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Characteristics of sea ice deformation in high-resolution viscous-plastic sea ice models
Leads in viscous-plastic (VP) models
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Figure: 
Divergence rate in 
MITgcm model run 
with an average 
horizontal grid 
spacing of 1km in 
the Arctic  
(D. Menemenlis, 
personal 
communication). 
Sea ice 
deformation 
localises in linear 
failure lines.

➡ At very high resolution leads emerge in viscous-plastic sea ice models.

Deformation rate distributions

Model Set-Up

Spatial scaling of deformation rates

Conclusions

Research Objectives: Do the emerging leads in VP sea ice models at very 
high resolution result in statistical and scaling properties of sea ice 
deformation comparable to satellite observations?

VP sea ice models at coarse resolution are known to reproduce statistical and 
scaling properties of sea ice deformation inappropriately [Girard et al., 2009], 
but …
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Figure 4. PDFs of modulus of divergence rate |✏I | and shear rate ✏II for runs with di↵erent

resolutions forced by idealized wind forcing. The slopes of the fitted power-laws are given in

Table 2.
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Figure 5. Comparison of PDFs of absolute divergence rate |✏I | and shear rate ✏II for wind stress

and model results. The presented time interval corresponds to the presence of the low-pressure

system in the idealized wind forcing.
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Figure: PDFs of both strain rate invariants for different horizontal grid spacing. 
The peaks in the PDFs are artefacts of the idealised wind forcing.
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Figure 6. Mean total deformation at di↵erent spatial scales from one-month model runs at four

di↵erent resolutions forced with JRA-25 reanalysis winds. The dotted line represents the least

square fit to the power law (6).
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Figure 7. Spatial scaling of the total deformation for two di↵erent wind forcing resolutions.

The results are from 9 days of 1-km model output forced by the 0.14� ECMWF analysis (15-km

grid) and from the same atmospheric fields coarse-grained to 125 km.
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Figure: Spatial 
scaling of the total 
deformation of 1-km 
model. The model is 
forced with 0.14º 
ECMWF analysis on 
its original 15-km grid 
and coarse grained to 
125 km.

Figure: PDF of both strain rate invariants in the Pan-Arctic set-up (1-km grid 
spacing, wind forcing: 0.14º ECMWF analysis). PDFs are given for the original 
grid scale of 1 km and coarse grained to 10 km scale.
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Figure 10. PDFs of modulus of divergence rate |✏I | and shear rate ✏II of the Pan-Arctic MITgcm

run with average grid spacing of 1 km. We use model output from 13-Sep-2011 to 28-Jan-2012

for this analysis both on the original 1-km grid and coarse-grained to a 10-km grid. The dotted

lines denote the slopes of the power-law fits, which are given for both grid resolutions.
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‣ With increased resolution the VP rheology has the potential to reproduce 
features of localised strain rates 

‣ The resolved leads influence strongly the  PDFs and scaling properties of 
deformation rates 

‣ Increasing the resolution of the wind forcing driving the sea ice motion 
improves spatial scaling properties 

‣ VP rheology appears to be an appropriate framework for modelling sea ice 
deformation at high resolution

Method: Herman and Glowacki’s [2012] scaling analysis adapted from a 
Lagrangian approach [Marsan et al., 2004] to data on an Eulerian grid.

Compute sea ice 
velocity gradients

Coarse grain to 
spatial scales

Compute deformation 
rates & average

Results: Spatial scaling improves with increasing model grid spacing as well 
as with increasing resolution of the wind forcing.

➡ Different grid spacing of sea ice model (1, 2, 5, and 10 km) are tested 
➡ Effects of different wind forcing resolutions (15 and 125 km) are studied

Discussion: Good agreement with scaling coefficient of elasto-brittle rheology 
0.11 [Rampal et al., 2015]. Scaling coefficients of satellite observations vary 
around 0.2 [Marsan et al., 2004, Stern et al., 2009], but are are thought to be 
overestimated by 60% [Bouillon et al., 2015].

Method: Determine the basin of attraction of the Probability Distribution 
Functions (PDF) of sea ice deformation rates

Compute PDF of 
deformation rates

Fit power-law tails:  
P (✏̇) ⇠ ✏̇�⌘

     converge to 
Gaussian shape

⌘ � 3 :

     converge to 
stable Lévy law

⌘ < 3 :

Results: Power-law tails flatten with increasing resolution and PDFs enter the 
basin of attraction to a stable Lévy law.

➡ Different grid spacing of sea ice model (1, 2, 5, and 10 km) are tested

➡ At high resolution emerging leads localise deformation rates 
➡ Deformation rates are dominated by extreme deformation events and 

characterised by wild randomness

Discussion: Good agreement of the slopes of the power-law tails obtained 
from the Pan-Arctic simulation with Girard’s et al. [2009] satellite observations 
(divergence: 2.4 and shear: 2.6).

Slope: 2.4

Slope: 2.2

Model: MITgcm (VP rheology)

Wind forcing:  
‣ Idealised: Sequence of passing high and low pressure system, 16 day cycle 
‣ Reanalysis wind fields: 0.14º ECMWF analysis with 15-km grid spacing

Idealised Environment: 500 km x 500 km ocean box covered with sea ice

500 km
closed boundaries

Initial conditions: 
sea ice thickness: 20 cm 
uniform concentration: A=1

one ocean layer (100 m deep) 
at rest

ice
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