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Abstract 

 

Pediastrum and other representatives of the green algae family Hydrodictyaceae 

(Chlorophyta), commonly found in freshwater environments, are potential bioindicators 

for paleolimnological studies as they are preserved in sediments and morphologically 

classified as non-pollen palynomorphs obtained along with pollen spectra. 

The aim of this study was to examine the diversity in Hydrodictyaceae obtained from 

modern and ancient Siberian lake sediments following a molecular genetic approach. 

Environmental samples were obtained from lakes across the arctic-boreal tree line in 

Siberia. Modern sedimentary DNA (sedDNA) was isolated from the samples and a 

selected fragment of the rbcL gene, encoding the large subunit of the enzyme RuBisCO 

(ribulose-1,5-bisphosphate carboxylase/oxygenase), was amplified via polymerase 

chain reaction (PCR). The respective primer pairs were specifically developed 

beforehand and optimized for the desired target fragment in Hydrodictyaceae. Four 

primer combinations were tested on two modern sediment samples and the most 

suitable primer combination was selected and applied to additional modern and core 

samples. The PCR products were cloned and sequenced by Sanger sequencing; the 

sequences were aligned and verified and taxonomic identification was conducted based 

on BLAST nucleotide search. 71.2 % of the obtained sequences were assigned to 

Hydrodictyaceae in ten out of eleven samples and 28.8 % to unknown algae strains in 

nine out of eleven samples. In total, thirteen different rbcL lineages were detected, 

among them twelve lineages of Pediastrum and Pseudopediastrum in modern sediments 

and six in ancient core sediments, including a single Stauridium lineage in one core 

sample. Five different lineages were detected in both sample types. One sample did not 

yield any Hydrodictyaceae lineage.  

Although the preliminary results of this study indicated that the distribution of lineages 

was fairly heterogeneous, we recognized a general tendency in terms of sample type 

(surface/core) and vegetation type (tundra/forest tundra/forest), but could not identify 

distinct preferences of single lineages. Phylogenetic inferences of the lineages indicated 

that a resolution down to species and strain level is not possible for most of the 

examined lineages.  
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However, this study showed that Pediastrum DNA was reliably amplified from modern 

lake sediments and from core depths of up to 62 cm, the latter of which yielded ancient 

DNA (aDNA) with an age of approximately 3000 years. Possibly further studies 

covering larger datasets and additional genetic markers will give better resolution in 

terms of quantification, taxonomic coverage and identification. 

 

 

Zusammenfassung 

 

Pediastrum und andere in Süßwasser-Ökosystemen verbreitete Vertreter der Familie 

Hydrodictyaceae (Grünalgen, Chlorophyta) sind potentielle Bioindikatoren für 

paläolimnologische Studien und lassen sich in Oberflächensedimenten und 

Sedimentkernen, aber auch im Pollenspektrum morphologisch als sog. Nicht-Pollen-

Palynomorphe bzw. organisches Mikrofossil detektieren.  

In der vorliegenden Arbeit wurde die Diversität von Hydrodictyaceen in Sedimenten 

und Bohrkernen aus sibirischen Seen anhand eines molekulargenetischen Ansatzes 

untersucht. Umweltproben wurden aus Seen entlang der arktisch-borealen Baumgrenze 

Sibiriens erhalten. Rezente und alte sedimentäre DNA (sedDNA) wurde aus den Proben 

isoliert und ein ausgewähltes Fragment des Gens rbcL, das die große Untereinheit des 

Enzyms RuBisCO (Ribulose-1,5-bisphosphat-carboxylase/oxygenase) codiert, via 

Polymerase-Kettenreaktion (PCR) mit Hilfe zuvor spezifisch entwickelter, auf das 

Zielfragment optimierter Primer amplifiziert. Vier Primerkombinationen wurden an 

zwei rezenten Sedimentproben getestet und die geeignetste für die folgenden Versuche 

an weiteren Oberflächen- und Kernsedimenten ausgewählt. Die PCR-Produkte wurden 

kloniert und mittels Sanger-Sequenzierung sequenziert. Die erhaltenen Sequenzen 

wurden aligniert, verifiziert und eine taxonomische Identifikation wurde mittels BLAST 

nucleotide search ermöglicht. 71.2 % der erhaltenen Sequenzen in zehn von elf Proben 

konnten den Hydrodictyaceen zugeordnet werden, 28.8% in neun von elf Proben 

entsprachen nicht identifizierten Algenarten. Insgesamt konnten dreizehn 

unterschiedliche, verifizierte rbcL-Linien ermittelt werden, darunter zwölf Pediastrum- 

und Pseudopediastrum-Linien in Oberflächensedimenten und sechs in Kernsedimenten 

sowie eine Stauridium-Linie, die ausschließlich in einer einzelnen Kernprobe ermittelt 
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wurde. Fünf Linien wurden in beiden Sedimenttypen gefunden; nur in einer Probe 

konnten keine Hydrodictyaceen detektiert werden.  

Die Verteilung der detektierten Hydrodictyaceae-Linien stellte sich dabei als 

uneinheitlich dar; zwar konnte eine allgemeine Tendenz hinsichtlich Probentyp 

(Oberflächen- und Kernsediment) und Vegetationstyp (Tundra/Waldtundra/Wald) 

beobachtet werden, deutliche Präferenzen einzelner Linien bestätigten sich jedoch nicht. 

Phylogenetische Analysen zeigten, dass eine Auflösung auf Artniveau und darunter für 

die meisten der untersuchten Linien nicht möglich ist. Dennoch konnte im Rahmen der 

vorliegenden Arbeit gezeigt werden, dass sich Pediastrum-DNA zuverlässig aus 

Oberflächensedimenten und aus Sedimentkerntiefen von bis zu 62 cm (entspricht ca. 

3000 Jahre alter DNA) isolieren ließ. Weiterführende Studien mit umfassenderer 

Datenerhebung und Nutzung zusätzlicher genetischer Marker könnten eine bessere 

Auflösung hinsichtlich Quantifizierung und taxonomischer Einordnung ermöglichen. 
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1. Introduction 

 

1.1. Hydrodictyaceae  

 

Hydrodictyaceae is a family of green algae in the order Sphaeropleales, including some 

of the most common freshwater planktonic algae such as the genera Pediastrum, 

Stauridium and the eponymous Hydrodictyon. The name means “water net” (1), 

deriving from the Greek words hydor = water and diktyon = net, and was introduced by 

Swiss botanist Jean-Pierre Vaucher in the 19th century (2) because of its characteristic 

mesh-like colony structure (also called coenobium), where each individual is connected 

to other algae, forming a net (Fig. 1).  

 

   A    B     C                    20 µm  

   D    E    F 

   G    H    I 
 
 

 

Fig. 1: Different morphotypes of Pediastrum. (A) Pediastrum boryanum type-1, (B) P. 

boryanum type-2, (C) P. integrum, (D) P. duplex, (E) P. boryanum var. brevicorne, (F) P. 

boryanum var. longicorne (G) P. angulosum, (H) P. kawraisky, (I) P. orientale. Pictures and 

taxonomic determination: Bastian Niemeyer, AWI 



Bachelor thesis  Introduction 

10 
 

Reproduction of Hydrodictyaceae occurs both asexually, by separation of a mother cell 

into zoospores that join together to a daughter coenobium, and sexually, by fusion of 

haploid gametes to a diploid zygote. However, sexual reproduction is characteristic for 

Hydrodictyon and has only rarely been observed in species of Pediastrum (3). 

 

 

1.2. Pediastrum as bioindicator 

 

The worldwide abundance of Hydrodictyaceae in freshwater ecosystem supports their 

role as potential (paleo)bioindicators, particularly as proxies (indirect characteristics) 

for paleolimnological studies and climate research (3). Pediastrum can also be detected 

as organic microfossil or non-pollen palynomorph (NPP) along with pollen spectra as 

the cells are usually preserved despite harsh pollen processing conditions (e.g. chemical 

treatment with hydrochloric acid or sulfuric acid), representing an additional 

bioindicator (4). Similar NPPs have been used regularly combined with palynofacies 

analyses (i.e. pollen studies in sediments) for paleoenvironmental and paleoclimatic 

reconstructions (5).  

Typical criteria for morphological identification of Pediastrum in a light microscope 

include the arrangement of coenobia and single cells as well as the structure of the outer 

cell wall layer (3). According to Jankovská and Komárek (6), it is both possible and 

feasible to improve the precision of paleoecological reconstruction of environments in 

the past utilizing the information from a great number of examined localities and 

identified algal taxa. The possibility of utilizing the indicative value of green algae, e.g. 

for reconstruction of past climatic conditions, has been shown by Jankovská and 

Komárek on examples of algal communities from modern and ancient sediments 

obtained from different longitudes, latitudes and altitudes (6). Implementation of 

Pediastrum species as supportive paleobioindicators enables reconstruction of changes 

in vegetation and aquatic environments, but also takes into account climatic influences 

such as warm and cold periods (7). However, only few paleolimnological studies from 

the Arctic have used Pediastrum as proxy (8), although they can be reliably detected, 

classified morphologically and identified to species level both in surface sediments and 

sediment cores (4). 
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1.3. RbcL as genetic marker 

 

Next to the general metabarcoding approach, primers used for amplifying 

environmental DNA depend on the target organism group; they can be generic or more 

group-specific as long as they are able to amplify diagnostic sequences.  

The primers used in the context of this study had previously been designed and 

optimized for short fragment lengths within the rbcL gene of Hydrodictyaceae in order 

to enable taxa-specific amplification of the target group and to minimize possible 

amplification of algae from other families. Located on the chloroplast genome 

(cpDNA), rbcL encodes the large subunit of the enzyme ribulose-1,5-bisphosphate 

carboxylase/oxygenase (RuBisCO) (13), which is the essential enzyme responsible for 

carbon fixation in photosynthesis and hence can be found in all phototrophic organisms 

including plants, algae and cyanobacteria. The major advantage of rbcL over other 

genetic markers (such as nuclear ribosomal genes present in nearly all organisms) is that 

the use of cpDNA as a marker greatly reduces the amplification of undesired organisms 

without chloroplasts, while ribosomal markers may target other highly abundant taxa 

like bacteria and fungi. Recent studies confirmed rbcL as a short region barcoding 

marker for phototrophic algae such as diatoms (Bacillariophyta) obtained from sediment 

and core samples (14) (15). 

 

 

1.4. Environmental DNA and metabarcoding 

 

A different approach to investigate biodiversity is to obtain the DNA of targeted 

organisms directly from environmental samples, such as lake sediments. 

Hydrodictyaceae and specifically Pediastrum are expected to be abundant in modern 

and ancient lake sediments and are potentially well-suited candidates for environmental 

DNA analyses. One common approach using environmental DNA is metabarcoding. 

This technique enables direct diversity analyses of environmental samples based on the 

combination of amplification of diagnostic DNA fragments and sequencing of PCR 

products and offers a fairly straightforward procedure: DNA is isolated from 

environmental samples and a characteristic section of the targeted gene out of a mixture 
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of total genomic DNA is amplified by PCR. It has to be considered though that in order 

to reliably amplify ancient DNA (aDNA) from core sediment samples, only very short 

fragments (~150 bp) can be selected due to heavy degradation of the DNA (9) (10) (11). 

A general metabarcoding approach usually requires more universal markers to cover a 

broad taxonomic range. 

 

Sequencing of PCR products is facilitated by conventional Sanger sequencing of clones 

or parallel high-throughput next-generation sequencing, like Illumina® or 454 (Roche) 

sequencing technologies which enable sequence reads on a considerably larger scale. 

Next-generation sequencing is recommended for samples with high species diversity if 

established markers are available and more detailed data is desired. The sequences can 

then be compared with a public database.  

Metabarcoding efficiently generates comprehensive data sets and is also applicable by 

scientists with less expertise in taxonomy and morphological characterization. 

Compared to a traditional pollen-based or morphological analysis, metabarcoding 

allows identification of more taxa at lower taxonomic level, which has been shown on 

ancient permafrost soil samples from Arctic regions with other chloroplast markers (12). 

However, the results are strongly affected by the grade of DNA decay and the 

specificity of the implemented primers for certain taxa (11) (12). It was suggested to 

complement general metabarcoding approaches with group-specific primers, supported 

by a morphological background and on-site studies to obtain reliable results (12).  

 

 

1.5. Study area 

 

The environmental samples used in this study were collected on field expeditions in 

2011 (Chatanga expedition, CH) and 2013 (Taymyr expedition, TY) south of Khatanga 

Gulf and Taymyr Peninsula, in the northeastern part of Krasnoyarsk Krai, Russian 

Federation. The region, located between 70° and 73° north latitude and 97° and 106° 

east longitude, extends over an area of approximately 55.000 km2 and is very sparsely 

populated (on average less than 1 inhabitant per km2). Thus, human impact on the 

sample area can be considered as low. 



Bachelor thesis  Introduction 

13 
 

The surface and core sediments were obtained from lakes located along a latitudinal 

transect in the ecotone (transition area) between tundra, forest tundra and forest (light 

northern taiga) in the Khatanga region. Apart from summer temperatures, the expansion 

of the tree line is also affected by global climate and is responding to recent global 

warming, resulting in a northward shift and an approximation of the boundary to former 

maximum positions like the Holocene Climate Optimum about 10000-6000 years ago 

(16). Furthermore, a vegetation gradient is connected to a general ecological gradient 

that may also affect chemistry and biodiversity in the embedded lakes: it has been 

shown for other Siberian regions that lake-water chemistry is correlated with vegetation 

(e.g. higher forest density leading to increased lake alkalinity), and postulated a local 

salt aggregation in soils due to a lack of continuous groundwater flow within permafrost 

soils (17). Therefore, a general correlation with the vegetation gradient in the examined 

area is assumed for the diversity of Pediastrum in lake sediments. 
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2. Objective 

 

The aim of this study is to identify Hydrodictyaceae DNA, especially Pediastrum, in 

surface sediments and different layers of a sediment core from Siberian lakes and to 

examine their genetic diversity. In this context, the following questions were raised: 

 

 Is it possible to reliably amplify Hydrodictyaceae DNA from modern and 

ancient lake sediment samples? 

 Are patterns detectable in the distribution of Hydrodictyaceae lineages in lakes 

across the Siberian tree line ecotone? 

 Is rbcL a suitable marker to display diversity in Hydrodictyaceae? 

 What are possible (preliminary) indications that can be drawn from sedDNA-

based analyses of Hydrodictyaceae regarding paleolimnological applications? 
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3. Materials and Methods 

 

3.1. Materials 

 

3.1.1. Chemicals and buffers 

 

BSA (UV, 20 mg/ml)    VWR International, Darmstadt, Germany 

6x DNA loading dye    Thermo Scientific, Dreieich, Germany 

DNA Polymerase: Sigma-Taq  Sigma-Aldrich, St. Louis, MO, USA 

dNTP mix, 2.5 mmol/l   Qiagen, Hilden, Germany   

GelRed DNA staining   Biotium, Hayward, CA, USA 

H2O (DEPC treated)    GBiosciences, St. Louis, MO, USA 

Kanamycin A, 50 mg/ml   Sigma-Aldrich, St. Louis, MO, USA 

LB agar     Sigma-Aldrich, St. Louis, MO, USA 

SOC culture medium    Invitrogen/Life Corp., Carlsbad, CA, USA 

LiChrosolv® H2O for chromatography Merck, Darmstadt, Germany 

MgSO4  (UV, 50 mmol/l)   Invitrogen/Life Corp., Carlsbad, CA, USA 

O’range Ruler 50 bp DNA ladder  Thermo Scientific, Dreieich, Germany 

10x PCR reaction buffer   Sigma-Aldrich, St. Louis, MO, USA 

Rotigarose® agarose    Carl Roth, Karlsruhe, Germany 

10x TAE buffer    AppliChem, Darmstadt, Germany 

 

 

3.1.2. Kits and other materials 

 

50 ml Falcon® tubes Becton Dickinson Labware, Franklin 

Lakes, NJ, USA 

MinElute® PCR Purification Kit  Qiagen, Hilden, Germany 

PeqLab Electroporation Cuvettes, sterile PeqLab GmbH, Erlangen, Germany 

Platinum® Taq DNA Polymerase HiFi Invitrogen/Life Corp., Carlsbad, CA, USA 

PowerMax Soil DNA Isolation Kit  MoBio Labs, Carlsbad, CA, USA 

TOPO® TA Cloning® Kit for Sequencing Invitrogen/Life Corp., Carlsbad, CA, USA 
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3.1.3. Laboratory equipment 

 

Biometra BioDocAnalyze®   Analytik Jena, Jena, Germany 

FastPrep®-24 homogenizer   MP Biomedicals, Irvine, CA, USA 

GFL-7601 incubator  GFL Gesellschaft für Labortechnik mbH, 

Burgwedel, Germany 

Heraeus BioFuge™ Pico™ centrifuge Thermo Scientific, Dreieich, Germany 

Heraeus Fresco™ 17 centrifuge  Thermo Scientific, Dreieich, Germany 

MicroPulser™ Electroporator  Bio-Rad, Munich, Germany 

PCR hood: DNA/RNA UV Cleaner  biosan, Riga, Latvia 

Qubit® 2.0 Fluorometer   Invitrogen/Life Corp., Carlsbad, CA, USA 

Sartorius BL310 scale   Sartorius AG, Göttingen, Germany 

SIGMA 6K15 high capacity refrigerated  Sigma Laborzentrifugen GmbH, 

laboratory centrifuge Osterode am Harz, Germany 

Sprout® small table centrifuge  Heathrow Scientific, Vernon Hills, IL, USA 

Thermal cycler: Bio-Rad iCycler®  Bio-Rad, Munich, Germany 

Thermal cycler: Biometra Professional Analytik Jena, Jena, Germany 

Thermal cycler: Techne® TC-Plus  Bibby Scientific Ltd, Stone, Staffordshire, UK 
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3.1.4. Samples 

 

After on-site sampling, the sediment samples were transported to Germany and kept in a 

cold storage room (4 °C) at the AWI’s Research Unit Potsdam until further use. 

The lakes are labeled by the year and name of the respective expedition and a 

consecutive number, e.g. 11-CH-12 for the 2011 Khatanga expedition and 13-TY-02 for 

the 2013 Taymyr expedition. Sample 11-CH-12A indicates the sediment core obtained 

from lake 11-CH-12. As mentioned in part 1.4, the lakes are located within the tree line 

ecotone between tundra, forest tundra and forest; they were assigned to either vegetation 

type by estimate based on nearby vegetation sampling and satellite images. While both 

lakes 13-TY-02 and 11-CH-12 are located in the tundra area, 13-TY-21 and 11-CH-06 

are mostly surrounded by Betula and Alnus trees as well as dense shrubs, hence 

representing a typical forest (light northern taiga) lake. Lakes 11-CH-17 and 13-TY-27 

are classified as “forest tundra” as they are located on the transition between both 

biomes and surrounded by smaller trees and shrubs. 

 
Fig. 2: Study area in the Khatanga region. The lakes from the 2011 (green) and 2013 (red) AWI 

expeditions follow a northeast-southwest transect and cover tundra, forest tundra and forest area. The 

sediment core (A) was obtained from lake 11-CH-12. 
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The sediment core 11-CH-12-A has a total length of 132 cm and dates back 

approximately 7000 years BP (unpublished data). DNA samples from the core sections 

had been extracted and processed beforehand. In this study, DNA samples from the 

following core sections were used: 0-1 cm, 6-7 cm, 20-21 cm, 42-43 cm, 61-62 cm and 

65-66 cm core depth. 

Along with field data such as geographic position and lake depth, hydrochemical data 

was also recorded during the expeditions (Table 1). 

 

Table 1: Sample overview with field data, comprising geographic position, maximum and Secchi1 depth 

of the lakes, and hydrochemical data, comprising conductivity, pH value and alkalinity. Lakes are sorted 

by vegetation type (tundra/forest tundra/forest). 

Lakes Field data 

 Latitude [°] Longitude  [°] Max. depth [m] Secchi depth [m] 
13-TY-02 72.553 105.717 3.4 1.45
13-TY-10 72.406 105.442 7.9 5.5
11-CH-12 72.399 102.289 14.3 5.0
11-CH-17 72.245 102.235 3.4 1.7
13-TY-27 72.153 102.075 2.7 1.8
13-TY-21 71.107 100.823 6.4 3.8
11-CH-06 70.667 97.716 4.8 2.5

Lakes Hydrochemical data Vegetation type 

 Conductivity [μS/cm] pH Alkalinity [mg/l HCO3
-]   

13-TY-02 69.0 8.53 38.4 tundra 
13-TY-10 180.0 7.85 32.2 tundra 
11-CH-12 34.9 7.50 31.3 tundra 
11-CH-17 64.2 7.87 25.0 forest tundra 
13-TY-27 59.0 7.82 28.4 forest tundra 
13-TY-21 46.0 8.08 24.6 forest 
11-CH-06 35.3 6.42 23.0 forest 

 

 

 

 

 

 
1 Secchi depth: an approximate measurement for the transparency/turbidity of waters. In freshwaters, a 

black-and-white Secchi disk is lowered in the water; when the disk is no longer visible, the according 

depth is measured. Higher Secchi depths indicate clearer waters. 
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3.2. Methods 

 

3.2.1. Security and decontamination measures 

 

All the necessary laboratory work was carried out in security class S1 molecular biology 

laboratories at the Alfred Wegener Institute for Polar and Marine Research, Potsdam, 

Germany. In order to minimize the risk of contamination, all steps were carried out in 

assigned workplaces in two spatially separated laboratories: one for isolation and other 

pre-PCR steps and one for post-PCR work and cloning. Consequently, transfer of 

samples and materials between the labs occurred strictly one-directional (pre-PCR to 

post-PCR). In addition, disinfection and cleaning of benches and surfaces as well as UV 

decontamination of laminar flow hoods/cabinets and inorganic reagents was mandatory 

before and after each step. 

 

 

3.2.2. DNA isolation 

 

Unlike DNA isolation from individual samples (e.g. algae cultures), sedDNA includes 

total genomic DNA from a variety of taxa and considerable amounts of PCR inhibitors, 

such as humic acids, that need to be removed during the extraction process to facilitate 

PCR amplification. SedDNA and particularly aDNA fragments are very small due to 

decay, which limits the size of the applied genetic markers (9). 

 

DNA isolation was performed following the PowerMax Soil DNA Isolation Kit (MoBio 

Labs, Carlsbad, CA, USA) protocol with 8 to 8.35 g of sediment at room temperature. 

400 µg proteinase K was added to each sample to remove possible protein 

contaminations before shaking with 1.2 ml bead solution (C1) on a FastPrep®-24 

homogenizer (MP Biomedicals, Irvine, CA, USA) for 30 sec, followed by over-night 

incubation on a rocking shaker at 56° C.  

After centrifuging at 2300 g for 3 min at room temperature (RT), non-DNA organic and 

inorganic material, including humic substances (e.g. humic acid) and cell debris, were 

precipitated with buffer C2 while incubating for 10 min in the refrigerator at 4° C. Due 
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to mixed results, the purification process could be improved by centrifuging for another 

7-8 min and repeating the precipitation step. The above step was then repeated again 

with a different precipitation solution (C3), incubation on ice and centrifugation for 4 

min. Subsequently, the samples were transferred to a Spin Filter column and a high 

concentrated salt solution  (C4) was added, allowing the DNA to bind to the silica of the 

column while all non-DNA organic and inorganic material stays in solution. Remaining 

contaminants and debris were removed and DNA binding was improved by triple 

centrifugation for 2 min at 2300 g each, always discarding the flow-through. However, 

some samples required additional DNA binding/washing steps until the brown/yellow 

color of the solution disappeared. The final washing step was performed with 10 ml 

washing buffer (C5) and centrifugation for 3 min; residual EtOH from buffer C5 was 

then removed by centrifugation for another 5 min. DNA Elution with a sterile elution 

buffer (C6) was performed in two steps and resulted in a final elution volume of about 

1.0-1.2 ml, which was transferred into new reaction tubes. 

Eventually the DNA concentration was quantified with a Qubit® 2.0 Fluorometer 

(Invitrogen/Life Corp., Carlsbad, CA, USA). This procedure utilizes a fluorometric 

concentration measurement which is well-suited for precise assessment of low DNA or 

RNA quantities in samples that are difficult to process, and samples that are processed 

in downstream applications like conventional PCR or real-time (quantitative) PCR 

(qPCR), transformation/ transfection and sequencing. The fluorescent dye provided with 

the fluorometer (Molecular Probes®) emits signals only when bound to specific target 

biomolecules and enables quantitation even at low concentrations. 

 

The sedDNA samples of the sediment core had already been isolated beforehand in an 

external laboratory (University of Potsdam) and were processed directly in the 

subsequent steps. 
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3.2.3. Preliminary experiment: primer test and PCR 

 

The specific Hydrodictyaceae rbcL primers were designed beforehand and were 

synthesized by IDT (Integrated DNA Technologies Inc., Leuven, Belgium).  

In a preliminary experiment, primers were tested in silico (see part 4.2.) and in vitro for 

their target sequence specificity using single and nested PCR. Five different primers 

were available, named Hydr-rbcL for this study (Table 2). 

The primers cover a length of 20-22 bp with a mean guanine-cytosine (GC) ratio of 

40.3% and a mean melting temperature (TM) of 55.3 °C. 

 

Table 2: Primers used in this study, named according to their binding positions on the rbcL gene. TM 

refers to their melting temperature and GC indicates the guanine-cytosine ratio in percent. 

Primers 

Name Sequence (5ʼ→3ʼ) Length [bp] TM [°C] GC [%]

Hydr-rbcL_185F GGACAGATGGTTTAACTAGCT 21 55.03 42.86

Hydr-rbcL_203F GCTTAGACCGTTATAAAGGACG 22 56.71 45.45

Hydr-rbcL_295R GGTCAATTGGGTAAGCAACA 20 56.22 45.00

Hydr-rbcL_307R CTTCTTCAAAAAGGTCAATTGG 22 54.12 36.36

Hydr-rbcL_309R ACCTTCTTCAAAAAGGTCAATT 22 54.35 31.82

 

The primers were combined to 4 forward/reverse pairs, resulting in different amplicon 

(excluding primers) and total fragment lengths (Table 3). The appropriate primer 

annealing temperature (TA) is dependent on the ratio of each base in the sequence 

(commonly referred to as Wallace rule) and is usually a few degrees below their 

melting temperature; therefore, TA was set to 53 °C. Elongation of the strands was 

carried out at 68 °C by a heat-resistant Taq DNA polymerase (see part 3.2.4.). 

 

Table 3: Primer pairs (forward and reverse), combined from the primers in Table 2. 

Primer pairs 

# Forward primer Reverse primer 
Amplicon 
name 

Amplicon 
length [bp] 

Total fragment  
length [bp] 

TA [°C] 

1 Hydr-rbcL_185F Hydr-rbcL_309R 82bp 82 125 53

2 Hydr-rbcL_203F Hydr-rbcL_307R 61bp 61 105 53

3 Hydr-rbcL_185F Hydr-rbcL_307R 80bp 80 123 53

4 Hydr-rbcL_203F Hydr-rbcL_295R 51bp 51 93 53

 



Bachelor thesis  Materials and Methods 

22 
 

In order to test and confirm the primer specificity, a PCR was run with two samples, 

one extraction blank as first negative control (later displaying possible contamination 

during the extraction of DNA), and a second negative control to check for 

contamination in PCR chemicals., A third negative control was used in the nested PCR 

to check for contamination in PCR chemicals used in the nested PCR.  The primer 

combination with the best results was selected for all following experiments. 

Nested PCR is a two-step PCR approach, using the PCR products from the first PCR as 

template DNA, intended to increase the amount of PCR product and reduce unspecific 

primer binding, resulting in a higher concentration of the expected products. Therefore, 

a nested PCR requires two sets of primers; the first set consisted of primer pairs 1 and 2 

and the second consisted of pairs 3 and 4 (Table 3). 

Both PCRs were run with 2.5 µl reaction buffer (10x), 2.5 µl dNTP mix (2.5 mmol/l), 1 

µl BSA (20 mg/ml), 1 µl MgSO4 (50 mmol/l), 0.25 µl Taq polymerase (Platinum® Taq 

DNA Polymerase HiFi kit, Invitrogen/Life Corp., Carlsbad, CA, USA) and 1 µl of each 

primer (10 µmol/l) per reaction, filled up with diethyl pyrocarbonate (DEPC) treated 

water to a final volume of 22 µl and 24 µl, respectively. For the first PCR, 3 µl of 

template DNA was applied and for the second PCR, 1 µl of the previously obtained 

PCR product was added to the reaction. Subsequent cloning and sequencing was carried 

out as described in parts 3.2.4 to 3.2.8. 

 

Table 4: PCR conditions for the first and nested PCR. 

T [°C] Duration Description Cycles 

94 5 min Initial denaturation 1x 
94 30 sec Denaturation 

35x 53 30 sec Annealing 
68 30 sec Elongation 
72 10 min Final elongation 1x 
15 ∞ Stand-by  

  

3.2.4. PCR 

 

PCR is an efficient method for mass-reproduction of desired DNA fragments and was 

introduced by Mullis et al. in 1983 (18). The general procedure is as follows: the DNA 

template strands are denatured at high temperature, and then the temperature is lowered 
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to the annealing temperature which enables the primers to bind to the template. 

Elongation of the strands using provided dNTPs is facilitated by a thermophile DNA 

polymerase from T. aquaticus (Taq) and the reaction cycle is repeated in order to 

amplify exponentially.  

The specific PCR conditions used in this study are displayed in Table 5. In contrast to 

the primer test, all surface sediment and core samples were used and the nested PCR 

approach was replaced by single PCRs because PCR products were already present in 

the first run (see results in part 4.2). Since nested PCR always increases the risk of 

cross-contamination it was decided to omit the nested PCR step and to increase the 

reaction cycles to 50 in order to maximize the concentration of PCR products. The 

result of each PCR was made visible with agarose gel electrophoresis. 

 

Table 5: PCR conditions for 50 cycles. 

T [°C] Duration Description Cycles 

94 5 min Initial denaturation 1x 
94 30 sec Denaturation 

50x 53 30 sec Annealing 
68 20 sec Elongation 
72 10 min Final elongation 1x 
15 ∞ Stand-by  

 

3.2.5. Gel electrophoresis 

 

Agarose gel electrophoresis is a standard method used to separate nucleic acids 

according to their fragment length and structure. The applied voltage causes the overall 

negatively charged DNA to run through the gel into the direction of the positive pole. 

The separation speed is dependent on physical factors like voltage, ionic strength of the 

buffer and pH. In order to improve visibility of the samples, assess their running speed 

and prevent diffusion into the buffer, their weight is increased by addition of DNA 

loading dye which contains glycerol. When finished, the gel can be photographed under 

UV light, showing the separated bands due to the fluorescent dye that was mixed into 

the gel and that intercalates with DNA. All gels were prepared with 2 g agarose 

(equivalent to 2 % w/v) and 8 µl non-carcinogenic GelRed® (Biotium, Hayward, CA, 

USA) DNA staining per 100 ml volume of 1x Tris/Acetate/EDTA (TAE) buffer. 
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3.2.6. Purification 

 

Before cloning, any single nucleotides, residual polymerase and small DNA fragments 

like primers and have to be eliminated from the PCR products. Purification was 

performed with the MinElute® PCR Purification Kit (Qiagen, Hilden, Germany) using 

a micro centrifuge. Each centrifugation step was carried out at maximum speed and RT 

for 1 min. 20 µl of each PCR product were first resuspended with 100 µl buffer PBI 

containing an indicator for determination of the optimal pH for DNA binding on the 

silica-membrane-based spin column. After binding, the samples were washed with 750 

µl washing buffer PE per sample, followed by an additional centrifugation step to 

remove residual ethanol and two elution steps with 10 µl elution buffer (EB) each. 

Eventually, 20 µl of purified DNA were obtained. Successful purification was verified 

by agarose gel electrophoresis with 5 µl purified DNA and 1 µl loading buffer. 

 

 

3.2.7. Cloning   

 

Prior to sequencing, the rbcL amplicons obtained in the PCRs have to be reproduced in 

a vector in order to obtain clean and separated DNA sequences. Cloning of TOP10 One 

Shot® electrocompetent E. coli bacteria was performed using the TOPO® TA 

Cloning® Kit for Sequencing (Invitrogen/Life Corp., Carlsbad, CA, USA) following the 

standard protocol.  

 

The plasmid vector of the bacteria contains an insertion site flanked by single 3’ T 

overhangs and is activated by a type I topoisomerase bound to the vector. In order to 

ligate efficiently with the vector, PCR inserts must have complementary single A 

overhangs; incubation with Sigma Taq polymerase (Sigma-Aldrich, St. Louis, MO, 

USA) in a thermal cycler at 72 °C for 10 min creates such overhangs at the 3’ end of 

each PCR product utilizing the polymerase’s terminal transferase activity (Fig. 3). 
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Fig. 3: pCRTM 4-TOPO® vector with PCR product (target sequence). Single A overhang on the 3’ end of 

both strands is required for optimal insertion of the fragment into the vector. Picture: TOPO® TA 

Cloning® Kit for Sequencing User Guide Rev. A.0, Invitrogen/Life Corp. 

 

The procedure is briefly summarized as follows: 

 

A. Topoisomerase reaction. The reaction was prepared on ice with 2 µl purified DNA, 

0.5 µl NaCl/MgCl2 salt solution and 0.5 µl pCRTM 4-TOPO® vector, and incubated 

at RT for 10-15 min. The insertion is catalyzed by the type I topoisomerase linked 

to the vector. 

B. Transformation. For each sample, 25 µl of E. coli cell solution and 1.5 µl of the 

topoisomerase solution were carefully mixed and transferred into a sterile 

Electroporation Cuvette (PeqLab GmbH, Erlangen, Germany). The cells were then 

transformed by electroporation with a single electronic pulse in a MicroPulser™ 

(Bio-Rad, Munich, Germany) and quickly transferred into 125 µl SOC culture 

medium (warmed up to RT), followed by horizontal incubation on a shaker (200 

rpm) for 60 min at 37° C.  
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C. Cultivation of cells. In a laminar flow cabinet, approximately 75 µl of each sample 

solution were spread on prepared LB agar plates using a glass spatula. Antibiotic 

kanamycin A (final concentration of 50 mg/l of growth medium) had been added to 

the plates, inhibiting all other bacterial growth while leaving the resistant E. coli 

cells unaffected. Bacterial growth at 37 °C occurred over night.  

 

After colonization of the plates, 16 to 48 clones were picked from each plate with 

pipette tips and transferred to 96 well plates with 30 µl H2O per well. The bacteria were 

subsequently denatured by heating in a thermo cycler at 95 °C for 10 min. In order to 

re-amplify the inserted fragment a standard PCR with T3/T7 primers was run, which 

binds to the according sites in the vector (Fig. 3). T3/T7 PCR was run with 0.75 µl of 

each primer, 1.5 µl dNTP mix (Qiagen, Hilden, Germany), 0.15 µl Sigma Taq and 1.5 

µl reaction buffer (Sigma-Aldrich, St. Louis, MO, USA), filled up to a volume of 15 µl 

with DEPC-treated H2O and supplemented with 4 µl clone DNA. Table 6 shows the 

PCR conditions. PCR products obtained from the vector DNA are about 100 bp longer 

as the respective inserts because of a part of the vector sequence. Following the PCR, 

products were checked on an agarose gel and bands deviating from the expected length 

were excluded prior to sequencing. 

 

Table 6: PCR conditions for standard T3/T7 PCR. 

T [°C] Duration Description Cycles 

95 4 min Initial denaturation 1x 
95 30 sec Denaturation 

35x 52 30 sec Annealing 
72 45 sec Elongation 
72 7 min Final elongation 1x 
15 ∞ Stand-by  

 

3.2.8. Sanger sequencing 

 

Sanger sequencing, also referred to as chain-termination sequencing, is based on in vitro 

DNA replication (similar to PCR) and was established in 1977 (19).  

A primer binds to the template DNA strand and a DNA polymerase synthesizes the 

complementary sequence. In contrast to PCR, dideoxy nucleotides (ddNTPs) are added 
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to the reaction; elongation is stopped as soon as a ddNTP is inserted since it lacks the 3’ 

hydroxyl group, making it impossible to form the next phosphodiester bond. The start of 

the synthesis is determined by the primer and the end is variable, so the resulting 

fragments have different length and can be read with capillary gel electrophoresis. For 

each sample, 4 sequencing reactions are run separately (one for each ddNTP type). In 

automated detection, the ddNTPs are usually labeled with a fluorophor so that their 

complementary sequence can be saved as an electropherogram. 

 

External sequencing following standardized protocols allows high numbers of samples 

to be processed simultaneously and increases both throughput and reliability. 

Purification of the T3/T7 PCR products and conventional Sanger sequencing was 

performed at LGC Genomics, Berlin, Germany in an ABI3730XL DNA analyzer 

(Applied Biosystems). All sequences were collected in a data file. 

 

3.2.9. Sequence alignment and verification 

 

The sequences were aligned and edited with BioEdit Sequence Alignment Editor 7.2.5 

(20), MEGA 6.06 (21) and Geneious® 7.1.7 and saved in an alignment file (FASTA 

format). In a first step, sequences shorter than the expected amplicon length and 

sequences containing overlaps in the electropherogram (i.e. where a base was not 

clearly identified) or sequencing errors were considered ambiguous and sorted out 

accordingly.  

An initial BLAST nucleotide search (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi, last 

access on 20.09.2014) was conducted to gain a general overview over the diversity and 

taxonomic identity of the obtained sequences. Sequences are considered to be real if 

they occurred several times in independent PCRs; single sequences are considered 

reliable if they showed only one nucleotide substitution to abundant sequences at a non-

polymorphic site, evaluated by comparison to known sequences from GenBank (United 

States National Center of Biotechnology Information, ncbi.nlm.nih.gov). As those 

substitutions are produced by polymerase errors during PCR, they were merged to the 

according sequences. Sequences that occurred at least twice in only one sample were 
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considered reliable if nucleotide substitutions occurred at polymorphic sites (again 

evaluated by comparison to known sequences from GenBank). 

Sequences were removed from the dataset if they occurred only once in the entire 

dataset or were present in at least two clones but showed more than one substitution to 

abundant sequences. Those sequences are considered to be artifacts resulting from 

polymerase errors and/or from the formation of DNA chimeras during PCR (22). 

 

3.2.10. Phylogenetic analyses 

 

Molecular evolutionary analyses were performed with Geneious® 7.1.7 using Bayesian 

inference of phylogenetic trees. The Bayesian approach uses an algorithm called 

"Metropolis-coupled Markov chain Monte Carlo" or MC3 to infer phylogenetic trees 

based on approximation of posterior probabilities; the mathematical background was 

described by Huelsenbeck and Ronquist (23). Basically, the process calculates the 

probability of single-base mutations based on a given sequence alignment and a selected 

evolution model. Thus, Bayesian inference facilitates estimations of species phylogeny 

and divergence times. 

Best-fitting nucleotide-substitution models were determined beforehand with 

jModelTest 2 (24), but not all of these models were available in Geneious®. Therefore, 

HKY85, ranging in the first 10 of 88 evaluated algorithms, was used as algorithm for the 

Bayesian analyses in Geneious. The first phylogenetic tree was based on an alignment 

file with the sequences obtained in part 3.2.9. and a number of reference sequences of 

the same DNA fragment in Hydrodictyaceae obtained from GenBank. The second was 

calculated with a longer rbcL fragment (1052 bp) and only comprised GenBank 

reference entries. GenBank entries are usually based on in vitro cells (e.g. algae 

cultures) and not from environmental samples. The resulting trees were displayed in 

Geneious and TreeView (25) and exported as graphics. 
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4. Results 

  

4.1. DNA isolation and quantification 

 

Following the extraction protocol, around 8 g of thawed sediment were used for DNA 

isolation. The amounts of sediments used and the resulting DNA concentrations 

(measured with the Qubit® fluorometer) are displayed in Table 7. Each concentration 

was confirmed with a second measurement. Where data is not available, the isolation 

had been performed beforehand in an external laboratory (University of Potsdam). 

 

Table 7: Weight of the sediments prior to isolation and resulting concentration of genomic DNA. 

Sample Sediment weight [g] c1(DNA) [ng/µl] c2(DNA) [ng/µl] 

13-TY-02 7.987 68 68 
13-TY-10 8.349 67 64 
11-CH-12 n/a n/a n/a 
11-CH-17 n/a n/a n/a 
13-TY-27 8,068 158 154 

13-TY-21 8.015 40 38.4 
11-CH-06 n/a n/a n/a 

 

 

4.2. Preliminary experiment: primer test 

 

In addition to the following preliminary experiment, a theoretical evaluation of the 

primer specificity was performed with ecoPCR (26). This software estimates the 

specificity of the primers for a defined taxa group by performing an in silico PCR on the 

EMBL Nucleotide Sequence Database (ftp://ftp.ebi.ac.uk/pub/databases/embl/release; 

release embl_117, September 2013) using the tested primer combinations. Regarding 

the parameters for the in silico PCR, a maximum of two to three mismatches between 

query and primer sequences was allowed, except for the last two nucleotides of the 3’ 

end which had to be matching. The results were provided beforehand and are presented 

in Table 8. With more than 87 % specificity to Hydrodictyaceae, the pair 185F/309R 

delivered the highest value while e.g. 203F/307R showed only little specificity 

(approximately 10 %). 
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Table 8: Primer specificity calculated by ecoPCR; Nseq indicates the total number of entries found in the 

database, NHydr indicates those assigned to Hydrodictyaceae, complemented by a percentage value. 

Primer pairs Ampl. lenght [bp] ecoPCR (2 mismatches) ecoPCR (3 mismatches) 

Nseq NHydr Hydr (%) Nseq NHydr Hydr (%) 

Hydr-rbcL_185F 82 100 88 88 101 88 87,13

Hydr-rbcL_309R

Hydr-rbcL_203F 60 127 100 78,74 999 100 10,01

Hydr-rbcL_307R

Hydr-rbcL_185F 80 111 99 89,19 135 99 73,33

Hydr-rbcL_307R

Hydr-rbcL_203F 50 112 97 86,61 261 99 37,93

Hydr-rbcL_295R

 

The PCR result showed products already in the first run (Fig. 4); it was therefore 

decided to follow a single PCR approach in the main experiment, but to increase the 

reaction cycles from 35 to 50 since the DNA concentration was assumed fairly low. 

 

 
Fig. 4: Gel photography (colors inverted) of the single PCR (left) and subsequent nested PCR (right). The 

expected fragment length is between 100 and 150 bp (desired amplicon and primer sequence). L: Ladder 

(O’range Ruler 50 bp, Thermo Scientific). Blank and NTC: extraction blank and negative controls. 

 

One exemplary gel photography for the subsequent T3/T/ PCR is shown in Fig. 5. 

After sequencing, seven different Hydrodictyaceae lineages were detected (Table 9) in a 

total of 92 clones (9 clones delivered erroneous sequences). The primer pair 185F/309R 

detected most lineages; hence, the practical results are consistent with the theoretical 

estimation in the ecoPCR approach. Consequently, the main experiment focused on this 
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primer combination, although the other primer pairs also detected Hydrodictyaceae, but 

with lower specificity: 185F/307R and 203F/295R both delivered similar results with 

five different lineages, while 203F/307 detected only three. 

 
Fig. 5: Exemplary gel photography of the T3/T7 PCR (colors inverted), showing the target fragment 

obtained from the clones. L: Ladder (O’range Ruler 50 bp). 

 

An initial BLAST search search after this step assigned the lineages to various 

Hydrodictyaceae species, confirming the successful DNA isolation as well as the primer 

specificity. 

 

Table 9: Distribution of Hydrodictyaceae lineages determined in the primer test, with the number of 

lineages (NLineages) and the total number of clones (NClones) corresponding to each primer pair. The pair 

185F/309R yielded the highest number of lineages and clones. #1-4 are first and nested PCRs according 

to Table 3.  

Hydr.  
lineages 

Primer combination 
185F/309R(#1) 203F/307R(#2) 185F/307R(#3) 203F/295R(#4) 

01 16 17 5 15
02 1 0 4 1
03 1 0 0 0
04 5 2 1 2
05 2 0 2 0
06 4 1 1 1
07 1 0 0 1
NLineages 7 3 5 5
NClones 30 20 13 20

 

 

L      Plate 1      L          Plate 1            L Plate 2     

 

 

 

 

L     Plate 2      L          Plate 3            L Plate 3 
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4.3. Sequence verification 

 

In total, 92 sequences were obtained in the preliminary primer test and 190 in the main 

experiment, including identical sequences that were merged together. Reduction of the 

data set to thirteen unique and verified Hydrodictyaceae lineages of the 82bp amplicon 

(185F/309R) required a merge of all ambiguous sequences (see part 3.2.9).  

 
Fig. 6: Alignment of verified lineages as annotated sequences. Each primer combination produced 

different amplicon lengths (51, 61, 80 and 82 bp) according to their binding positions. Identical bases 

were replaced with colored periods to improve readability and to better highlight variable positions. 

 

4.4. Diversity, distribution and classification of Hydrodictyaceae lineages 

 

4.4.1. Diversity and distribution of Hydrodictyaceae lineages 

 

Lineage diversity was assessed for surface and core samples and collected in a data file 

(Table 10). Subsequently, the data was displayed graphically with C2, a software for 

(paleo)ecological data analysis and visualization (Fig. 7).  
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Table 10: Overview over lineages found in sediment and core samples. NClones indicates the total number 

of clones obtained; NHydr and NUnid.algae refer to the number of sequences that were assigned to 

Hydrodictyaceae and unidentified algae taxa respectively, followed by the according percentage values. 

82bp_01 to 82bp_13 cover the thirteen verified lineages (see part 4.3.). 

 

 

In total, 312 clones were obtained from all examined samples, thereof 220 clones in the 

seven surface sediment samples (average of 31 clones per sample) and 92 clones from 

the four core sections (average of 23 clones per sample). A total of thirteen unique and 

verified lineages with an amplicon length of 82 bp were identified and assigned to 

Hydrodictyaceae by BLAST nucleotide search, consecutively labeled 82bp_01 to 

82bp_13. These lineages were detected in ten out of the eleven examined samples, in 

which they made up between 33 % and 100 % of all lineages detected. In contrast, 

unidentified algae were found in nine out of eleven samples, with the highest ratio in the 

surface sediment from lake 11-CH-12 (66.7 %) and the core sections from 6-7 cm 

(65.2 %) and 42-43 cm depth (100 %), all obtained from the same lake 11-CH-12.  

The samples 13-TY-10 and 13-TY-27 feature the highest diversity within the 

Hydrodictyaceae lineages, with seven of thirteen different lineages. Apparently, the 

lineages 82bp_01 and 02 are predominant in all vegetation types (tundra, forest/tundra, 

forest) as they were detected in eight and six out of eleven samples, respectively. In 

contrast, three lineages (04, 06, 10) were present in only one lake. These lakes are 

Sample NClones NHydr NUnid. algae Hydr (%) Unid. algae (%) 82bp_01 82bp_02 82bp_03 82bp_04

13-TY-02 30 30 0 100 0 28 0 0 0
13-TY-10 31 25 6 80,65 19,35 8 10 0 0
11-CH-12 33 11 22 33,33 66,67 0 0 0 11
11-CH-17 32 30 2 93,75 6,25 15 13 0 0
13-TY-27 30 30 0 100 0 16 1 0 1
13-TY-21 32 26 6 81,25 18,75 18 1 0 1
11-CH-06 32 30 2 93,75 6,25 27 1 0 0
0-1 cm 22 10 12 45,45 54,55 3 3 0 0

6-7 cm 23 8 15 34,78 65,22 8 0 0 0

42-43 cm 24 0 24 0 100 0 0 0 0

61-62 cm 23 22 1 95,65 4,35 0 0 22 0

Sample 82bp_05 82bp_06 82bp_07 82bp_08 82bp_09 82bp_10 82bp_11 82bp_12 82bp_13

13-TY-02 0 0 0 2 0 0 0 0 0
13-TY-10 0 1 0 2 1 0 2 0 1
11-CH-12 0 0 0 0 0 0 0 0 0
11-CH-17 0 0 0 0 0 0 1 1 0
13-TY-27 5 2 4 1 0 0 0 0 0
13-TY-21 0 1 0 0 1 4 0 0 0
11-CH-06 0 0 0 0 1 0 0 0 1
0-1 cm 0 0 0 0 2 0 1 1 0

6-7 cm 0 0 0 0 0 0 0 0 0

42-43 cm 0 0 0 0 0 0 0 0 0

61-62 cm 0 0 0 0 0 0 0 0 0
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assigned to forest/tundra and forested vegetation types. Lineage 82bp_03 appears as the 

predominant lineage in the tundra area, though only found in modern sediment of lake 

11-CH-12. 

 

With regard to the distribution in the core samples, six lineages were found in the 

uppermost section (0-1 cm, modern sediment) and only one was detected in each of the 

sections. In section 6-7 cm the predominant lineages 82bp_01 was found and in the 

deepest sample at 61-62 cm the lineage 82bp_08, referring to Stauridium, was detected. 

The core sample taken from 42-43 cm depth did not yield any Hydrodictyaceae lineage. 

It should be noted that the core, originating from lake 11-CH-12, shows remarkable 

differences compared to the according surface sediment: while the predominant lineage 

in the lake (82bp_03) was not found in any core sample, none of the lineages found in 

the core samples were detected in the surface samples. In addition, the core samples 

feature greater lineage diversity, but also a higher ratio of unidentified algae compared 

to the surface sediment. 
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Fig. 7: Graph comparing Hydrodictyaceae lineages and unidentified algae (A) in surface and core 

samples; showing absolute number of clones (B) and percentage of clones of lineages (C) per lineage and 

sample. The lakes are sorted by vegetation type (tundra: brown; forest tundra: light yellow; forest: green). 
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4.4.2. Taxonomic assignment (NCBI BLAST) 

 

The sequences resulting from the initial BLAST public database comparison could be 

assigned to Hydrodictyaceae genera with high identification values (>95 %), 

particularly Pediastrum and Pseudopediastrum, but also to other species, e.g. Gonium 

(Volvocales), with identities below 90 %. Apart from Hydrodictyaceae representatives, 

Auxenochlorella and Parachlorella (both Chlorellales) species were also present in the 

main experiment. The following Hydrodictyaceae were assigned to the lineages found 

in the main experiment: Pseudopediastrum boryanum, Pseudopediastrum kawraiskyi, 

Pediastrum angulosum, Pediastrum duplex and Stauridium tetras (Table 11). Please 

note that only the first entry with the highest identification (between 96 % and 100 %) 

was selected, while subsequent species may have equal or slightly lower identification. 

Overall, Pseudopediastrum boryanum features the greatest abundance in all examined 

samples, followed by P. kawraiskyi. 

 

Table 11: Taxa assigned to the lineages by NCBI BLAST nucleotide search including accession numbers. 

For each lineage, the first hit with the highest sequence identity is displayed. 

Lineage NCBI BLAST (first hit) Accession no. Sequence Identity 

82bp_01 Pseudopediastrum boryanum EF078347.2 100%
82bp_02 Pseudopediastrum kawraiskyi EF078338.2 100%
82bp_03 Pediastrum angulosum EF078399.1 100%
82bp_04 Pediastrum duplex var. duplex EF078390.2 100%
82bp_05 Pediastrum duplex EF078404.1 100%
82bp_06 Pediastrum duplex strain EF078404.1 99%
82bp_07 Pseudopediastrum boryanum EF078347.2 99%
82bp_08 Stauridium tetras EF078391.2 100%
82bp_09 Pseudopediastrum boryanum EF078347.2 99%
82bp_10 Pediastrum angulosum EF078399.1 99%
82bp_11 Pseudopediastrum kawraiskyi EF078338.2 96%
82bp_12 Pseudopediastrum boryanum EF078347.2 99%
82bp_13 Pseudopediastrum kawraiskyi EF078338.2 96%
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4.5. Phylogenetic analyses 

 

4.5.1. Bayesian phylogenetic tree based on the 82 bp rbcL fragment 

 

Bayesian analyses were conducted several times with chain lengths of 2 and 4 million 

iterations and subsampling frequencies of 200 and 400. This means that e.g. the 

algorithm was executed 2 million times yielding the same amount of trees in total, but 

only each 200th was adopted, resulting in 10,000 trees for the final tree generation. 

The input data for phylogenetic analyses is an alignment including the thirteen verified 

Hydrodictyaceae lineages and 33 reference sequences from related species obtained 

from a database. Furthermore, a less related green algae species is added as outgroup. 

Fig. 7 shows the final phylogenetic tree featuring the 13 lineages, related 

Hydrodictyaceae reference species and one outgroup, Volvox ovalis. 

.  

4.5.2. Bayesian phylogenetic tree based on a 1052 bp rbcL fragment 

 

For comparison, a second bayesian phylogenetic tree was calculated using a longer 

(1052 bp) rbcL fragment of the same reference sequences as in the former tree (Fig. 8). 

Again, V. ovalis was selected as outgroup. Compared to the former tree, the 1052 bp 

fragment yielded a better resolution on species level and even separated different strains 

of the same species. The results are supported by overall higher posterior probabilities 

(see node values) of up to 100 %.  
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Fig. 8: Sorted tree showing the calculated phylogeny of the 13 lineages and related species. The node 

values indicate statistical support (posterior probabilities in percent) as determined by Bayesian analysis. 
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Fig. 9: Reference tree showing the phylogeny of related Hydrodictyaceae species based on a 1052 bp 

rbcL fragment obtained from GenBank. The node values indicate statistical support (posterior 

probabilities in percent) as determined by Bayesian analysis. 
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5. Discussion 

 

5.1. Specificity and reliability of tested primers 

 

In a preliminary primer test with five different primers primers combined to four primer 

pairs, the combination of the primers Hydr-rbcL_185F and 309R showed the greatest 

specificity with seven different lineages in 30 clones. The results confirm the prior 

expectations based on ecoPCR, which estimated a target specificity of approximately 

87 % for this primer pair and suggest that the complementary positions of the primers 

Hydr-rbcL_185F and 309R in the rbcL gene are fairly specific target sites to detect 

Hydrodictyaceae. However, a number of non-Hydrodictyaceae green algae were also 

detected to a lesser degree, as a consequence of non-variable positions within different 

algae taxa in the primer binding regions and/or the ability of the primers to bind rather 

unspecifically if the amount of targeted DNA is very low in the investigated sample. 

 

Primer specificity was assessed on two modern samples and detected similar sequences 

with all applied primer combinations, supporting the reliability of our results with 

regard to the amplification of Hydrodictyaceae DNA. Complemented by all tested 

samples, the approach was successfully applied for modern and ancient lake sediment 

samples. Similar to prior studies on diatoms in Siberian lake sediments, the results 

confirmed a reliable detection of diverse modern and ancient algae lineages from 

different sediments using a group-specific approach (15).   

 

5.2. Distribution of lineages obtained from surface and core sediments  

 

Sedimentary DNA was successfully isolated from modern surface sediment and ancient 

core samples and could be assigned to the Hydrodictyaceae taxa Pediastrum, 

Pseudopediastrum and Stauridium with sufficiently high identity. Although 

amplification and detection of lineages was successful for both types of samples, their 

genetic diversity focused on the surface sediments and the upper core sections. 

Stauridium was confined to the core sections of 61-62 cm depth and was not present in 

more recent samples. The results are assumed to be affected by additional factors like 
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sample age and the applied isolation method. Isolation of DNA from the 2011 lakes and 

the core sediments was performed externally about two years prior to this study, in 

2012, and with a different isolation protocol that allowed only a smaller amount of 

sediment sample. In general, fresh extractions with more sediment used are therefore 

expected to deliver better results. 

 

Due to the method of sampling, a surface sample can include up to 4 cm of sediment 

layer and integrates over a longer time period than 1 cm core sections. Thus, it is 

notable that amplification of sample 11-CH-12 (surface sediment, integrates 

approximately over the first four centimeters of sediment) and 11-CH-12A (core, 0-1 

cm) yielded remarkably different lineages. It is assumed that particularly in the case of 

low template DNA concentrations, results of different PCRs may be inconsistent due to 

random and sequence-dependent fluctuations in the primer efficiency, resulting in a 

selectivity for certain template DNA. Because of the exponential amplification of DNA 

material, irregularities in early PCR cycles may be reinforced to considerable extent. 

This PCR amplification bias makes it difficult to obtain reproducible results (22). 

 

Prior to the study, a pattern in the diversity concerning the latitudinal (north-south) 

transect of the lakes was assumed, particularly a correlation of Pediastrum diversity 

with the vegetation type and hydrochemical characteristics of the examined lakes, such 

as a preference of a lineage for a specific vegetation type (tundra, forest tundra or 

forest). The preliminary results indicated a general tendency that single lineages 

occurred in certain vegetation types. The two predominant lineages in the entire data set 

were present in all vegetation types as well as in core sediments, while those lineages 

that were overall less abundant showed a more distinct preference, including one 

tundra-preferring lineage, two apparently specific to forest tundra and one linked to 

forest lakes. Other lineages did not display any clear preference for a vegetation type. 

No striking correlation with lake hydrochemistry, e.g. alkalinity or pH, could be derived 

from the available data either, but this was not confirmed statistically. 

One lake (11-CH-12) and the corresponding core samples included a notably high ratio 

of unidentified algae lineages relative to the whole data set. Since this lake (including 

core samples) also yielded the highest total number of clones, it is possible that this lake 
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features a higher diversity in other algae species, causing the primers to detect other 

green algae taxa as well. 

It should be noted though that the limited extent of this study and the lack of 

comparable data from the examined region makes it difficult to formulate a distinct 

statement. It is therefore suggested to complement the data sets with further studies on a 

larger scale; more accurate results can possibly be obtained with more samples from a 

greater spectrum of lake and particularly core sediments. Further studies may then be 

complemented with data from other polar and subpolar areas. In spite of the limited 

number of examined lakes, we assume that genetic lineages of Pediastrum, as suggested 

in prior morphological studies (7) (10), might be able to indicate vegetation changes or 

related environmental changes across tree line ecotones. For example, a multi-proxy 

study conducted on sediment cores in Alaska indicated that changes in local Pediastrum 

populations correlate with lake-level fluctuations and that temperature shifts of only a 

few degrees are linked to changes in aquatic ecosystems and the tree line, demonstrating 

the sensitivity of the ecotone to climatic influence. However, in contrast to previous 

model simulations, the study could not identify tree line fluctuations in concrete 

response to general climatic changes in the Holocene (7). 

 

5.3. Phylogenetic analyses and comparison of 82 bp and 1052 bp fragments 

 

Bayesian phylogenetic inference of the lineages showed an outline of the phylogeny of 

the examined taxa, but could not provide sufficient resolution down to species and 

strain level of Pediastrum with the available sample material. Despite a decent 

statistical support (i.e. posterior probabilities greater than 50 %) for the tree branches, 

the tree only confirmed genetic similarity, but could not separate most of the lineages 

(Fig. 7). One exception is the lineage 82bp_08, which was assigned to Stauridium tetras 

in the database comparison and located on the corresponding branch by the 

phylogenetic analysis. Furthermore, both lineages 82bp_02 and 82bp_11, which were 

previously assigned to Pseudopediastrum kawraiskyi, share the same branch in the tree, 

but 82bp_13, which was also assigned to P. kawraiskyi is not located on this branch. 

The reference sequence of Pseudopediastrum kawraiskyi was too short to facilitate 

calculations with the 1052bp fragment length and thus was excluded from the data set. 
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Therefore, this reference could not cluster with the 82bp_02 and 82bp_11 branch. The 

phylogenetic analyses were performed several times with changing parameters (e.g. 

different chain lengths, subsampling frequencies and outgroup species), but overall 

yielded similar results. 

 

The results show that in general, rbcL is a suitable group-specific marker for 

Hydrodictyaceae, but the selected fragment may be too short and/or too conserved to 

display phylogenetic relations with reasonable accuracy and to provide sufficient 

resolution on species and subspecies level, leaving the software unable to assign 

sequences with little variability to the corresponding taxa. Bayesian phylogenetic 

inference of reference sequences of a longer (1052 bp) rbcL fragment improved both 

resolution and statistical support since a longer fragment usually features more 

divergence between sequences. However, working with ancient environmental DNA 

limits the length of the used markers, as degradation causes the fragmentation of DNA 

resulting in only very short fragments. 

Eventually, the fact that some lineages were assigned to different taxa with equal or 

similar identity, might indicate that database entries relying on previous morphological 

classification might be inaccurate in individual cases. The set-up of an own reference 

data based on taxa from the examined locations would help to identify the obtained 

genetic lineages more precisely and would facilitate the design of more specific primers 

adjusted to Siberian lineages. 

 

5.4. Indications for the use of sedDNA analyses in paleoecological studies  

 

This study showed that a group-specific approach based on sedimentary DNA analysis 

is feasible, but the results are considerably influenced by the grade of decay of sedDNA 

and especially aDNA (i.e. the concentration of available template DNA) and the 

specificity of the implemented primers towards certain taxa. In comparison to a 

traditional pollen-based or morphological analysis, a general metabarcoding approach 

allows identification at a lower taxonomic level, but may not detect all present taxa as 

reliable as with species- or group-specific primers, as demonstrated before on ancient 

permafrost soil samples from the Taymyr Peninsula with other (more universal) 
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chloroplast barcodes (12). Hence, metabarcoding was suggested as a complementary 

tool, but not an alternative, to morphological studies and it was recommended to 

combine traditional biodiversity examinations (e.g. morphological and on-site species 

examination), wide-ranged metabarcoding and targeted diversity analyses, particularly 

the use of specific primers following a general metabarcoding approach in order to 

improve the results (12).  

 

RbcL has so far been confirmed as a suitable genetic marker to specifically target 

Hydrodictyaceae, but the selected 82 bp fragment could not display a detailed 

phylogeny. It is therefore suggested to evaluate other regions of the rbcL gene for their 

potential as genetic markers. However, any genetic marker is heavily dependent on the 

availability of reference sequences in public databases. So far, reference data in 

GenBank is limited to rbcL and ribosomal genes from the nuclear genome; considering 

other group- or taxa-specific cpDNA markers is therefore currently not possible due to 

the lack of reference data. Ribosomal markers, on the other hand, are considered less 

suitable for such analyses as they have less variable regions and will probably not 

increase the taxonomic resolution; additionally nuclear markers will likely increase the 

amplification of non-targeted organisms. In order to establish new markers, reference 

sequences need to be obtained (e.g. by cultivation of algae strains from environmental 

samples) and added to the databases, and corresponding primers have to be designed 

and tested for their specificity as demonstrated in this study. In addition, we propose the 

use of next-generation sequencing techniques in further studies to obtain a more 

comprehensive data set and a better resolution of genetic diversity in soil sediments. 
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9. Appendix 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Amplification of DNA from (A) 2011 and (B) 2013 lake sediment samples; gel photography with 

inverted colors. The signal in both negative controls (~50 bp) is possibly a result of remaining primers 

and primer dimers. Ladder: O’range Ruler 50 bp 

 

Fig. 11: Gel photography (colors inverted) of a T3/T7 PCR, showing the target fragment obtained from 

the clones (82 bp amplicon and primer sequence, all with 185F/309R primers). Clones with incorrect 

fragment length or indistinct signal (arrows) were excluded from sequencing.  
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