On the relevance of mesoscale transport for in-situ energy balance measurements

CONFERENCE PAPER · OCTOBER 2014

DOI: 10.13140/2.1.3816.4483

READS
36

11 AUTHORS, INCLUDING:

R. Desjardins
Research Branch
324 PUBLICATIONS 5,004 CITATIONS

Eyal Rotenberg
Weizmann Institute of Science
50 PUBLICATIONS 2,141 CITATIONS

Available from: Matthias Mauder
Retrieved on: 05 October 2015
On the relevance of mesoscale transport for in-situ energy balance measurements

Matthias Mauder, Fabian Eder, Hans Peter Schmid, Ray Desjardins, Katja Träumner, Marius Schmidt, Torsten Sachs, Stefan Metzger, Jörg Hartmann, Dan Yakir, Eyal Rotenberg
Scales of atmospheric motion

Reynolds decomposition (1895)
\[x = x + x', \quad Flux = wq = wq + w'q' \]
Energy balance closure problem

Available energy $R_n - G = \lambda E + H$

- H: sensible heat flux, R_n: net radiation
- λE: latent heat flux, G: soil heat flux

Worldwide in-situ measurements show energy balance closure of **84% ± 20%** (Stoy, Mauder et al., AFM, 2013, analysis of 180 FLUXNET sites)

One possible cause: Mesoscale transport
Hypothesis: mesoscale transport causes a systematic underestimation of tower flux measurements

Goals:
1. Detect meso-scale structures in the surface layer
2. Evaluate their flux contribution: vertical gradients of θ and q

modified after Mahrt (1998): Flux sampling errors for aircraft and towers, *Journal of Atmospheric and Oceanic Technology*
How large is mesoscale transport in the surface layer?

Candle Lake Runs (BOREAS/BERMS) @ 30 m measurement height

20 flights analyzed
\Rightarrow 5 – 20% mesoscale flux contribution (2 km)

(Mauder et al., 2007, JGR)
How close to the surface can mesoscale structures be found?

DUAL Doppler Lidar (KIT Cube)

RHI Scan (Halo Photonics)

17-04-2013 1030 – 1100 UTC
$U = 3.0 \text{ m/s, } \text{Dir } = 225^\circ$

(Eder et al., JAMC, submitted)
What are potential predictors for the mesoscale flux contribution?

TERENO Energy balance station Selhausen + KIT HATPRO, April and May 2013

\[\text{Residual} = a_0 + a_1 \cdot \frac{1}{u^*} + a_2 \cdot \lambda \frac{\Delta q}{\Delta z} : \text{multiple } R^2 = 0.60 \]

(Eder et al., JAMC, submitted)
What is the effect of roughness/shear on mesoscale structures near the surface?

Yatir Forest, Israel

Desert:
- ceilometer (boundary layer height)
- mobile flux tower

Forest:
- Doppler lidar (boundary layer height + wind)
- flux tower

Aug/ Sept 2013
What is the effect of roughness/shear on mesoscale structures near the surface?

Desert: EBR = 0.76

Forest: EBR = 1.03

Data from two meteorological towers and one Doppler Lidar: 2013-08-23
Can we use the Bowen ratio to adjust tower fluxes?

Low level flights longer than 100 km

- Polar 5 (AWI)
- Twin Otter (NRC)

Mesoscale latent heat flux larger
Conclusions

• Mesoscale transport can be as large as the energy balance residual in the surface layer.

• Vertical gradients of temperature and humidity explain a larger part of the systematic underestimation of eddy fluxes.

• In the roughness sub-layer, mesoscale structures get broken up by shear - then, the energy balance is closed.

• The mesoscale Bowen ratio is not generally conserved; we often found a larger portion of mesoscale energy exchange in λE.