation of CH$_4$ flux

Machine learning
- Environmental response functions
Atmospheric Scales

Excluded 20 runs (~1600 km) of 44 (~3500 km)

- above surface layer (> 10% boundary layer height) measured flux not representative of surface flux
- below mechanical blending height z_{blend} turbulence not representative of mechanical setting in entire source area

\[z_{blend} = \frac{u_* L_{hetero}}{U C_{blend}} \]

[Mahrt 2000, Bange 2007]
Atmospheric Scales

Excluded 20 runs (~1600 km) of 44 (~3500 km)

- above surface layer (> 10% boundary layer height) measured flux not representative of surface flux
- below mechanical blending height \(z_{blend} \) turbulence not representative of mechanical setting in entire source area

\[z_{blend} = \frac{u_*}{U} \frac{L_{hetero}}{C_{blend}} \]
[Mahrt 2000, Bange 2007]
Wavelet Analysis

- Spatially resolved turbulence statistics and LE, H, CH$_4$
- Large contribution from structures >1 km
- Mesoscale transport is not “visible” in flux tower measurements
Wavelet Analysis

- Spatially resolved turbulence statistics and LE, H, CH₄
- Large contribution from structures >1 km
- Mesoscale transport is not “visible” in flux tower measurements
Footprint Analysis

Footprint model of Kljun et al. (2004)

80% cum. footprint distance:

- 250–8400 m, median 800 m
- Spatially resolved contribution of land cover, LST, NDVI, EVI etc to each flux observation
Turbulent CH$_4$ Fluxes

- Purple: 95% confidence interval, grey: 1 σ random sampling error
- Color scale: dominant LST and NDVI in each 100 m slice

QA / QC tests:
- Steady state tests [Foken and Wichura, 1996; Vickers and Mahrt, 1997]
- ITC test [Foken, 2008]
- Rejection of fluxes below 95% detection limit
Machine Learning

Boosted Regression Trees

- ML approach tries to learn the response by observing inputs and responses and finding dominant patterns (regression tree)
- Boosting combine large numbers of relatively simple tree models adaptively, to optimize predictive performance
Boosted Regression Trees

\[\text{CH}_4 \text{ flux [mg m}^{-2} \text{ hr}^{-1}] \]

<table>
<thead>
<tr>
<th>Aircraft measured</th>
<th>LTFM predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

\[f(x) = 0.03 + 0.99x \]

MAD(res) = 3%

\[R^2 > 0.99 \]
Environmental Mean Response Functions

- $F_{\text{CH}_4 \text{ mass - Fit}_F}$
- $F_{\text{LST MODIS}}$ (9.6%)
- F_{mix} (8.3%)
- $F_{\text{R SW down}}$ (9.4%)
- $F_{\text{uv met}}$ (7.8%)
- $F_{\text{NDVI MODIS}}$ (7.6%)

Map of predicted CH$_4$ Flux

Median measured CH$_4$ flux along transects: 13.1 mg/m2/day
Median predicted CH$_4$ flux across the area: 18.9 mg/m2/day
Anaktuvuk River Fire

Credit: Bureau of Land Management, Alaska Fire Service

July – September 2007

Credit: Courtesy of Jim Laundre, Marine Biological Laboratory

NASA-MODIS image

June 14, 2008
Future Plans

Seasonality of drivers
Future Plans

Seasonality of drivers

Temporal maps of predicted CH$_4$ flux
Future Plans

Seasonality of drivers

Land cover & soil type specific CH$_4$ budget and budget uncertainty

<table>
<thead>
<tr>
<th>Land cover</th>
<th>CH$_4$ [mg/m2/hr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetlands</td>
<td>0.8</td>
</tr>
<tr>
<td>Shrub</td>
<td>0.3</td>
</tr>
<tr>
<td>Sedge</td>
<td>0.6</td>
</tr>
<tr>
<td>...</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Temporal maps of predicted CH$_4$ flux
Summary

- Airborne flux data covering extensive areas of terrestrial permafrost
- Wavelet decomposition yields high spatial resolution of the flux observations
- Footprint modelling to map spatially resolved contribution of environmental drivers
- Boosted regression trees to link the methane exchange to meteorological and biophysical drivers in a high latitude permafrost areas
- Environmental response functions assist bridging observational scales:
 - isolate and quantify relevant land-atmosphere exchange processes
 - extend airborne flux measurements to regional scale
 - estimate land cover specific emission factors
 - assess the spatial representativeness of flux tower measurements
Acknowledgments

- Engineers and flight crew: Christian Müller, Christian Konrad, PIC Jon Sipko, FO Dereck Peterson, AME Luke Cirtwill

- Additional funding and support: EU Cost Action PERGAMON, Helmholtz Climate Initiative “Regional Climate Changes” (REKLIM)

- Logistical support: Barrow Arctic Science Consortium (BASC), Aurora Research Institute (ARI)

- Scott Dallimore et al., Jens Greinert, Matthias Mauder, and many more