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Abstract Investigating the interbasin deepwater exchange between the Pacific and Atlantic Oceans over
glacial-interglacial climate cycles is important for understanding circum-Antarctic Southern Ocean circulation
changes and their impact on the global Meridional Overturning Circulation. We use benthic foraminiferal
δ13C records from the southern East Pacific Rise to characterize the δ13C composition of Circumpolar
Deep Water in the South Pacific, prior to its transit through the Drake Passage into the South Atlantic. A
comparison with published South Atlantic deepwater records from the northern Cape Basin suggests a
continuous water mass exchange throughout the past 500 ka. Almost identical glacial-interglacial δ13C
variations imply a common deepwater evolution in both basins suggesting persistent Circumpolar Deep
Water exchange and homogenization. By contrast, deeper abyssal waters occupying the more southern
Cape Basin and the southernmost South Atlantic have lower δ13C values during most, but not all, stadial
periods. We conclude that these values represent the influence of a more southern water mass, perhaps
Antarctic Bottom Water (AABW). During many interglacials and some glacial periods, the gradient between
Circumpolar Deep Water and the deeper southern Cape Basin bottom water disappears suggesting either
no presence of AABW or indistinguishable δ13C values of both water masses.

1. Introduction

Benthic foraminiferal δ13C-based studies in the Southern Ocean have largely focused on the South Atlantic,
because the region is an important intersection point of major deepwater masses and thus crucial for under-
standing the role of the oceans’ physical circulation during glacial-interglacial climate change, particularly
with regard to the carbon cycle. At this critical junction, North Atlantic Deep Water (NADW) and Weddell
Sea-derived Antarctic Bottom Water (W-AABW) mix with Circumpolar Deep Water (CDW), which is inflowing
from the South Pacific. In this respect, a quantified understanding of past tracer distributions in the Atlantic
basin is immanently important to infer potential changes in physical ocean circulation, which may have
influenced the oceans capacity in sequestering atmospheric CO2 at depth [e.g., Gebbie, 2014; Hesse et al.,
2011; Hoffman and Lund, 2012; Lund et al., 2011; Wunsch, 2003].

So far, past δ13C changes of Pacific CDW, prior to its transition trough the Drake Passage into the Atlantic,
have been less well constrained and remain largely uncertain. Only few benthic foraminiferal δ13C-based
studies have attempted to define the CDW δ13C composition from the Southeast Pacific (SE Pacific) and
discussed the interbasin coupling to the Southeast Atlantic (SE Atlantic) [Hodell et al., 2000; Matsumoto
and Lynch-Stieglitz, 1999; Ninnemann and Charles, 2002]. Ninnemann and Charles [2002] revealed that an
interbasin δ13C gradient of ~0.6‰ developed between the East Pacific Rise and the deep southern Cape
Basin during the Last Glacial Maximum (LGM). In contrast, the modern eastward advection of CDW continu-
ously homogenizes the deepwater properties between both areas [Orsi et al., 1999, 2002; Reid, 1986, 1989],
with nearly no interbasin δ13C gradient [Kroopnick, 1985]. The reconstructed glacial interbasin δ13C differ-
ence originated from a much higher δ13C decrease of the deep waters occupying the southern Cape Basin
and adjoining southernmost South Atlantic areas than those occupying the East Pacific Rise [Curry and
Oppo, 2005; Mackensen et al., 2001; Martínez-Méndez et al., 2009; Ninnemann and Charles, 2002].
Accordingly, past δ13C of bottom water was diverging in the Pacific and Atlantic, indicating a fundamen-
tally altered deepwater exchange and increased bottom water heterogeneity between the basins during
the LGM. This reconfiguration was accompanied by changes in the formation mode of W-AABW or its gla-
cial equivalent [Ninnemann and Charles, 2002], which had a low end-member δ13C signature [Curry and
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Oppo, 2005]. However, this inference about the deepwater exchange between the Pacific and Atlantic
basins is basically restricted to the last glacial-interglacial cycle and based on the benthic δ13C record
of only a single core (E11-2) [Ninnemann and Charles, 2002] to define the Pacific CDW changes. Core
E11-2 was retrieved from ~3000m water depth, close to the core layer of southward flowing Pacific
Deep Water (PDW). Potential changes in the influence of this deepwater mass may therefore have
influenced the Pacific CDW record [Ninnemann and Charles, 2002]. Thus, it is difficult to assess to
what extent this interbasinal decoupling is an intrinsic characteristic of late Pliestocene glaciations, con-
founding our understanding of which Southern Ocean water mass and with what composition fed the
glacial abyss.

Changes in physical ocean circulation likely accounted for a large portion of the ~90 ppmv decline in atmo-
spheric CO2 concentrations, which occurred during each of the last five glaciations [Lüthi et al., 2008; Petit
et al., 1999]. Concepts that invoke atmospheric CO2 storage in the deep ocean [Adkins, 2013; Toggweiler,
1999], particularly in the Atlantic interior [Skinner, 2009], rely on the observation that the LGM distribution
of δ13C in the Atlantic displayed a higher vertical gradient than today at middepth, thus indicating a much
stronger intermediate to deep ocean chemical stratification [Curry and Oppo, 2005; Curry et al., 1988;
Duplessy et al., 1988; Hoffman and Lund, 2012; Ninnemann and Charles, 2002]. Accordingly, the LGM distribu-
tion of δ13C may imply less mixing of glacial-AABW (low-δ13C) and glacial-NADW (high-δ13C), which, in
essence, would increase the deep oceans ability to sequester atmospheric CO2. In this regard, a quantified
understanding of the LGM δ13C distribution in the Atlantic is important. Particularly, the occurrence of the
extremely low δ13C values in the southernmost South Atlantic is critical, as they provide indications on the
LGM end-member δ13C signature of AABW [Curry and Oppo, 2005; Marchitto and Broecker, 2006], which is a
basic parameter for ocean modeling and proxy-based numerical calculations [e.g., Gebbie, 2014; Hoffman
and Lund, 2012]. In addition, it is important to characterize Pacific CDW changes for understanding glacial-
interglacial atmospheric CO2 cycles, since stronger ocean chemical stratification in the Atlantic was a persis-
tently recurring pattern [Hodell et al., 2003a].

In this study, we extend and improve the temporal resolution of the currently sparse Pacific CDW record by
presenting two new, benthic foraminiferal δ13C records (PS75/059-2 and PS75/056-1) from the SE Pacific that

Figure 1. Map showing positions of discussed cores in the context of the modern deepwater hydrography; ocean and land
topography is from Ocean Data View (ODV) [Schlitzer, 2012]; circles indicate position of cores discussed in this study; arrows
show schematic flow path of major deepwater masses (CDW, Circumpolar Deep Water; AABW, Antarctic Bottom Water;
NADW, North Atlantic Deep Water); two subtypes of AABW are indicated (R-AABW, Ross Sea derived AABW; W-AABW,
Weddell Sea derived AABW); positions of the hydrographic sections displayed in Figure 2 are indicated as yellow lines.
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were recovered from the southern East Pacific Rise, within the core CDW layer, about 500m deeper than the
existing reference record E11-2 [Ninnemann and Charles, 2002]. We discuss the interbasin link to the SE
Atlantic and its implications on atmospheric CO2 storage over the past 500 ka by comparing our results to
published records from sites in the abyssal northern (RC13-229; ~4200m water depth [Oppo and Fairbanks,
1987; Oppo et al., 1990]) and southern Cape Basin (Ocean Drilling Program (ODP) Site 1089;~4600m water
depth [Hodell et al., 2001, 2003b]). The former core stems from a more northern latitudinal position
than the ones considered in previous LGM interbasin comparisons [Ninnemann and Charles, 2002].
Today, both Cape Basin sites are bathed in CDW, but well located to detect Atlantic-internal changes of
past AABW export.

2. Modern Deep Water Circulation

All core sites in this study are presently bathed in CDW (Figures 1 and 2), which forms through mixing with
northern and southern-sourced deepwater masses as it flows eastward within the Antarctic Circumpolar
Current (ACC) [Broecker et al., 1998; Johnson, 2008]. In the SE Pacific, Ross Sea-generated Antarctic Bottom
Water (R-AABW) spreads into the SE Pacific Basin at abyssal depths, without directly influencing the shallower
core sites on the East Pacific Rise [Orsi et al., 1999; Pardo et al., 2012]. The principal source of the deep water
that fills the Cape Basin today is Pacific CDW, which enters the South Atlantic basin through the Drake
Passage [Orsi et al., 1999; Reid, 1989]. However, unlike in the SE Pacific, the core sites in the SE Atlantic are
additionally influenced by NADW and W-AABW. Their incorporation into CDW is enhanced by turbulent mix-
ing over rough topography in the Scotia Sea, immediately after CDW has entered the South Atlantic through

Figure 2. Modern δ13C (PO4
3- derived) and AOU distribution for (a and c) the Southeast Pacific and (b and d) the Southwest Atlantic; the position of sections are

indicated in Figure 1 as yellow lines; the [PO4
2�] and AOU are from the WOA09 (gridded) data compilation [Garcia et al., 2010a, 2010b]; for data visualization

Ocean Data View (ODV) was used [Schlitzer, 2012]; circles indicate positions of cores discussed in this study; surface positions of Southern Ocean fronts are marked
by arrows (STF, Subtropical Front; SAF, Subantarctic Front; PF, Polar Front; SACCF, Southern ACC Front), according Orsi et al. [1995]; Southern Ocean deepwater
masses are indicated (CDW, Circumpolar Deep Water; AABW, Antarctic Bottom Water; NADW, North Atlantic Deep Water); two subtypes of AABW are indicated
(R-AABW, Ross Sea derived AABW; W-AABW, Weddell Sea derived AABW).
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the Drake Passage [Naveira Garabato et al., 2002, 2007; Orsi et al., 1999]. Thus, the South Atlantic CDW com-
position gradually becomes modified.

The δ13C of dissolved inorganic carbon (δ13CDIC) in seawater is a nonconservative tracer, as its modern
distribution in the deep ocean depends, besides water mass mixing, mainly on biological cycling. Further,
isotopic fractionation during air-sea gas exchange has a contributing influence on seawater δ13CDIC [e.g.,
Lynch-Stieglitz, 2003]. Today, it is largely linearly related to seawater nutrient concentrations, e.g., to phos-
phate concentrations [Kroopnick, 1985]. Figures 2a and 2b show the [PO4

3�] concentration in seawater from
two north-south sections at longitudes of the SE Pacific and SE Atlantic core sites (WOA09 (gridded) data
compilation [Garcia et al., 2010a]). In the SE Pacific, the [PO4

3�] concentrations in CDW at the core sites are
rather uniformly distributed, accordingly the core sites feature a similar δ13C signature (Table S1). In the SE
Atlantic, the low [PO4

3�] (high δ13CDIC) values between 2000m and 3500m are due to the intrusion of
NADW, separating CDW into an upper and lower layers. After passing through the Drake Passage, CDW also
interacts with W-AABW (high [PO4

3�]/low-δ13CDIC) at its base [Orsi et al., 1999]. In addition, a north-south gra-
dient exists across the SE Atlantic at these depths due to continuously increasing contributions of AABW
toward Antarctica [Broecker et al., 1998; Johnson, 2008]. In the Cape Basin, the regional north-south gradient
in [PO4

3�] concentrations is relatively small (Figure 2).

The apparent oxygen utilization (AOU) distribution (WOA09 (gridded) data compilation [Garcia et al., 2010b])
further illustrates the water mass distribution in both basins (Figures 2c and 2d). For the SE Pacific section, the
AOU shows that nearly homogenous CDW occupies wide areas, whereas R-AABW is restricted to the deep
southeast Pacific basin. For the SE Atlantic section, the AOU clearly outlines CDW as a separate water mass,
in addition to NADW and W-AABW. The high AOU signature on the East Pacific Rise can be traced to the
northern and southern Cape Basin.

3. Material and Methods
3.1. Sample Material

Piston core PS75/059-2 (54°12.90′S 125°25.53′W; 3613m water depth; 13.98 core length) and gravity core
PS75/056-1 (55°09.74′S; 114°47.31′W; 3581m water depth; 10.21 core length) were recovered during R/V
Polarstern cruise ANT-XXVI/2 [Gersonde, 2011]. The sites are located on the western (PS75/059-2) and eastern
(PS75/056-1) flank of the southern East Pacific Rise, immediately north of the Eltanin Fracture Zone (Figure 1).

3.2. Stable Isotopes

For oxygen and carbon isotope analyses the working halves of both cores were sampled in 1 cm thick slices at
5 cm intervals. After freeze drying, the samples were wet sieved over a 63μm mesh size, rinsed with deio-
nized water, and dried at a temperature under 40°C. Benthic foraminiferal species Cibicidoides wuellerstorfi
and Cibicidoides kullenbergi were picked from the 250–400μm size fraction. The stable isotope composition
of one to six foraminifera tests was analyzed on a Finnigan MAT 251 or Finnigan MAT 253 isotope ratio mass
spectrometer, each coupled with a Kiel Carbo (II, IV) carbonate preparation device, at the AWI Bremerhaven.
Isotope ratios of 18O/16O and 13C/12C are expressed in the δ-notation versus Vienna Peedee belemnite
(VPDB). The isotope measurements were calibrated to the VPDB scale using the international NIST 19 stan-
dard. The long-term precision of the measurements based on the repeated analyses of an internal laboratory
carbonate standard (Solnhofen limestone) was better than ±0.08‰ for δ18O and ±0.06‰ for δ13C. The sam-
ples of core PS75/059-2 were measured primarily on the Finnigan MAT 251 mass spectrometer, while
PS75/056-1 samples were measured entirely on the Finnigan MAT 253 mass spectrometer. The benthic
δ18O data of core PS75/059-2 and core PS75/056-1 have been published previously [Lamy et al., 2014]. For
core PS75/059-2, isotopemeasurements were primarily carried out onmonospecific samples of C. kullenbergi.
Only in few cases, monospecific samples of C. wuellerstorfi and mixed specific samples were measured
(Figure S1 in the supporting information). For core PS75/056-1, all measurements were carried out on mono-
specific samples of C. kullenbergi.

3.3. Age Model and Sedimentation Rates

The agemodels of cores PS75/059-2 and PS75/056-1 are based on the correlation of the benthic δ18O records
to the LR04 benthic δ18O stack [Lisiecki and Raymo, 2005], using the Match software [Lisiecki and Lisiecki,
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2002]. The δ18O values between the two cores are consistent throughout the entire record and match well
(Figure 3). However, a small constant offset of ~0.1‰ exists between the benthic foraminiferal δ18O records
of cores PS75/059-2 and PS75/056-1 (Figure 3). As the δ18O signature of benthic foraminiferal tests vary as a
function of ambient bottom water temperature and seawater δ18O distribution [e.g., Lynch-Stieglitz, 2003],
slight contrasts in these two water mass parameters may have been present across the East Pacific Rise.
Today, cold Ross Sea-derived AABW flows down the Antarctic continental slope and fills the Eastern Pacific
Basin at abyssal depth (Figures 1 and 2), approaching the East Pacific Rise from north and east [Orsi et al.,
1999, 2002], i.e., the side of the location of core site PS75/056-1. Based on inferences from benthic foraminif-
eral δ18O based studies from the Atlantic [Hoffman and Lund, 2012; Mackensen et al., 2001], the ~0.1‰
enriched benthic δ18O values at core site PS75/056-1 may thus originate from a slightly higher influence of
R-AABW at the of the southern East Pacific Rise throughout the past, which is not reflected in the respective
benthic δ13C records. However, we note that such a small offset is in principle within the range of interspecies
variability in foraminifera.

For core PS/75-059-2 the resulting average sedimentation rate is ~3 cm/ka, with maxima reaching ~6 cm/ka
during the interval between 390 ka and 420 ka (marine oxygen isotope stage (MIS) 11; Figure S2). This interval
is characterized by higher coccolith contents and carbonate components, constituting nearly 100wt %
[Gersonde, 2011]. For core PS/75-056-1, the average sedimentation rate is ~6.0 cm/ka in the upper part
(6–110 ka) and ~3.0 cm/ka further downcore (110–260 ka; Figure S2). For consistency, we re-tuned the pub-
lished records of E11-2, RC13-229, ODP Site 1090 and ODP Site 1089 (Table S1 in the supporting information)
to the LR04 benthic δ18O stack (Figure S3).

4. Results and Discussion
4.1. East Pacific Rise: Pacific CDW Reference Locations

The δ13C signature measured on tests of the benthic foraminiferal C. wuellerstorfi record the bottom
water δ13C composition in a one-to-one relationship [Curry et al., 1988; Duplessy et al., 1984, 1988]. Parallel

Figure 3. East Pacific Rise records from opposite ridge flanks. (a) LR04 benthic δ18O stack for stratigraphic reference.
(b) Benthic δ18C records of cores PS75/059-2 and PS75/056-1. (c) Benthic δ13C records of cores PS75/059-2 and PS75/
056-1; areas shaded in grey highlight glacial intervals.
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measurements of the benthic forami-
niferal C. wuellerstorfi and C. kullenbergi
(or C. mundulus) from a midlatitude
SE Pacific core off Chile reveal
constant down-core deviations of
~0.16‰ between both species
[Martínez-Méndez et al., 2013].
Given that records PS75/059-2 and
PS75/056-1 almost completely con-
sist of monospecific samples of
C. kullenbergi (Figure S1), we assume
that their amplitude changes ade-
quately reflect bottom water δ13C
compositional changes at the East
Pacific Rise. Yet their absolute values
could be about ~0.16‰ offset.

Core PS75/059-2 (3613m water
depth), recording past bottom water
δ13C composition at the western side
of the East Pacific Rise, displays large
glacial-interglacial variations over the
last 480 ka, with amplitudes ranging
between ~0.3‰ and ~1.5‰ at gla-
cial terminations (Figure 3). Lowest
values of �1.3‰ and �1.2‰ occur
during MIS 8 and MIS 10, respec-
tively, with an increasing long-term
trend thereafter. The δ13C record
of core PS75/056-1 (3581m water
depth), from the eastern side of the
East Pacific Rise, shows an almost
perfect match on orbital time scales
(Figure 3). This suggests that the
topography of the intervening ridge
crest had no significant influence on
the local δ13C distribution. Today,
the δ13C distribution at the East
Pacific Rise, as derived from phos-

phate (Figure 2), is almost homogeneous in the water column below 1200m. Thematch between our benthic
δ13C records of cores PS75/059-2 and PS75/056-1 indicates a likewise homogeneous distribution, at least
across the last two glacial-interglacial cycles (Figure 3). Comparison of our records to the published δ13C
values of core E11-2 located ~500m shallower (Figure 4; 3094m water depth) validates the homogeneity
of a substantial portion of SE Pacific CDW at orbital time scales.

Overall, our results imply that all three benthic δ13C records are representative for an almost homoge-
neous water mass on glacial-interglacial timescales, which occupies the East Pacific Rise area over a larger
depth range. We therefore name the water mass documented at the respective core locations as CDW,
being aware that its δ13C composition represents actually the lower portion of CDW (lower CDW).
Referring to the previous study by Ninnemann and Charles [2002], our reconstructions from deeper cores
extend the previous CDW reference record from core E11-2. However, on suborbital time scales transient
differences of up to ~0.3‰ occur among the three records during parts of MIS 3 (Figure 4). Partly, these
differences may result from their different sedimentation-rates and age model offsets. Alternatively, small
suborbital variations in relative contributions of PDW versus SE Pacific CDW affected the shallower core
site E11-2.

Figure 4. Comparison between benthic δ13C records from the East Pacific
Rise. (a) Records PS75/059-2 and E11-2. (b) Records PS75/056-1 and E11-2.
(c) Smoothed time series of records PS75/059-2, PS75/056-1, and E11-2,
calculated by kernel method; gray vertical line marks the last glacial
termination.
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4.2. Pacific-Atlantic Interbasin Link

Our East Pacific Rise records depict the δ13C composition of SE Pacific CDW prior to its transition trough the
Drake Passage and can thus be used as the Pacific end-member for interbasin deepwater exchange in the
Southern Ocean. We therefore discuss the past Pacific CDW influence on SE Atlantic southern-sourced deep
waters. We compare our results to the benthic δ13C reference records from core RC13-229 and ODP Site 1089
located in the abyssal northern and southern Cape Basin, respectively (Figure 2). For the following discussion,
we assume that δ13C values in the southern Cape Basin (ODP Site 1089) and in the northern Cape Basin (RC13-
229) reflect a water mass-controlled signal. However, it is under discussion whether the very depleted δ13C
values measured on benthic foraminifera species C. wuellerstorfi and C. kullenbergi from the southern Cape
Basin reflect solely a water mass signal, or whether they might be in addition influenced by local, biological,
or environmental factors [Hodell et al., 2003a;Mackensen et al., 1993; Ninnemann and Charles, 2002; Piotrowski
et al., 2005]. Indications for such impact in the southern Cape Basin are discontinuous, parallel isotope mea-
surements on both foraminifera species at ODP Site 1090 in the southern Cape Basin (water depth ~3700m).
These data show higher δ13C values for C. wuellerstorfi than for C. kullenbergi (Figure S4) [Hodell et al., 2000,
2003a; Venz and Hodell, 2002] during MIS 2–4, whereas the values are similar during interglacials.

On orbital time scales, the benthic δ13C records PS75/059-2 and RC13-229, which are based on benthic for-
aminiferal C. wuellerstorfi measurements, are virtually identical (Figure 5a), showing similar absolute values
and down-core variability. The consistency of the records is corroborated by the absence of a long-term trend
in the difference between both records (Figure 5b). This is consistent with the phosphate-derived modern
seawater δ13C difference of ~0.1‰ of the water masses overlying both core sites (Table S1).

On suborbital time scales, differences of up to 0.4‰ appear, especially in the past 150 kyr (Figure 5b), without
significant glacial-interglacial pattern characteristics. Despite potential influences by differences in the tem-
poral resolution of both records or age model uncertainties, this variability may indicate changes in ocean
circulation, induced by a varying influence of local, northern and southern-sourced water masses in the SE
Atlantic [Piotrowski et al., 2005, 2008]. Nonetheless, if the benthic δ13C record PS75/059-2 reliably reflects
the evolution of past CDW composition at the East Pacific Rise, the comparison implies for orbital time scales
that a common CDW composition was maintained for the Pacific and the Atlantic basin over the past 480 ka.
In turn, this suggests a continuous coupling between CDW at the East Pacific Rise and in the northern Cape

Figure 5. Comparison between East Pacific Rise and northern Cape Basin. (a) Benthic δ13C records PS75/059-2 and RC13-
229. (b) Difference between benthic δ13C records PS75/059-2 and RC13-229 (Δδ13C = δ13CRC13-229� δ13CPS75/059-2);
note that it shows any long-term trend; before subtraction the original time series were resampled in 3 ka spacing
with linear interpolation between data points; areas shaded in grey highlight glacial intervals; for resampling the
AnalySeries program was used [Paillard et al., 1996].
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Basin, consistent with the notion that benthic δ13C values of northern Cape Basin core RC13-229 reflect the
δ13C composition of average CDW [Oppo et al., 1990].

Our C kullenbergi δ13C records from South Pacific cores PS75/059-2 and PS75/056-1 are on orbital timescales
similar to the southern Cape Basin C. wuellerstorfi data from ODP Site 1090 and and identical to the northern
Cape Basin δ13C record from core RC13-229, which consists of on C wuellerstorfi measurements only [Oppo
and Fairbanks, 1987; Oppo et al., 1990] (Figure S4). This indicates that influences by local, biological, or envir-
onmental factors were minor. Apparently, our predominantly used foraminiferal species C kullenbergi record
the “true” water mass δ13C composition, and thus the δ13C evolution of South Pacific CDW.

It is important to note that in contrast to our results, former benthic δ13C-based observations by Ninnemann
and Charles [2002] implied a diverging δ13C evolution for the SE Pacific and SE Atlantic area, associated with
the development of a high interbasin δ13C gradient of ~0.6‰ at the LGM. This interbasinal contrast arises
when comparing to the deeper southern, and not to the northern Cape Basin records [Ninnemann and
Charles, 2002]. Similar differences are visible, when comparing the East Pacific Rise record PS75/059-2 with
the southern Cape Basin reference record ODP Site 1089 [Hodell et al., 2001]. The ODP Site 1089 data show
considerably lower δ13C values over much of its length, particularly during the LGM (Figure 6). The difference
between the East Pacific Rise—southern Cape Basin records, or interbasin δ13C gradient, was highest during
the last glacial cycle (MIS 2 and 4) with offsets of ~0.8‰. The gradient re-occurred, albeit with lower ampli-
tude, several times over the past ~500 ka. Interbasinal gradients developed during glacial MIS 6, 10, and 12.
However, the interbasin gradient displays an irregular, rather than systematic, glacial-interglacial modulation
with gradients also apparent during interglacial MIS 11 (Figure 6), as well as with periods of absence, e.g., dur-
ing late MIS 9 through MIS 8 and MIS 7. The fact that our LGM interbasin δ13C gradient (~0.8‰) is ~0.2‰
higher than the originally reported one (~0.6‰) originates from relatively high glacial values of core
PS75/059-2, when compared to E11-2 used previously [Ninnemann and Charles, 2002]. We conclude that
the strength of the interbasin δ13C gradient might not only or simply indicate the degree of deepwater

Figure 6. Comparison between East Pacific Rise and southern Cape Basin. (a) Benthic δ13C records PS75/059-2 andODP Site 1089.
(b) Difference between benthic δ13C records PS75/059-2 and ODP Site 1089 (Δδ13C= δ13CODP Site 1089� δ13CPS75/059-2);
the original time series ODP Site 1089 was smoothed using a 5-point moving average; before subtraction the smoothed
time series ODP Site 1089 and the original time series PS75/059-2 were resampled in 3 ka spacing with linear interpolation
between data points; the LGM gradient (~�0.6‰) is an average of the values between 18 ka and 24 ka; areas shaded
in grey highlight glacial intervals; for resampling and smoothing the AnalySeries program was used [Paillard et al., 1996].
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decoupling between the SE Pacific and SE Atlantic. Rather, it portrays the independent evolution of deep
waters that bathed the southern Cape Basin and adjoining southernmost South Atlantic areas, with regard
to a common SE Pacific and SE Atlantic CDW evolution. In other words, it appears as if there is a continuously
homogeneous CDW mass present in both basins with another deeper more southern water mass (perhaps
AABW). During many interglacials (MIS 1, 5, 7, and 9) and some glacial periods (MIS 8, as well as portions
of MIS 6 and 10), the gradient between CDW and the deeper southern Cape Basin bottom water disappears,
suggesting either no presence of AABW or that CDW and AABW δ13C values are indistinguishable at
these times.

4.3. Implications for Past South Atlantic Deepwater Circulation

The past AABW end-member δ13C composition is not well known due to scarce data in the water formation
regions around Antarctica [e.g., Marchitto and Broecker, 2006]. Thus, many South Atlantic LGM studies
use δ13C minimum values (~0.9‰) from the deep southern Cape Basin and adjacent areas as most probable
AABW end-member analogues [Curry and Oppo, 2005; Mackensen, 2001; Martínez-Méndez et al., 2009;
Ninnemann and Charles, 2002]. During the LGM, these deep SE Atlantic δ13C values were far lower than the
SE Pacific δ13C values from the East Pacific Rise area [Ninnemann and Charles, 2002] (Figure 6). For instance,
during the LGM an invasion of very low δ13C AABW at the expense of current CDW is indicated, while the
missing difference during the MIS 8 glaciation implies either that no AABW invasion occurred at that time
or that AABW end-member δ13C composition was undistinguishable from CDW (i.e., AABWwas the dominant
constituent determining CDW δ13C). LGM studies often link the occurrence of the extremely depleted benthic
δ13C values in the southern Cape Basin to changes in the expansion and formation mechanisms of W-AABW,
resulting in a drastic lowering of its end-member δ13C signature [e.g., Curry and Oppo, 2005; Marchitto and
Broecker, 2006; Martínez-Méndez et al., 2009; Ninnemann and Charles, 2002]. This is evident in the negative
LGM difference between records PS75/059-2 and ODP Site 1089 (Figure 6). One potential cause for the
LGM δ13C depletion might have been a strongly reduced air-sea gas exchange during AABW formation,
related to expansion of sea ice coverage around Antarctica [Mackensen, 2012] Additional depletion may have
occurred to the buildup of respired CO2 in the deepest/southernmost Antarctic water masses [Toggweiler
et al., 2006]. Likewise for pre-LGM times, more negative δ13C values for the southern Cape Basin record
ODP Site 1089 may therefore point toward an increased influence of very δ13C depleted AABW, and conver-
sely, a restriction of AABW influence only to this location as it did not dominate the CDW δ13C signature. If
true, the difference between both records indicates very complex CDW and AABW interactions further back
in time, associated with changes in past AABW end-member δ13C composition (Figure 6). To the extent that
ODP 1089 is depicting the true AABW end-member (pending confirmation from a site bathed more directly
by AABW), AABW-CDW differences then provide a monitor of the relative contribution (and dominance) of
AABW in the common CDW composition. The current LGM picture with the exceptionally low benthic δ13C
values in the southernmost South Atlantic relative to CDW bathed sites, indicating particularly strong
AABW influence only at this location, appears to be not a simple or systematic feature of other glacial stages.
Indeed, the persistent Pacific-derived CDW presence in the northern Cape Basin (Figure 5) indicates that the
propagation of low- δ13C Antarctic-sourced bottom waters was restricted and did not reach into the lower
latitude Atlantic, thus limiting the volumetric importance of bottom waters bathing the southern Cape
Basin. Due to its characteristic δ18O and δ13C composition, deep southern Cape Basin waters may represent
an individual glacial W-AABW variety, or more pure end-member, during the LGM, distinct to a much lesser
δ13C depleted glacial AABW, which flowed into the Atlantic interior along its western boundary [Hoffman and
Lund, 2012; Martínez-Méndez et al., 2009].

As total AABW production may have been higher during glacial times [e.g., Adkins, 2013], this glacial W-AABW
variety was only a relatively smaller component of glacial Southern-Sourced Deepwater Masses that propa-
gated into the lower latitude deep Southeast Atlantic; via its mixing into CDW. According to our comparisons
it seems unlikely that W-AABW in its undiluted formwas exported directly further north toward the equatorial
Atlantic direction, at least during the LGM. Such enhanced transport would have only been possible if restric-
tions by seafloor topography on dense AABW flow could have been overcome through a vertical expansion
of AABW at the expense of glacial Northern Atlantic Deepwater distribution. Otherwise, as today, the
densest varieties of Antarctic bottom water will continue to be constrained by topography with only lighter,
mixed versions flowing northward filling basins. However, Atlantic-wide highest published LGM δ18O values,

Paleoceanography 10.1002/2016PA002932

ULLERMANN ET AL. PACIFIC-ATLANTIC DEEP WATER COUPLING 647



obtained from the Brazil margin, indicate that during the LGM AABW penetrated along the western boundary
far northward into the Atlantic interior [Hoffman and Lund, 2012]. This northward flowing AABW appears
distinct in δ18O and δ13C space from that occupying the SE Atlantic [Hoffman and Lund, 2012] but its isotopic
composition is much to the “common” CDW composition.

5. Conclusions

In this study we examined the deepwater exchange between the Pacific and Atlantic basins over the past
500 ka. Using benthic foraminiferal δ13C data from the East Pacific Rise, we characterized the δ13C composi-
tion of SE Pacific CDW, prior to its transition trough the Drake Passage, and showed that it closely co-evolved
with the CDW composition in the deep SE Atlantic, northern Cape Basin. Our results imply a continuous deep-
water exchange between the SE Pacific and SE Atlantic throughout the past 500 ka. We conclude that a com-
mon CDW was maintained between the SE Pacific and the SE Atlantic (Northern Cape Basin). In contrast, our
comparison to the southern Cape Basin records indicates that an interbasin δ13C gradient was particularly
pronounced during the LGM and occurred in weaker form during most of the other glaciations but was
absent or even positive during MIS 8.

Our results confirm that deep waters in the southernmost areas of the SE Atlantic, including the southern
Cape Basin, evolved differently from a CDW that occupied the deepwater layer in the SE Pacific and the SE
Atlantic, as proposed previously [Ninnemann and Charles, 2002]. This divergent evolution of southern
South Atlantic deep waters can be explained by repeated northward expansion of W-AABW into that area,
combined with changes in its end-member δ13C signature. Thus, defining CDW as an individual deepwater
mass in the Atlantic reveals a more differentiated picture on past AABW extent. In that regard, the current
LGM picture associated with the extremely low LGM benthic δ13C values in the southernmost SE Atlantic
needs to be refined. Such differentiations in South Atlantic deepwater characteristics might be helpful when
discussing past deep Southern Ocean water mass signatures and end-member compositions as well as when
quantifying their contribution to global deep water and atmospheric CO2 changes on glacial-interglacial
time scales.
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