Foraging hotspots of Weddell seals in the southern Weddell Sea

Dominik A. Nachtsheim1, Svenja Ryan1, Michael Schröder1, Laura Jensen1, W. Chris Oosthuizen2, Marthán Bester2, Horst Bornemann1

1Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
2Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
Background

- Filchner Outflow System in south-eastern Weddell Sea
Background

- Filchner Outflow System in south-eastern Weddell Sea
- Intensive mixing of water masses -> hotspot?

Bornemann et al. 2010
Background

- Southern elephant seals foraged at Filchner Trough
- Weddell seals are residents in the area year-round
- Aim: to characterize and describe potential foraging hotspots

Bornemann et. al. 2010
Material and Methods

RV *Polarstern* research expedition PS82 to Filchner Outflow System in 2014

6 Weddell seals:
CTD-combined satellite-linked dive loggers (CTD-SRDLs)
Material and Methods

• CTD-SRDLs provide...
 – seal locations via Argos satellites
Material and Methods

- CTD-SRDLs provide...
 - seal locations via Argos satellites
 - CTD profiles
Material and Methods

- CTD-SRDLs provide...
 - seal locations via Argos satellites
 - CTD profiles
 - time-depth profiles of each dive
Material and Methods

- from dive profiles, several parameters for foraging behaviour:
 - maximum dive depth (pelagic / demersal)
 - hunting time
 - index for foraging effort in the bottom phase
Material and Methods

• set of environmental covariates, which may influence foraging behaviour:

 – bathymetry
 – water masses
 – sea ice concentration
 – distance to winter polynya
 – light availability (daily / seasonal)
Material and Methods

- hierarchical state-space model (hSSM) to filter seal tracks and infer hidden behavioural states along track (Jonsen 2016)

- statistical analysis: linear mixed effect model (R package \textit{nlme}; Pinheiro \textit{et al.} 2016)
Results & Discussion

• transmission duration: 174.5 ± 68.9 d (range: 49-246 d); January – October 2014

• 12,256 dives; 70.7% pelagic, 29.3% demersal

• pelagic dive depth: 143.5 ± 119.0 m
• demersal dive depth: 460.5 ± 115.0 m
Results & Discussion
Results & Discussion
Results & Discussion

- maximum dive depth:
 - deeper during day than night (only pelagic)
Results & Discussion

- maximum dive depth:
 - deeper during day than night (only pelagic)
 - no effect of season
Results & Discussion

• hunting time:
 – higher in winter than in summer
 – higher in shallower waters
Results & Discussion

- foraging effort in bottom phase:
 - negative in autumn and winter
Results & Discussion

- foraging effort in bottom phase:
 - negative in autumn and winter
Results & Discussion

- foraging effort in bottom phase:
 - negative in autumn and winter
 - highest in MWDW
Conclusions

• two potential foraging hotspots

• diel variation in dive depths
 ➔ vertical migrations of prey species

• hydrographic conditions (MWDW & ESW) influence foraging activities
Conclusions

• Weddell seals increase hunting time during winter

• generally, sea ice concentration and distance to polynya not important

• foraging effort in the bottom phase decreases during dark season

→ Weddell seals may shift foraging strategies?
References

• Photo of satellite: https://directory.eoportal.org/image/image_gallery?img_id=185284&t=1338451672912
Thank you for your attention!