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͞The large area of Tayŵyr ;aďout the size of Great BritaiŶ or ŶortherŶ AlaskaͿ, 
is still mostly undisturbed and its great variation in landscape and climate 

makes me believe that classification of its vegetation will be representative 

of the “iďeriaŶ ArĐtiĐ as a whole.͟ 

 

(Matveyeva, Nadezhda V. 1994) 
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Abstract 

Northern Central Siberia is sparsely investigated even the area is provides many suitable archives 

for palaeoenvironmental studies. Studies are needed to understand the reaction of the highly 

sensible ecosystem to environmental dynamics and build the basic for ongoing research. The 

objective of this thesis is to reconstruct the vegetation development at 72°N in Arctic Siberia and 

to deduce environmental reasons for the changes in the vegetation cover. Sediment samples from 

a small lake in the vicinity of Chatanga on the Taimyr Peninsula were prepared for light 

microscopy and pollen analyses were conducted at the Alfred-Wegener-Institute for Polar and 

Marine Research in Potsdam. The ages of the upper samples were determined by the 

Environmental Radioactivity Research Centre at the University of Liverpool and deductively 

ascertained for the rest of the core. The dataset of the pollen count was used to generate highly 

resolved pollen diagrams of the last millennium: one entire pollen diagram for all taxa, which have 

been counted throughout the short core, and the other pollen diagram, pollen influx diagram and 

Iversendiagram for the primary taxa. Statistical analyses were performed to verify significant 

pollen assemblage zones and to construct synthetic environmental gradients. The pollen 

assemblages are reflecting three phases of vegetation development during the last millennium, 

which correspond to the termination of the Medieval Warm Period to the subsequent Little Ice 

Age and to the Recent Warming period. The Medieval Warm Period reaches till 1308 AD and is 

predominantly characterized by the regression of Alnus pollen, whereby the percentages of 

Cyperaceae pollen are increasing. Betula and the herb species do not show comparably trends. 

The mild climate of the Medieval Warm Period became cooler and drier, which is reflected by the 

decrease of Alnus pollen so that the dense canopy of the shrub tundra became more lightly and 

sedges established the light places during the termination of the Medieval Warm Period to the 

Little Ice Age. The percentages of Salix, Artemisia and Potentilla mainly increased, next to other 

herbs in general, between 1308 AD and the beginning of the Recent Warming in the middle of the 

20th century. Alnus and Betula present lower pollen content during the period of the Little Ice Age, 

so that Salix could have established on the favorable places, where Alnus and Betula grew once 

before. Larix displays the northernmost tree species and is known for its heavy and large pollen. 

Due to the increase of Larix pollen content over that time period, it is likely that the vegetation 

cover was more lightly than during the Medieval Warm Period so that Larix had less competition 

or stress to produce pollen and the pollen could have been accumulated easier due to the scare 

vegetation cover around the lake. The vegetation consisted mainly of herbs and grasses, shrubs 

were growing on well exposed places, because the climate during the Little Ice Age was cooler 

and drier than today. Since the second half of the 20th century, the percentage content of Alnus 

and Betula pollen increased markedly, whereby Salix and Larix regressed next to Cyperaceae, 

Poaceae and also Artemisia. The flowering herb species produce less pollen than wind pollinated 

plants like Betula, Alnus, Salix or all grasses. However the percentages of the herb taxa became 

less abundant, their pollen has been increasingly accumulated since the second half of the 20th 

century, which reflects that the climate became warmer and moister in the recent decades. Larch 

is underrepresented in the lake accumulations too, because single trees and groups of Larix
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gmelinii were documented at the study site. Either Larix gmelinii is under competition or stress to 

produce pollen in the study area or the pollen doesn´t get representatively accumulated within 

the lake.  

 

Zusammenfassung 

Der Norden Zentralsibiriens ist wenig erforscht, obwohl das Gebiet zahlreiche Archive für die 

Erforschung der Landschafts- und Klimageschichte bereitstellt. Jede einzelne Untersuchung trägt 

dazu bei, die Reaktion des hochsensiblen Ökosystems durch sich ändernde Umweltbedingungen 

zu verstehen und die Grundlagenforschung voranzutreiben. Das Ziel dieser Masterarbeit ist, die 

Vegetationsentwicklung in der Umgebung eines kleinen arktischen Sees, 72°N in Sibirien, zu 

rekonstruieren und dafür verantwortliche Umwelteinflüsse abzuleiten. Um das Ziel zu erreichen, 

wurden Seesedimentproben aus einem See in der Nähe von Chatanga auf der Taimyr Halbinsel, 

für palynologische Untersuchungen im Labor des Alfred-Wegener-Instituts für Polar- und 

Meeresforschung aufbereitet. Das Alter der oberen Proben wurde am Forschungscenter für 

Umweltradioaktivität an der Universität Liverpool bestimmt und anhand deren Alters für die 

tieferen Proben deduktiv ermittelt. Die Deduktion ergab, dass der Seesedimentkerns die 

Vegetationsgeschichte der letzten eintausend Jahre umfasst. Es wurden fünf Pollendiagramme 

aus den Ergebnissen der Pollenzählung generiert. Ein Gesamtdiagramm bildet die Schwankungen 

aller Taxa ab, die in den Zählungen erfasst wurden. Die Untersuchung basiert hingegen auf den 

übrigen Diagrammen, die die hauptsächlichen Taxa über den Kern hinweg beinhalten. Das sind 

das generierte Pollendiagramm, das Pollenakkumulationsdiagramm und ein Iversendiagramm für 

die dominanten Pollentaxa. Durch die statistischen Analysen konnte die Anzahl der Pollenzonen 

festgestellt und wahrscheinliche Umweltgradienten ermittelt werden. Die Pollenzonen gliedern 

die Vegetationsentwicklung der letzten eintausend Jahre in drei Abschnitte, welche den Übergang 

der Mittelalterlichen Warmzeit hin zur Kleinen Eiszeit, die kleine Eiszeit selbst, sowie die globale 

Klimaerwärmung des letzten Jahrhunderts wiederspiegeln. Der Ausläufer der Mittelalterlichen 

Warmzeit reicht im Untersuchungsgebiet bis zum Jahr 1308 und ist vorrangig durch den Rückgang 

von Alnus Pollen gekennzeichnet, wohingegen die Prozentwerte von Cyperaceae Pollen steigen. 

Betula zeigt, wie krautigen Pflanzen auch, keine vergleichbaren Trends. Das milde Klima der 

Mittelalterlichen Warmzeit wurde kühler und trockner, was den Rückgang von Alnus Pollen 

erklärt. Der Deckungsgrad der Sträucher in der Tundra reduzierte sich, was die Verbreitung der 

Sauergräser auf den lichteren Stellen begünstigte. Während der Kleinen Eiszeit, von 1308 bis 

Mitte des 20. Jahrhunderts, stiegen die Prozentwerte von Salix, Artemisia und Potentilla merklich 

an. Auch die Werte der anderen Kräuter verzeichnen einen generellen Anstieg. Die Vorkommen 

von Alnus und Betula sind während der Kleinen Eiszeit geringer geworden, sodass Salix 

möglicherweise auf den günstigen Standorten vorgeherrscht hat. Die Lärche ist die am 

nördlichsten vorkommend Baumart im Gebiet und bekannt für ihre großen, schweren Pollen. Die 

Zunahme an Larix Pollen in den Proben der Kleinen Eiszeit kann daher rühren, dass die Vegetation 

zu dieser Zeit sehr licht und spärlich war, sodass die Lärchen zum einen keiner Konkurrenz oder 

Stress unterlagen, Pollen zu produzieren und dieser zum anderen durch die lichtere Vegetation
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leichter im See abgelagert werden konnte. Die Vegetation bestand hauptsächlich aus Gräsern und 

Kräutern. Die Sträucher wuchsen vorrangig auf günstig exponierten Standorten, da das Klima 

während der Kleinen Eiszeit kälter und trockener als heute war. Ab Mitte des 20. Jahrhunderts, 

stiegen die Prozentwerte von Alnus und Betula Pollen in den Proben merklich an, wohingegen 

diese von Salix, Larix, Cyperaceae, Poaceae sowie Artemisia merklich zurückgingen. Die 

blühenden Arten der Krautflora produzieren weniger Pollen als windbestäubte Pflanzen. Obwohl 

die krautigen Taxa in der Phase der globalen Erwärmung prozentual zurückgingen, wurden ihre 

Pollen im See vermehrt abgelagert, was zeigt, dass das Klima in den letzten Jahrzehnten für alle 

Taxa begünstigend wärmer und feuchter wurde. Die Lärchenpollen sind auch unterrepräsentiert. 

Einzelne Bäume und Gruppen von Larix gmelinii wurden im Untersuchungsgebiet dokumentiert. 

Die Klimaveränderung kann die Konkurrenz erhöhen oder Stress verursachen, sodass Larix 

entweder weniger Pollen produziert oder diese, durch die dichtere Vegetation nicht repräsentativ 

im See abgelagert werden können. 
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1 Introduction 

Ecosystems are on temporal and spatial change all over the world due to dynamics in abiotic and 

biotic environmental factors. The Arctic is regarded as a key region because the certain 

ecosystems are particularly sensitive to climate change and respond very quickly to 

environmental dynamics because of the variously temperature-related processes, so that 

warming climate results in earlier and higher rates of ice and snow melts as well as to the thawing 

of permafrost, so that the sea level rises and the active layer becomes deeper, which lead to more 

intense erosion processes and thermokarst development due to the unstable land surfaces. Rising 

temperatures favor taller and denser vegetation (ACIA 2004) so that the vegetation composition 

changes respectively biomes and the timberline expand northward. The denser canopies and the 

longer growing seasons lead to a decreasing albedo and increasing solar heating of the land 

surface, which gives a positive feedback to the thawing of ice, snow and permafrost again. 

But northern central Siberia is sparsely investigated although the human influence is limited and 

should stimulate the research interest in the unspoilt landscape with its highly sensible 

ecosystems and the numerous suitable archives for palaeoenvironmental studies.  

Since the term climate change has become more and more attention, studies like this are needed 

to understand how ecosystems respond to changed environmental factors in the past, to build a 

basis for ongoing research which might be able to estimate future environmental development. 

But long term monitoring data is absent and it is not directly possible to determine the vegetation 

and climate history or to track the paths of past environmental changes. So, indirect methods like 

pollen, diatom or tree ring analyses became powerful tools to infer past environmental 

conditions. Some of these proxy methods were already realized in the vicinity of the study area. 

Jacoby et al. (2000), Naurzbaev et al. (2002) and Sidorova et al. (2013) refer the climate history on 

the Taimyr Peninsula from tree ring chronology, while Kienel et al. (1999) and Laing and Smol 

(2003) inferred the Holocene environmental dynamic from diatoms. Andreev et al. (2002), 

Andreev et al. (2004), Andreev and Klimanov (2000), Hahne and Melles (1997), Kienel et al. 

(1999), Klemm et al. (2013), Kraus et al. (2003) and Naidina and Bauch (2001) investigated the 

Holocene vegetation and climate history in northern Central Siberia from pollen records. But the 

climatic variability for the Holocene period has increased throughout the last 2000 years and 

leads to a need for widespread regional and temporal coverage (Laing and Smol).  Fedotov et al. 

(2012) reconstructed the thawing permafrost periods of the last 170 years on western Taimyr 

Peninsula and gives one of the few highly resolved pollen records available from northern central 

Siberia. The Diploma theses of Heinecke (2011) and Klemm (2010) are one of the few highly 

resolved pollen records currently available in the vicinity of the study area, which highlights the 

need for further calibration data sets from this region.  

The main objective for the palynological work presented in this thesis is to recognize the stages of 

vegetation development in the vicinity of Chatanga during the last millennium. Records of this 

period bear critical information about significant climate changes including the transition from the 

Medieval Warm Period to the Little Ice Age, the Recent Waming and the beginning of 
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anthropogenic global warming. The second aim of this study is to examine, whether the 

ascertained vegetation changes can be related to recorded climatic variations from other 

palaeoenvironmental studies in the vicinity of the study area. 
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2 Study Area 

2.1 Geographic setting and general features of the study area 

The investigated lake is situated in Russia, northern the arctic circle at 72o 23 55.9 N, 102o 17 

19.5 E within the east of the Yenisei-Chatanga trough and in the south of the Taimyr Peninsula 

(Figure 1). This lowland is also known as Taimyr Lowland and represents a part of the North 

Siberian Lowland, which reaches from the Yenisei estuary in the west further east until the Olenek 

estuary.  

Since 2007, the territory of Taimyr is no longer autonomous and belongs to the territory of 

Krasnojarsk Krai. Dudinka is the former capital of Taimyr and handed over all administration 

responsibilities to the city Krasnojarsk. Both settlements are connected by the Yenisei River, 

which flows almost directly from south to north into the Kara Lake and frames the Yenisei-

Chatanga trough in the west. From there, the lowland is orientated over ca. 1000km to the 

northeast, where the Chatanga River flows into the Laptev Sea. Most of the settlements are in the 

vicinity of the mentioned rivers (Yenisei and Chatanga), because they embody important traffic 

routs for the population living in the far north, which is already of low density, and so the direct 

human influence into the study area is limited at the present and negligible for the outlying 

regions. 

 
 

Figure 1: Location of the study area in northern Central Siberia. [Map created by Moritz Scharnhop, 2014, 

based on NASA-satellite picture of the earth, visible online <http://visibleearth.nasa.gov>, last call 

October 2014] 
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2.2 Climate 

The northern part of Central Siberia represents a sensitive transition zone between west and east 

Siberia. (Hahne and Melles 1997) While the wetsern parts of Taimyr Peninsula are increasingly 

influenced by marine climate, the eastern area is characterized by high to extremely high degree 

of continentality (Atlas Arktiki; Aleksandrova 2009, Jones et al. 2010) due to the Siberian 

Anticyclone, the huge land masses and the Putorana Plateau. The Siberian Anticyclone is a 

dominant and persistent high pressure system ǁith the ͞Đoldest͟ aŶd ͞deŶsest air ŵasses͟ iŶ the 
NortherŶ Heŵisphere ǁith ͞greater iŶteŶsitǇ thaŶ the persistaŶt pressure sǇsteŵs of the North 
AtlaŶtiĐ ;IĐelaŶdiĐ LoǁͿ aŶd the North PaĐifiĐ ;AleutiaŶ LoǁͿ regioŶs͟, status of ϭϵϵϭ ;D´Arrigo et 
al. 2005). It generally forms in October, when the air masses of the lower troposphere begin to 

cool in response to strong and continuous radiative cooling (Panagiotopoulos et al. 2005). Due to 

the huge landmasses, ones of the continent and twice of the pack-ice-covered Arctic Sea, and less 

clouds, which enable the loss of long wave radiation and reveal extremely cold and dry conditions 

over Northern Siberia (Lydolf 1977), the Siberian High exists during the whole winter season. In 

January and February, when the temperatures are lowest, the winter circulation reaches its high 

and the Siberian Anticyclone moves westward over Siberia and then northward over the frozen 

Artic, from where it can brings unusually cold air to Eurasia and also America. (D´Arrigo et al. 

2005; Panagiotopoulos et al. 2005) During the warmer summer months from June to September 

the snow melts and the water surfaces and vegetation communities influence the absorption of 

radiation as well as the evapotranspiration rate. About these summer months a low pressure 

system replaces the Siberian High and brings damper air, a denser cloud cover and also higher 

precipitation into the Arctic regions. In October, when the temperatures are decreasing rapidly, 

the Siberian High starts to form again. 

The climate diagram of Chatanga (Figure 2) is based on local weather observations and describes 

the climate conditions at the study site the best, because the climate station of Chatanga is the 

nearest to the study lake. The following results are based on the interpretation of the mentioned 

diagram: The Dfc-climate is defined after the Köppen-Geiger Climate Classification as fully humid 

and snow climate with cool summer temperatures (5-12°C). Large differences in the mean January 

-34°C and mean July 12°C temperatures also reflect the continental regime of Chatanga. During 

the very short summer, which begins in early June and ends in September, the temperatures are 

ranging from 5°C to 12°C and the precipitation is around 30mm per month. The highest monthly 

precipitation falls in September, when the temperatures starting to decrease, but is still less than 

40mm. So the annual precipitation of 272mm is relatively low (in comparison: Dresden has 

696mm/year). In general, most of the precipitation of Chatanga falls as snow during winter, 

between October and May, where it gets largely accumulated, and begins to melt in early June.  

Chernov and Matveyeva (1997) pronounce that the maximum temperatures in the tundra can be 

very high, but not for a prolonged time. According to them, the maximum air temperature in the 

southern tundra and forest-tundra can stay at 25°C for more than a week.  During our field trip, 

we also observed that the temperatures of July can rise over 30°C throughout the day and will not 

strongly decrease during night on polar day.  
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The area into the south of the Taimyr Peninsula, including the whole area of the Chatanga River, is 

characterized by 1600 hours of sunshine. (Atlas Arktiki) In view of the events of polar day and 

polar night it means 164 days in darkness and 66 days full of light, while the remaining days of the 

year are in between. In the region of Chatanga, the prevailing wind direction is NE-SW and vice 

versa but all other directions are also common and the wind blows perennial as a calm to fresh 

breeze with a speed of about 4.6 at the Beaufort-Scale in July and 4.8 in January. (Atlas Arktiki) 

 
Figure 2: Climate diagram of Chatanga. 

[Muehr, B. (15.06.2007) online: http://www.klimadiagramme.de/Asien/Plots/chatanga.gif, last call 

18.05.2014] 

2.3 Permafrost and the permafrost-effected soil 

Permafrost is the general framework for the northern latitudes but also a sensible key factor in 

certain ecosystems. Because on the one hand it affects e.g. the stability of landforms, the 

characteristic of the soil, water runoff, vegetation cover and on the other hand it gets affected by 

interaction with other environmental factors like soil, water and air temperatures, precipitation, 

irradiation, vegetation cover. All those factors influence the intensity and extent of permafrost. 

JoŶes et al. ϮϬϭϬ defiŶe perŵafrost as ͞pereŶŶiallǇ frozeŶ grouŶd ǁhiĐh reŵaiŶs at, or ďeloǁ, Ϭ°C 
for at least tǁo ĐoŶseĐutiǀe Ǉears͟. These Đriteria are fulfilled ďǇ ϲϬ% of the RussiaŶ laŶd surfaĐe 
(Jones et al. 2010), where all four types of permafrost (continuous, discontinuous, sporadic and 

isolated patches) are present and form the biggest frozen block of lithosphere in the Northern 

Hemisphere (see Figure 3).  The study area around the investigated lake 11-CH-12 lies within the 

continuous permafrost zone around 500km far away from the southern boundary to 

discontinuous permafrost and isolated permafrost fragments. In this region, continuous 

permafrost reaches a thickness of about 400-600m (Andreev et al. 2002; Fedotov et al. 2012; 

Gundelwein et al. 2007).  
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Figure 3: Distribution of the various permafrost zones in the northern circumpolar region. [According to 

Jones et al. 2010, Soil Atlas of the Northern Circumpolar Region, © European communities] 

The characteristic low and harsh temperatures of the Artic become the key factor of the 

pedogenesis because they reduce the biological and chemical weathering, while on the other side 

the physical weathering gets supported and intense erosion processes. Permafrost-affected soils 

are Gelisols (soil taxonomy) but they are also known as Cryosols (Canada) or Cryozems (Russia) 

(Jones et al. 2010). They typically consist of an active layer and a perennially frozen basis layer or 

ice. The active layer is the upper part of the otherwise completely frozen ground, which thaws 

during spring and summer and refreezes in autumn and winter, so that soil processes can function 

only during a short period each year. The depth of the active layer mainly depends on the 

seasonal climate conditions but also on the exposure and irradiation, the characteristic of the soil 

and the overlying vegetation composition. (Jones et al. 2010) The vegetation cover acts as a 

thermal blanket during summer that isolates the permafrost from thawing. We observed 

significant lower active layer under dense moss polygons than immediate proximity under shrubs 

and trees. Conversely, a closed snow cover isolates the soil and either prevents deep freezing or 

rapidly thawing.  

Cryosols are the characteristic soils of the Siberian Province and especially on the Taimyr Lowland. 

(Andreev et al. 2002, Jones et al. 2010) The example, shown in Figure 4, presents such a profile, 

which was made during fieldwork on expedition into the Chatanga region, in July 2013. The depth 

of the profile was limited by the underlying permafrost and so conforms to the depth of the active 

layer (here 36cm), which mostly varied between 30cm and 60cm. Also Fedotov et al. 2012 
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observed 0-45cm active layer during the summer months in the area of the Labaz Lake, 24km 

away from 11-CH-12, with underlying soil, which remains frozen throughout the year.  

 
 

Figure 4: left: Soil map of the Taimyr Peninsula and the study area (red circle symbol). [According to Jones 

et al. 2010, Soil Atlas of the Northern Circumpolar Region, © European communities]  Cryosols are the 

dominant soil types within this region and Fluvisol. 

2.4 Thermokarst and thermokarst lakes 

Thermokarst is the process of the thaw of ice-rich permafrost accompanied by collapse of the 

ground surface and the formation of depressions, lakes and other negative relief. (Brouchkov et 

al. 2004; Czudek and Demek 1970) So thermokarst development depends on the presence of 

sufficient ground ice and a trigger (e.g. forest fires, ecological changes, climate change; see 

Brouchkov et al. 2004) that disturbs the equilibrium of the permafrost system. The stages of the 

thermokarst development are shown in Figure 5. Due to the initiation of thermokarst 

deǀelopŵeŶt, depressioŶs are forŵed ǁhiĐh are goiŶg to fill up ǁith ǁater. The so Đalled ͞Alas͟ 
(Yakutia) are thermokarst lakes, which can catalyze further thermokarst development to form flat 

depressions with an undulating bottom where slopes and numerous of water filled dimples can be 

found.  

The Siberian Province is widely interspersed by lakes (Figure 6, A and D). Thermokarst lakes are 

prominent in the lowlands of the Arctic tundra but some of them may also originate from other 

geomorphological processes, e.g. from fluvial floodplain genesis (Figure 6, B). The study lake lies 

within a characteristic depression with landslides and the overflow as well as the planted runoff in 

the east of the lake indicate, that the water surface is higher elevated than the next bigger stream 

(Figure 6, C). Due to these facts, 11-CH-12 is assumed to represent a typical thermokarst lake, 

which is located in the region of Chatanga in northern Central Siberia.  
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Figure 5: Main development stages of thermokarst relief. [According to: Czudek and Demek 1970] Ia: 

Original lowland surface with syngeneic ice-wedges; Ib: Initial thermokarst stage; II: Small thermokarst 

depressions; IIIa: Young alas; IIIb: Mature alas; IIIc: Ol. 

 

Figure 6: A: Situation of the study lake (11-CH-12) in the vicinity of Labaz Lake and Chatanga. The 

landscape is widely dissected by lakes of different sizes. B: Thermokarst lakes are lying here on a higher 

level than lakes in the north-west to north-east of the study lake, which are of fluvial origin. C: Typical 

thermokarst depression with landslides and alas (11-CH-12). [According to © 2014 TerraMetrics, 

Kartendaten © Google maps, screenshot online: <www.google.de/maps>, last call 22.10.2014] D: 

Topograhic map showing the position of the study lake (framed by the red circle) in the catchment of 

Noǁaja aŶd ChataŶga riǀers. [AĐĐordiŶg to Maps for the ǁorld, ͞TopographiĐ ŵap ggĐ “-48-ϯϭ,ϯϮ͟ oŶliŶe: 
<http://loadmap.net/en>, last call 24.10.2014] 
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2.5 Geotectonic 

The North Siberian Lowland is a large-scale depression between the variscan consolidated 

Byrranga Mountains on the Taimyr Peninsula in the north (Franz 1973) and the Putorana Plateau 

on the Siberian Platform in the south. However, Kontorovich (2011) vents that the Yenisei-

Chatanga trough is traditionally considered as a part of the Siberian Platform, the genesis is 

different and graphically descriptions of the Siberian Craton do not include the investigated area 

(Franz 1973, Koronovsky 2002, Reichow 2009). The basement of the Siberian Platform originated 

from the Precambrian (Koronovsky 2002) and is therefore much older than the basement of the 

adjacent and investigated Chatanga trough. The Yenisei-Chatanga depression consists of 4000-

5000m huge marine and terrestrial sedimentations originating from the Mesozoic and Cenozoic 

eras, which are covered by younger accumulations (up to 150m) of the Pleistocene and Holocene 

(Franz 1973). The Late Quaternary history of the study area is still debated. Grosswald (1998) 

assumes that the Late Weichselian ice sheet covered the whole Taimyr Peninsula, while Velichko 

et al. (1984) find that the glaciation was restricted to the mountain areas of Taimyr and the 

Putorana Plateau, so that the Yenisei-Chatanga trough was free of ice in this variant. In spite of 

those theories, the entire investigated area was lifted and lowered during the Quaternary and 

thereby formed by transgression and glacial processes. (Franz 1973) 

It is also encouraging, that the Yenisei-Chatanga trough lies within the Siberian Trops Province 

(Reichow et al. 2009), but the erupted basalts have been found primary in the West Siberian Basin 

and on the Siberian Craton. The depression itself does not consist of Siberian Trops and 

furthermore divides the outcrops at the Putorana Plateau from relicts on the Taimyr Peninsula 

(compare to the illustration in Reichow et al. 2009). 

2.6 Relief and water regime 

In spite of the modern climate conditions with typically short summers and annual low 

precipitation rates in the study area, the Chatanga River system primarily formed the Taimyr 

Lowland and riverine landforms can be found these days. The lake cover in the investigated area 

is about 25% (Walker et al.2005). The development of thermokarst formed numerous lakes, so 

that the undulating landscape is interspersed with more and less dynamic water bodies (see 

Figure 6, A, B and D). Also the investigated lake is a water filled thermokarst depression of about 

220 x 130m size on a hummock, 70m above sea level, which lies in the area of the mouth between 

the two rivers Nowaja and Chatanga (Figure 6, D). Even though the Nowaja is the tributary of the 

Chatanga, its length (411km) is around 200km longer than the Chatanga, because the Chatanga is 

the confluence of the two rivers Cheta and Kotuy, whose tributaries also take a longer way from 

the Putorana Plateau. That means the Chatanga is a relatively short river but also represents a 

whole river system, which formed a basin between 0m and 100m elevation above sea level and 

drains an area of 364,000km² into the Laptev Sea. 

The local water regime around the study lake presents small-scale variations and depends on the 

micro relief, the exposure as well as on the depth of the active layer. The smaller elevations are 

better drained than the dimples. The ground ice and snow smelt rapidly on sun exposed slopes. 
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Their runoff proceeds along the table of the frozen ground within the active layer and can induce 

solifluction processes, which result in landslides, before the water gathers systematically in the 

depressions.  

The investigated lake show landslides exactly on the south exposed slopes (Figure 7), which are 

actually overgrown and therefore more stabilized. Furthermore, the lake is characterized by an 

overflow, which is vegetated by species of Salix (Figure 8). Due to the relatively dense occurrence 

of Salix within the area of outlet, it is assumed, that the lake spends water to the next tributary of 

the Nowaja River (Figure 6, B and C) during water rich periods of the year, but do not operate as a 

permanent overflow. 

 

 
 

Figure 7: Landslide on the sun-exposed slope of 11-CH-12 overgrown with grasses concerning to the 

families of Cyperaceae and Juncaceae. [Photo: Ruslan Gorodnichev, 2011] 

 

 
 

Figure 8: Overflow in the east of 11-CH-12, which is planted by Willows (Salix). [Photo: Ruslan 

Gorodnichev, 2011] 
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2.7 Vegetation of the present  

The vegetation of the Artic has to tolerate one of the most unfavorable living conditions on earth. 

Continuous permafrost and low active layer depths prevent that plants can produce deep growing 

roots. The annual low precipitation rates, icy frost, extremely cold and long winters as well as the 

missing of thermal and ultraviolet radiation during the polar night reduce the vegetation period 

within the arctic region of the short duration of the summer. Only species, which are tolerant in 

temperature and moisture, can reproduce under the given conditions. Due to the missing 

competition, those species are able to build long lasting populations. 

The arctic flora is primarily influenced by the predominating climate conditions. That´s why the 

general division of the vegetation in Central Siberia takes place from north to south and forms 

vegetation zones (see Figure 9). The zones are usually interlocked so that their transition is 

gradual (see Figure 11). Naturally, subzones can establish in between due to regional changes of 

environmental factors, e.g. differences in elevation. 

 

 
 

Figure 9: Table of the arctic bioclimatic zonation approaches for Russia and the map of the CAVM 

subzones pointing the investigated area by the red circle. Modified from CAVM Team 2003. The study 

area lies ǁithiŶ the suďzoŶe E, also kŶoǁŶ as ͞southerŶ tuŶdra͟, ͞southerŶ hypo-arctic tundra͟ or 
͞southerŶ suď-arĐtiĐ tuŶdra͟. [AĐĐordiŶg to Walker et al. ϮϬϬ5] There are also ďioĐliŵatiĐ zoŶatioŶ 
approaches for Northern America and Fennoscandia, but they were consciously excluded here. 
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Figure 10: Latitudinal zonality and floristic provinces of the Russian Arctic. The position of the 

iŶǀestigated area is ŵarked ďy the red ĐirĐle iŶ the ͞southerŶ tuŶdra͟ Đlose to the ŶortherŶ liŵit of the 
͞forest-tuŶdra eĐotoŶe͟. [AĐĐordiŶg to Chernov and Matveyeva 1979, Yurtsev 1994, online 

<http://www.rusnature.info/reg/f9-6.jpg>, last call 28.10.2014] Taimyr is the only place on Earth where 

the tundra zone is represented over a vast area with three subzones, bounded to the north by the polar 

desert and to the south by the forest-tundra zone (Chernov and Matveyeva 1979). 

The iŶǀestigated area lies ǁithiŶ the tuŶdra zoŶe. The terŵ ͞tuŶdra͟ refer to the treeless 
expanses beyond the climatic timberline (Bliss 1962, Matveyeva 1994) and one of the 

ĐharaĐteristiĐ features is the ͞relatiǀelǇ sŵall flora that has ďeeŶ seleĐted out ďǇ the seǀere 
eŶǀiroŶŵeŶts͟ ;Bliss ϭϵϲϮͿ. But the eǆpaŶsioŶ is gradual aŶd suďzoŶes are Ŷeeded to desĐriďe the 
vegetation that appears best.  Due to different national and international approaches in the 

literature, which were made to divide and define the sub-categories of the tundra, the 

Circumpolar Arctic Vegetation Map (CAVM) Team 2003 (Walker et al. 2005) collected the different 

approaches of the circumpolar arctic tundra region, north of the tree line, and generated a new 

system of bioclimatic subzones with their major vegetation units and composition. The plus of this 

classification is that the characteristic of the subzones describe the vegetation properties of the 

zone unique and make the literature more comparable. According to Walker et al. (2005) the 

bioclimatic characteristic of the study area belongs to the subzone E, which is well known in the 

literature as ͞southerŶ tuŶdra͟ ;AŶdreeǀ et al. ϮϬϬϮ, Gundelwein et al. 2007, Hahne and Melles 

1997, Kienel et al. 1999, Matveyeva 1998, Sommerkorn 2008, and others). It is the most densely 

vegetated subzone of the circumpolar tundra region and covered by 53% of erect shrub 

vegetation, 13% of tussock-sedges, dwarf-shrub and moss tundra, 11% of wetlands and 11% of 

mountain complexes (Walker et al. 2005). The southern tundra is the warmest part of the Arctic 

Tundra Zone with mean July temperatures of 9-12 °C (Walker et al. 2005 based on Matveyeva 

1998) and an summer warmth index (sum of the mean monthly temperatures greater than 0°C) 

about 20-35°C (Walker et al. 2005 modified from Young 1971), what is applicable for the climate 

diagram of Chatanga (Figure 2). The vegetation of the study area (see pictures in Figure 12) is 

characteristic for the 13% of tussock-sedges, dwarf-shrub and moss tundra. The dominant 

ǀegetatioŶ uŶits are ͞ereĐt dǁarf-shruď tuŶdra͟ aŶd ͞loǁ-shruď tuŶdra͟ ;Walker et al. ϮϬϬϱͿ. The 
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horizontal structure of the plant cover is typically closed with 80-100% of vascular plants, whereby 

the vertical structure consists typically about 2-3 layers (Walker et al. 2005). The moss layer is 5-

10cm thick with a high variety of mosses and lichens and covers the entire ground. The 

herbaceous dwarf-shrub layer is about 20-50cm (Walker et al. 2005). Vaccinium uligonosum, 

Vaccinium vitis ideae, Cassiope tetragona, Empetrum nigrum, Arctostaphylos uva-ursi and Ledum 

palustre are typicall herb species next to Pedicularis capitata, Pedicularis rostratocapitata, Dryas 

punctata, Dryas octopetala, Pyrola rotundifolia, Artemisia, Potentilla palustris, Rubus 

chamaemorus, Saxifraga nelsoniana and Saxifraga hieracifolia. Cyperaceae is one of the leading 

families of the tundra flora (Alexandrova 1980) and the entire complex of sedges (Carex) and 

Cotton grasses (Eriophorum angustifolium, Eriophorum scheuchzeri) are found in the most 

important tundra associations. Equisetum arvense is common for damp locations whereas 

Poaceae and Lycopodium clavatum are common on drier and sun exposure places. Wolly Willows 

(Salix lanata) and a smaller form of willow, Glaucous willows (Salix glauca), Dwarf birches (Betula 

nana) and Green alder (Alnus viridis spp. fruticosa) are typically species of the shrub layer in the 

study area. Alexandrova ;ϭϵϴϬͿ diǀides the ͞southerŶ tuŶdra͟ ;taďle iŶ Figure 9 and Figure 10) by 

the oĐĐurreŶĐe of taller shruďs aŶd ŵore Đoǀer of shruď thaŶ iŶ the ͞tǇpiĐal tuŶdra͟ ;taďle iŶ 
Figure 9 and Figure 10), so that sometimes a local specific low-shrub layer (third layer) to 80cm 

can develop on watersheds. Although there is a lack of real tree vegetation, toward the southern 

part of the subzone E, patches of open forest can possibly penetrate into this subzone along 

riparian corridors (Walker et al. 2005), see Figure 11. They consist in the investigated area of 

Dahurian larch (Larix gmelinii), into the west in the vicinity of the Yenisei River and also into the 

east in the vicinity of the Olenek River of Siberian spruce (Picea obovata), Siberian pine (Pinus 

sibirica) and tree birches (Betula pubescens, B. exilis). 
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Figure 11: Vegetation of Central Siberia. The investigated lake (red circle) is located at the ecotone of 

tundra and forest-tundra with Larix. The boundary of the northern taiga, where Larix build open 

woodlands, is situated approximately 200km south of the lake. But groups of Larix as well as single 

individuals characterize the study area, see pictures in Figure 12. Like Walker et al. (2005), groups or 

single individuals of Larix penetrate into the study area. [Compiled by Tishkov, A. using data from 

Sochava 1979, online <http://www.rusnature.info/reg/f9-6.jpg>, last call 28.10.2014] 

Small-scale vegetation pattern can occur due to differences in microclimates, exposure, active 

layer depth, and soil or water regime. These patterns are from high importance, because they 

built the source of potential pollen input into the lake. The single pictures of Figure 12 show the 

vegetation formation in the surroundings of the lake. Single individuals and small groups of Larix 

are growing approximately 2-4m in height on barrows and especially on the barrows alongside 

the rivers (see also Figure 8). Hahne and Melles (1997) observed dense alder brushes on rock 

placers in the vicinity of the Lama Lake especially there, where single larch trees occur. Around 

the investigated lake, these observations could not be confirmed. But Salix glauca, Vaccinium vitis 

ideae, Empetrum nigrum, Pedicularis and Dryas were found on the top or above short slopes, 

where drier conditions predominate. Mainly Salix, but also Betula were found in the vicinity of the 

lake and built dense canopies especially in the area of the overflow of the lake. Carex and 
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Eriophorum, Lycopodium, Equisetum and Sphagnum ssp. were mainly found on the lakeshore. 

Hippuris vulgaris and Potamogeton were found in the lake, underwater. 

 

 
 

Figure 12: Vegetation in the close surroundings of the lake 11-CH12. [Photo: Ruslan Gorodnichev, 2011] 

2.8 Vegetation and climate history of the late Pleistocene and Holocene 

It is still debated, if the higher precipitation during the late Weichselian led to the formation of 

the Eurasian ice sheet and covered the whole Taimyr Peninsula (maximum variant of Grosswald 

1998) or if it was restricted only to the mountain areas, so that east Siberia remained unglaciated 

(minimum variant of Velichko et al. 1984). During that time from 11,000-10,300 years BP, the 

climate in the vicinity of Chatanga was clearly ŵore seǀere, Đooler ;ΔT°year -ϯ°CͿ aŶd ŵoister ;ΔPmm 

-150mm) than today (Figure 14)(Hahne and Melles 1997; Andreev and Klimanov 2000) and tundra 

existed around 300km more south in the area of the recent open Larix woodlands (Figure 13).  

Scarce steppe-like communities with Artemisia, Poaceae and Cyperaceae dominated the 

unglaciated areas of the Taimyr Peninsula (Andreev et al. 2004). The Weichselian-Holocene 

boundary in Europe and Russia has been dated by Khotinskiy (1984) to 10,300 years BP. 

The subsequent warming of around 4°C and the increasing annual precipitation rates of around 

175mm (Figure 14) introduced the Preboreal (10,300-9,200 years BP) in the Chatanga region.  

Characteristic increases of the values of arboreal pollen, mainly of Betula exilis type and Salix, 
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increasing values of the pollen concentration as well as the increased Sphagnum spores content 

were observed in palaeoenvironmental studies of the Taimyr Peninsula, whereby all herb pollen 

taxa but especially Cyperaceae decreased dramatically. (Hahne and Melles 1997; Andreev et al. 

2004) According to Andreev et al. (2004), Andreev et al. (2002), Andreev and Klimanov (2000), 

Velichko et al. (1997) and Nikol`skaya (1980), the vegetation of the Taimyr Peninsula changed in 

the beginning of the Holocene to shrub and forest tundra. The position of the forest-tundra 

approximately corresponded to the modern one and single larch trees and smaller groups of 

larches expanded from the south into the study area.  

After a short cooling period at the transitioŶ froŵ the Preďoreal to Boreal, the ǁarŵiŶg ;ΔT°year 

+Ϯ°CͿ aŶd the ŵoisture iŶĐreasiŶg ;ΔPmm +100mm) continued into the Boreal (9,200-8000 years 

BP) (Figure 14). The so called Holocene climate optimum led to the maximal treeline movement, 

approximately 200km farther north than today, so that the study area was situated within the 

forest-tundra at that time (Figure 13). Dense larch forests developed on the Taimyr Peninsula 

which is also reflected in the relatively high Larix pollen content (30%) in the area of the Lama 

Lake (Hahne and Melles 1997; Andreev et al. 2004). Picea, Populus, Juniperus and Alnus became 

of high importance around the Lama Lake, so that the Boreal is characterized by the highest 

pollen concentration values coming from the tree and shrub pollen taxa because the non-arboreal 

pollen reached their lowest values of the Holocene. (Hahne and Melles 1997) 

 

 
 

Figure 13: Vegetation in the Holocene climatic optimum and pointing the position of the study lake 11-

CH-12 (red circle). [According to Velichko et al. 1998 after Khotinskiy 1984] 

At the transition to the Atlantic period, Larix pollen contents decrease to 10% due to the 

assumption that the moister conditions resulted in a limiting factor and so larches could not grow 

and reproduce longer in some areas at the Taimyr Peninsula (Hahne and Melles 1997). However, 

the Đliŵate ĐoŶditioŶs ǁere geŶerallǇ Đoŵfortaďle ;ΔT°year +Ϯ°C, ΔPmm +100mm, Figure 14) during 
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the Atlanticum (8,000-5,000 BP), but cooler intervals have been recorded by Hahne and Melles 

(1997) and Andreev and Klimanov (2000). Spruce became an important species around the Lama 

Lake, so that the vegetation changed to larch-spruce forests ones in the vicinity of the study area, 

but never occupied the landscape of the Labaz Lake. The northern limit of Picea has always been 

near the Lama Lake (Hahne and Melles 1997). Up from the late Atlantic period, larch obviously 

had reached its northernmost range in Central Siberia. Fossil larch stamps have been dated 

between the Taimyr Lake and the Chatanga Bay to 5,700-5,500 years BP, showing that larch have 

been present up to 300km further north than today (Hahne and Melles 1997). Andreev et al. 

(2004), Andreev et al. (2002), Andreev and Klimanov (2000), Clayden et al. (1997), Belorusova et 

al. (1987), Kul`tina et al. (1974) and Nikol`skaya (1980) observed the beginning of dramatically 

decreases in arboreal pollen in records from the Taimyr Peninsula due to gradual deforestation on 

northern Taymyr and the disappearance of spruce from the forest communities at the transition 

to the Subboreal. Palaeoecological records from the Arctic region of East and West Siberia 

indicate that the climate generally cooled during the late Holocene, leading to a southward 

retreat of the treeline between 5300 and 3800 years BP. (Andreev and Klimanov 2000; Fedotov et 

al. 2012; Hahne and Melles 1997; Kienel et al. 1999; Laing and Smol 2003)  

The Russian Subboreal (5,000-2,5000 years BP) includes two cool and one mild event and the 

annual precipitation is reconstructed to decrease continuously (Khotinskiy 1984; Andreev and 

Klimanov 2000). The forest degenerated completely and the tundra expanded southward, 

approximately to the same like on modern conditions, which is reflected in the decrease of 

arboreal pollen contents on the Taimyr Peninsula (Andreev et al. 2002; Andreev and Klimanov 

2000; Clayden et al. 1997; Velichko et al. 1997; Kul`tina et al. 1974 and Nikol`skaya 1980). 

The Subatlantic period includes the past 2,500 years. The climate of the Chatanga region 

recovered from the cool and relatively dry conditions (3,000 years BP) to milder conditions than 

todaǇ  ;ΔT°year +ϭ°C, ΔPmm +40mm, Figure 14) around 1,000 years BP. But then, the climate cooled 

aŶd dried oŶĐe agaiŶ arouŶd ϱϬϬ Ǉears BP ;ΔT°year -Ϭ.ϳϱ°C, ΔPmm -50mm, Figure 14). The modern 

vegetation cover of tundra and forest-tundra established the Taimyr Peninsula. The treeline is 

actually regressing southward in some parts of Russia (ACIA 2004) due to the effects of industrial 

pollution (e.g. in the surroundings of Norilsk). In outlying regions, the northernmost larches are 

growing in dwarf-form and can be found in depressions or on favorably exposed slopes in the 

vicinity of the Labaz Lake. They produce pollen only in warm summers (Hahne and Melles 1997). 

Herbs and grasses (species of the families of Ericaceae, Rosaceae, Asteraceae, Ranunculaceae, 

Saxifragaceae, Caryophyllaceae, Cyperaceae and Poaceae) dominate the landscapes on the 

Taimyr Peninsular for the first time since the Last Glacial and led to increased non-arboreal pollen 

contents in the pollen records (Andreev et al. 2002; Andreev et al. 2004; Hahne and Melles 1997). 

They build vegetation communities together with shrubs like Salix, Betula and Alnus. The more 

detailed description of the vegetation changes in the vicinity of Chatanga during the last 1,000 

years is part of this study and will be presented by analyses of a lacustrine pollen record. 

 

 



Study Area 

18 

 

 
 

Figure 14: Average palaeoclimate curves in the vicinity of Chatanga. [Andreev and Klimanov 2000] 
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3 Methods 

3.1 Lacustrine samples and available data 

3.1.1 Lake sampling 

The field work was done by a group of Russian and German scientists in 2011 during a summer 

expedition into the Chatanga region conducted by Prof. Dr. Ulrike Herzschuh, Alfred Wegener 

Institute, Helmholtz Centre for Polar and Marine Research Unit Potsdam, Germany, in 

cooperation with Prof. Dr. Ljudmila Pestryakova, North Eastern Federal University of Yakutsk, 

Russia. During this joint project different lakes within one transect from northern tundra to 

southern tree-tundra sites, alongside the Chatanga River, were accessed by helicopter. The study 

core was taken from a location within the tundra taiga transition zone.  

It was ensured that the cores were drilled at the measured maximum depth of the body of water 

to reduce the disturbance of the sediments by lake level fluctuations. The maximum depth was 

localized via depth measurements throughout the lake surface out from a boot by using a hand 

depth sounder. 

The Đore ID ͞ϭϭ-CH-ϭϮD͟ origiŶates froŵ the Ǉear of the eǆpeditioŶ ;ϮϬ11), the locality (Chatanga) 

and the lake number (No.12), which was drilled two times (A and D) with a UWITEC gravity corer. 

12A embodies a long core, while 12D, the short core with a length about 32cm, was drilled to 

enable high resulted time scale pollen analyses. Therefore the short core was sliced horizontal 

every half centimeter into 64 samples in total. This work was done directly in the field. The 

samples got preserved in Whirl-Pak´s to maintain the layer sequence and to prevent any 

contamination of the material during their transport. Furthermore to facilitate the transport to 

the AWI, meanwhile the samples were stored cool and dark. 

Besides the core, limnological parameters such as pH, conductivity, total hardness, mineral 

contents and water transparency were gathered to describe the water quality. The latter is also 

known as Secchi depth because the water transparency gets measured by use of the Secchi disk. 

Documentations of the surrounding lake flora were done to promote a better understanding 

about the lake characteristic and furthermore the potential input of local plant material.  
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Figure 15: Fieldwork at and around the lake 11-CH-12 to enable analyses of the interdependent, 

limnological and terrestrial, units as a local system. [Photo: Ruslan Gorodnichev, 2011] 

3.1.2 Age determination 

Radiometric dating is a widely used tool to determine the age of lake sediments precisely and to 

deduce information about the accumulation rate over time. 

Therefore 13 subsamples from the upper 7.25cm of the core 11-CH-12D were sent to the 

Environmental Radioactivity Research Centre at the University of Liverpool in Great Britain, where 

P.G. Appleby and G.T. Piliposian did the radiometric analyses. The report was sent to the Alfred-

Wegener-Institute for Polar and Marine Research in Potsdam. Appleby and Piliposian did the 

radiometric analyses of 
210

Pb, 
226

Ra and 
137

Cs by using Ortec HPGe GWL series well-type coaxial 

low background intrinsic germanium detectors (Appleby et al. 1986). The atmospheric natural 

fallout of 210Pď ;͞uŶsupported͟ 210Pb) was ascertained via its gamma emissions while 226Ra got 

determined via its daughter radionuclide 214Pb emitted following three weeks storage in sealed 

containers to allow radioactive equilibration. 137Cs was measured by its emissions to get 

chronostratigraphic dates. Calibrated sources and sediment samples with a known activity were 

used to gain the absolute efficiencies of the well-type detectors. Corrections were made using the 
137Cs record as reference chronology, because there were significant discrepancies between well-

defined 137Cs dates and the untreated 210Pb dates. (Appleby and Piliposian 2011) 
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3.2 Pollen analysis  

3.2.1. Sample treatment 

Fossil pollen analyses are only feasible due to the resistance of the pollen membrane against 

different concentrated acids and bases.  The pollen preparation of all 64 samples from the 11-CH-

12D core was conducted in the pollen laboratory of the Alfred Wegener Institute Helmholtz 

Centre for Polar and Marine Research in Potsdam following the standard procedures from Faegri 

and Iversen (1989). At first, subsamples were taken out from the Whirl-Pak´s, containing the 

sliced 11-CH-12D core samples, with syringes to get 1ml volume of each sample for pollen 

analyses. The lab work was done on six appointments because every single one encompasses a 

two days preparation where ideally a maximum number of 12 subsamples could have been 

treated.  

On the first day in the lab and before the pollen extraction could have been started, the 

subsamples were profitably contaminated with a calibrated quantity of Lycopodium spores, which 

do not occur naturally in the deposit (Stockmarr, 1971), for further calculations of the pollen 

concentrations within the subsamples. Approximately 20848 Lycopodium spores per tablet, Batch 

Nr. 1031, were added. Then the sodium bicarbonates from the spores tablets and carbonates 

included in the sample materials got removed by adding 10% hydrogen chloride (HCl). The 

thereby formed froth was subdued by use of a few drops of Ethanol. These and the coming steps 

were usually followed by washing the suspensions with purified water until the pH-value retrieve 

neutral. Also to centrifuge the suspensions in a Heraeus Multifuge 1S Centrifuge by a speed of 

approx. 3000 radiations per minute for 3 minutes to concentrate the sample material on the 

ground of the tubes to allow decanting of the fluids. Afterwards the humic acids were dissolved 

by 10% potassium hydroxide (KOH) treatment and heating the suspension in hot water bath for 

10 minutes to keep the reaction potential. This step is closely followed by sieving the coarse 

particles through a nylon strainer with a mesh size of 200µm. The samples were washed again so 

that 40-45% hydrogen fluoride (HF) could be added to dissolve siliceous particles during night. 

On the second day, the samples in HF got washed and the water residues had been reduced by 

glacial acetic acid (CH3COOH) before the acetolysis was conducted. Acetolysis names the treating 

with a fresh mixture of nine parts acetic anhydride (C4H6O3) to one part 95-98% sulfuric acid 

(H2SO4) and heating in boiling water bath for 2.5 minutes to remove cellulose components as well 

as to stain the pollen grains and spores amber-coloured. After the last washing process the 

samples were fine sieved through a 7µm mesh size strainer in an ultrasonic bath (VWR Ultrasonic 

Cleaner) for max. 30 seconds so that the pollen grains would not rupture. Strong exines, e.g. these 

from Larix pollen, rupture faster than thin exines, e.g. these from Cyperaceae, which can stand 

much longer treatment. (Faegri and Iversen, 1989) Until further analyses the samples were stored 

in water-free glycerol. 
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Figure 16: Sample treatment under the exhaust hood in the pollen laboratory of the Alfred Wegener 

Institute Helmholtz Centre for Polar and Marine Research in Potsdam. [Photos: Xenia Schreiber] 

3.2.2 Light microscopy 

The extracted pollen and spores material is stored in smaller tubes and got stirred to 

homogeneous suspensions before analysing. A single drop of the regarding sample was 

transferred to a slide, covered by a cover slip, then sealed with nail varnish and labeled with the 

appropriate sample ID to produce a permanent mount for pollen counting. Due to the fact that 

smaller grains seemed to float toward the edges of the cover slip, the counting process took 

always the whole slide, even if every second row, into account. The number of pollen grains, 

spores and non-pollen palynomorphs (NPP´s) were counted for each sample by use of a Carl Zeiss 

Axiolab Microscope. The magnification of 100 obtained an overview about the sample slide. The 

more detailed solution of 400 by using a 40x objective and 10x ocular was required for the 

identification and counting of the individual objects.  

One sample counting applies only to be completed, if a minimum of 300 terrestrial pollen grains 

and 200 Lycopodium spores has been gathered. The pollen grain determination followed the keys 

of Beug (2004), Moore et al. (1991) and Savelieva et al. (2013). Some grains were compared to 

iŵages giǀeŶ iŶ the ͞OŶliŶe PuďliĐatioŶ oŶ fossil aŶd reĐeŶt PolleŶ aŶd “pores͟ ;PalDat - 

Palynological Database) or the pollen collection of the Alfred Wegener Institute. Even if the 

determination was not clear, the analysis was supported by special advice from Bastian Niemeyer 

(AWI Potsdam). Non-pollen palynomorphs were determined on their species level by use of 

Moore et al. (1991) and Van Geel et al. (1989).  

The aim was to ascribe the pollen grains as taxa on their family or genus levels, however most 

pollen grains were ascertained as taxa-types, e.g. Ericaceae could be distinguished into two 

morpho-types, Vaccinium type and Cassiope type. Pollen grains, which belong to the plant family 

of Ericaceae, but were not identifiable upon the level of their morpho-types, due to their broken 

or collapsed appearance, were counted on their next lower taxonomic level. The same applies for 

Rosaceae and Ranunculaceae. Pollen grains which were considered to be indeterminable were 

ĐouŶted as ͞polleŶ iŶdet͟. Taǆa, which were ascertainable but where features for further 

ideŶtifiĐatioŶ ǁere ŵissiŶg or ǀisuallǇ Ŷot oďǀiouslǇ, ǁere ĐouŶted as ͞Đf Saxifraga͟ or ͞Đf 
Scrophulariaceae͟. 
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The mounts of NPP´s are not decisive factors for the results of pollen analyses but their variations 

can be helpful to interpret the lake ecology or to compare those to the pollen grain fluctuations. 

That´s why all NPP taxa which could be found in most of the samples were also counted, e.g. 

Botryococcus, Pediastrum and HdV-187D (Kramer et al. 2010).  

The sequence of the sample ID was randomized during the counting process to prevent subjective 

expectations on the counting results. And after a minimum of 300 terrestrial pollen grains and 200 

Lycopodium spores were counted in each sample, the first 10 analyzed samples were counted 

again to review the counting results. 

Exemplary pictures from microscopy work can be found in the Appendix 8.1.  

3.3 Data treatment 

3.3.1 Palynological data treatment 

In this study, 41 different pollen taxa and five types of non-pollen palynomorphs have been 

counted for all 64 samples, also Lycopodium marker spores and the group of indeterminable 

pollen grains. The single pollen grains from Tilia, Populus and Juglans were excluded from any 

further analyses, because their sparsely occurrences are assumed to be contaminations and do 

not represent the local vegetation. However, Table 1 presents those 38 pollen species and five 

types of NPP, which are at the basis of the pollen analysis. 

The results of the pollen counting were summarized in one Excel chart for palynological data 

treatment. Thereby the identified taxa, except the marker spores, were arranged in groups of 

arboreal pollen (AP), non-arboreal pollen (NAP), pollen of water species and non-pollen 

palynomorphs (NPP). AP and NAP represent pollen grains of terrestrial species. Their total 

amounts had been ascertained for each sample to calculate the percentage values from the 

number of individuals per identified taxa in relation to the respective total number of terrestrial 

pollen grains. Thereby, the pollen of the water species had been excluded because they are 

assumed to be overrepresented in lake sediments. Furthermore this study focuses on terrestrial 

pollen.  

Two different pollen diagrams were generated by the free version of C2 1.7.5 (Juggins 2014). 

Number one (Appendix 8.2) presents all taxa of pollen and non-pollen, which were counted 

throughout the core. The second diagram (Figure 20) shows the main terrestrial pollen taxa, 

which were used for statistical analyses, and additional representative herb species, which are not 

included in statistical analyses but who were found during field observations on expedition and so 

present the local vegetation community. The fluctuations of the NPP´s and the relation of AP to 

NAP are also displayed in Figure 20. This pollen silhouette diagram generates an impression of 

subsequently pollen assemblage and will be used to reconstruct the vegetation history. 
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Table 1: List of abundant taxa within the core 11-CH-12D. 

Marker spores Lycopodium Batch. 1031 

Arboreal pollen 

Betula 

Alnus 

Pinaceae 

Salix 

Larix 

Non-arboreal pollen 

Cyperaceae 

Poaceae 

Vaccinium type 

Cassiope type 

Ericaceae 

Artemisia 

Senecio type 

Matricaria type 

Potentilla type 

Rosaceae 

Rumex 

Rumex aquaticus 

Brassicaceae 

Caryophyllaceae 

Ranunculaceae 

Thalictrum 

Lamiaceae 

Valeriana 

Linnea borealis 

Chenopodiaceae 

Primula type 

Gentianaceae 

Apiaceae 

Fabaceae 

Parnassia 

Fenestratae 

Urtica 

Plantago 

Rubiaceae 

cf Saxifraga 

cf Scrophulariaceae 

Potamogeton 

Myriophyllum 

Indeterminable pollen Pollen indet 

Non-pollen palynomorphs 

Pteridium type 

Lycopodium (local type) 

Pediastrum 

Botryococcus 

HdV-187D  

3.3.2 Statistical analyses 

To support the interpretation of the pollen diagram, those taxa were considered for further 

statistical analyses, which showed percentages of abundance higher than a specific threshold.  In 

this thesis, the threshold value for these taxa was set at 0.5% (Brewer et al. 2002; Lisitsyna et al. 

2011) and furthermore had to occur in at least six of the investigated 64 samples. All terrestrial 

pollen taxa (n=36) were investigated into threshold analyses. The group of indeterminable pollen 

;͞PolleŶ iŶdet.͟Ϳ ǁas eǆcluded as it includes pollen grains of different species and morpho-types 

and do not reflect representative fluctuations. It was assumed that their uncertainty might 

interfere with the deduction of ecological parameters.  

Due to ensure a statistical relevance of the taxa, the following 19 were used to perform the 

statistical analyses: Betula, Alnus, Pinaceae, Salix, Larix, Cyperaceae, Poaceae, Vaccinium type, 

Cassiope type, Ericaceae, Artemisia, Senecio type, Potentilla type, Rosaceae, Rumex, Brassicaceae, 

Caryophyllaceae, Ranunculaceae and cf Saxifragaceae.  
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The remaining 17 terrestrial taxa had been excluded, because they did not occur on a regular 

basis throughout the short core: Matricaria type, Rumex aquaticus, Thalictrum, Lamiaceae, 

Valeriana, Linnea borealis, Chenopodiaceae, Primula type, Gentianaceae, Apiaceae, Fabaceae, 

Parnassia, Fenestratae, Urtica, Plantago, Rubiaceae and cf. Scrophulariaceae. 

For cluster and ordination analysis the reduced dataset was processed in the free version of R 

3.0.3 (Murdoch 2014). The CRAN packages 'rioja' (Juggins 2013) and 'vegan' (Oksanen et al. 2013) 

were used to provide functions for the analysis of Quaternary science data. These packages are 

constructed to fulfill constrained clustering and stratigraphic diagrams ('rioja', Juggins 2013) as 

well as ordination methods and functions for community and vegetation ecologists ('vegan', 

Oksanen et al. 2013).  

The percentages had been square-root transformed to reduce the influence of outliers and to 

stabilize the variance of percentage data before calculations.  

The cluster analysis and the broken-stick model were applied to structure the investigated data 

into statistically significant pollen assemblage zones. The constrained incremental sum of squares 

cluster analyses (CONISS) is a multivariate method to detect differences and similarities between 

adjacent samples, thus pollen assemblage zones (PAZ) can be identified (Grimm 1987). This 

analysis was conducted by the method of Bray-Curtis (Beals 1984) to produce a distance matrix 

based on the differences between samples. Samples corresponding to the same clustering zone 

are assumed to reflect similar pollen composition, while samples of neighboring groups are more 

different. The analysis reveals patterns of uniform pollen content and displays the quantitative 

defined clusters in the CONISS dendrogram. A broken-stick model was applied to verify the results 

of the cluster analyses in terms that it verifies the number of PAZ that can be significantly 

described over the length of the core. (Bennett 1996)  

The following Principal Component Analysis (PCA) was conducted to investigate the variation of 

the pollen spectra composition and environmental gradients which are related to the species 

assemblages within the zones. The instruction for the PCA without any ecological parameters in R 

is implemented by use of the Redundancy Analysis (RDA). This method is designed to display two 

principal components as synthetic environmental gradients in the RDA biplot (ter Braak and 

Verdonschot 1995). The first principle component (PC1) embodies the variable explaining the 

highest possible variance of the data, while the second axis (PC2) describes another theoretical 

gradient which is uncorrelated to PC1 and represents the most of the remaining variance. The fit 

of these explanatory axes are revealed as eigenvalues. PC1 and PC2 together should explain the 

least residual sum of squares. The taxa scores are represented as arrows and point in the 

direction of increasing change in abundance for that variables. 
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3.3.3 Pollen concentration and pollen accumulation rate  

The pollen concentration is the measurement for the amount of pollen grains within one sample. 

In this study, the total amounts of terrestrial pollen grains were used to generate the sample 

specific pollen concentrations as follows: 

݊�] ݊݋�ݐ�ݎݐ݊݁ܿ݊݋ܿ ݈݈݊݁݋݌ ³݉ܿݏ݊��ݎ�) )] = (∑ ∗ ݏ݊��ݎ� ݈݈݊݁݋݌ ݈��ݎݐݏ݁ݎݎ݁ݐ  ∑ ∑ݏ݁ݎ݋݌ݏ ݎ݁݇ݎ�݉ ݀݁݀݀� ݏ݁ݎ݋݌ݏ ݎ݁݇ݎ�݉ ݀݁ݐ݊ݑ݋ܿ [³݉ܿ ݊�] ݁݉ݑ݈݋ݒ ݈݁݌݉�ݏ(  

The number of the added Lycopodium markers (Batch Nr. 1031) has a concentration of 

approximately 20848 spores per tablet. 

 

As opposed to the pollen concentration, the pollen accumulation rate (PAR) depends on the 

sedimentation rate of the sample material and describes the annual quantity of grains, which 

were deposited per square centimeter each year. Calculations of the sample specific PARs were 

performed to reflect real relative past plant population densities around the study site 

independently for the investigated taxa (Seppä and Hicks 2006): 

��� [�݊ [(ݎ�ଶ݉ܿݏ݊��ݎ�) = (∑ ݈݈݊݁݋݌ ∗  ∑ ∑ݏ݁ݎ݋݌ݏ ݎ݁݇ݎ�݉ ݀݁݀݀� ݏ݁ݎ݋݌ݏ ݎ݁݇ݎ�݉ ݀݁ݐ݊ݑ݋ܿ ሺ�݊ ܿ݉ଷሻ ݁݉ݑ݈݋ݒ ݈݁݌݉�ݏ( ∗ ݊�] ݁ݐ�ݎ ݊݋�ݐ�ݐ݊݁݉�݀݁ݏ ݎ݉�ܿ ] 

The sedimentation rates of the upper samples shown in were ascertained by Appleby and 

Piliposian as part of the age determination at the Environmental Radioactivity Research Centre at 

the University of Liverpool in Great Britain. On the understanding that the sedimentation rates of 

the lower subsamples are uniform at 0.029 cm y-1 (Table 3), linear sedimentation rates were 

extrapolated for the rest of the core to estimate the PAR over time.  

The pollen concentration and influx diagram is shown in (Figure 22). It was generated similar like 

the pollen diagram by using the free version of C2 1.7.5 (Juggins 2014) Also the cluster analysis 

was carried out by use of the free version of R 3.0.3 (Murdoch 2014) and the CRAN packages 

'rioja' (Juggins 2013) and 'vegan' (Oksanen et al. 2013) to show statistic relevant assemblage 

zones within the pollen influx data. 
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4 Results 

4.1. Lacustrine samples and available data  

4.1.1 Lake measurement results 

The first measurements were made to describe the position of the study lake. They revealed that 

the lake is situated northern the arctic circle at 72o 23 55.9 N and 102o 17 19.5 E. The shortest 

distance from the lake in the south to the Kara Sea in the north is about 554km among the 

southern Tundra. 11-CH-12 itself lies 70m above sea level and enfolds a size of approximately 220 

x 130m.  

Several depth measurements were done at the 0.0286 km2 lake surface to localize a deep point of 

the body of water. At this point and the measured maximum depth of about 14.3m, the 32cm 

short core was drilled and immediately sampled on-site. In contrast to these samples, which were 

sent to the Alfred Wegener Institute in Potsdam for further CNS-, age- and palynological analyses, 

additional hydrochemistry parameters had been conducted in the field. The pH-value of about 7.5 

is neutral. The conductivity refers to 25°C of water temperature, averages 34.9µS/m inside the 

lake. And the total hardness is about 0.2479mmol/l. The results of the water ion analysis, e.g. 

Fe2+, NH4
+, PO4

3- and Cl- are shown in Table 2 and enable further description about the water 

quality. The Secchi depth is about 5m and so the water transparence amounts one third of the 

measured maximum water depth. 

 

 

Table 2: Ion values of the lake water sampled from 11-CH-12. [Data: Ruslan Gorodnichev, 2011] 

Fe
2+ 

[mg/l] 

Ca
2+ 

[mg/l] 

Mg
2+ 

[mg/l] 

Si 

[mg/l] 

NH4
+
 

[mg/l] 

∑Na+
+K+ 

[mg/l] 

PO4
3-

 

[mg/l] 

HCO3
-
 

[mg/l] 

SO4
2-

 

[mg/l] 

Cl
-
  

[mg/l] 

0.0233 5.83 2.49 1.13 0.17 0.93 0.1 31.27019 0.28 0.17 
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4.1.2 Age-depth-model 

The 210Pb and 137Cs dating of 13 subsamples from the top 7.25cm of the Chatanga lake sediment 

core was done by P.G. Appelby and G.T. Piliposian at the Environmental Radioactivity Research 

Centre, University of Liverpool, Great Britain. 

The results carried out for the age-depth-model are shown graphically in Figure 17. 

 
 

Figure 17: Age-depth-model of the upper 7.25cm of Chatanga lake sediment core (11-CH-12D). 

Radiometric chronology displaying the 
210

Pb dates, sedimentation rates and the 1963 depth suggested by 

the 
137

Cs record, 
137

Cs date is shown as reference point. [Appleby and Piliposian, 2011] 

The signal of unsupported 210Pb varies in subject to the sedimentation rate. If the sedimentation 

rate is small, 210Pb will be considerably high. The analyses indicate a relatively constant 

sedimentation rate until the last third of the 20th century, with a mean value of 0.0064±0.0007 

gcm-2y-1, which equals a low accumulation rate of 0.037 cm y-1. P.G. Appelby and G.T. Piliposian 

indicate the 1963 137Cs fallout maximum from the atmospheric nuclear weapons tests. (Appleby 

and Piliposian, 2011) 1986 shows a low fluctuation of the 210Pb dates simultaneously to the 

significant high peak of the sedimentation rate (0.056 cm y-1), which could be explained with the 

higher amounts of contaminated material accumulated into the lake after the reactor accident of 

Chernobyl. 

Discrepancies between the calculated 210Pb dates and 137Cs record could be due to a lowering of 

recent 210Pb supply rate to the core site or a consequence to the loss of material from the top of 

the core shortly before or during coring. These were rectified by P.G. Appelby and G.T. Piliposian 

for the post 1963 dates by using the 137Cs date as reference point. (Appleby, 2001, Appleby and 

Piliposian, 2011) 
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The uniform sedimentation rates (Table 3) of the lower subsamples (6.25cm and 7.25cm) enable 

to estimate the time period covered by the whole short core. The linear extrapolation of the last 

two accumulation rates (0.029 cm y-1) yields that the study core covers an interval about the last 

1072 years, so that the core approximately dates back to the year 939 AD (Figure 18). 

Table 3: 
210

Pb chronology and sedimentation rate of the upper samples of 11-CH-12D. [Appleby and 

Piliposian 2011] 

Depth Chronology Sedimentation Rate 

   Date Age     

cm g cm
-2

 AD y  g cm
-2

 y
-1

 cm y
-1

  (%) 

0.0000 0.00 

0.02 

0.06 

0.12 

0.20 

0.28 

0.35 

0.41 

0.48 

0.55 

0.62 

0.70 

0.93 

1.16 

2011 0 0    

0.2500 2008 3 2 0.0074 0.086 4.1 

0.7500 2002 9 2 0.0067 0.074 5.0 

1.2500 1994 17 2 0.0064 0.057 4.7 

1.7500 1984 27 2 0.0133 0.056 8.8 

2.2500 1976 35 2 0.0064 0.057 10.3 

2.7500 1966 45 3 0.0064 0.052 10.3 

3.2500 1956 55 7 0.0064 0.049 10.3 

3.7500 1945 66 8 0.0064 0.048 10.3 

4.2500 1934 77 9 0.0064 0.046 10.3 

4.7500 1923 88 10 0.0064 0.045 10.3 

5.2500 1911 100 11 0.0064 0.032 10.3 

6.2500 1875 136 15 0.0064 0.029 10.3 

7.2500 1839 172 19 0.0064 0.029 10.3 

 

 
Figure 18: Linear extrapolated time scale for the whole short core 11-CH-12D. 
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4.2 Cluster and ordination analyses 

The nineteen statistical relevant taxa were used to perform cluster and ordination analyses.  

The obtained dendrogram of CONISS is shown on the right side of the pollen diagram in Figure 20 

and displays the hierarchical ranking of pollen assemblage zones, which can be identified. The 

classification on the first hierarchical level presents two significant pollen assemblage zones, 

whereby the classification on the second level lead to cluster the upper zones into two subzones. 

Also the broken-stick model (Appendix 8.3) verifies that more than two but less than three 

significant PAZ can be described over the length of the core. And so the following classification 

has been revealed: 

- PAZ I (975-1308 AD) reaches from 32-22.5cm and includes the lower 20 samples of the 

core. This zone is among others characterized by a precise decrease of Alnus. 

- PAZ II spans the rest of the core 11-CH-12D and is divided into two subzones (PAZ IIa and 

PAZ IIb). PAZ IIa (1308-1961) contains 38 samples between 22cm and 3.5cm depth. This 

zone is characterized i.a. by increasing percentages of herb and grass pollen. PAZ IIb 

(1961-2011 AD) includes the six upmost samples, from 3.5cm upwards, which are 

characterized i.a. by increasing percentages of tree and shrub pollen, such as Betula and 

Alnus, and decreasing percentages of herb and grass pollen, above all those of 

Cyperaceae. 

Two principle components (PC1 and PC2) were ascertained by ordination analysis. They are 

displayed as axes of synthetic environmental gradients in the RDA biplot (Appendix 8.4). PC1 

explains the highest possible variance of the data (42.97%). PC2 is uncorrelated to PC1 and 

represents the most of the remaining variance (21.76%). In summary, both principal components 

are explaining 64.73% of the total variance of the data set (Table 4).  

Table 4: UŶĐoŶstraiŶed eigeŶǀalues [λ] of the priŶĐipal ĐoŵpoŶeŶts PCϭ aŶd PCϮ. 

Axis 
Eigenvalue 

λ 

Cumulative variance 

% 

PC 1 0.4297 42.97 

PC 2 0.2176 64.73 

Figure 19 shows the results of the cluster analyses combined with those of ordination analysis. 

The samples are displayed as symbols of their corresponding zone. The samples of the zones are 

clearly correlated to the axis of the first principle component (PC1) and are broad scaled to the 

second gradient (PC2). PAZ I and PAZ IIb are almost located in the negative quadrants of PC1, 

whereas PAZ IIa is first of all related to the positive quadrants of PC1. Thereby it is noteworthy, 

that the vegetation composition of the youngest section (PAZ IIb) is similar to the composition of 

PAZ I. Environmental gradients determine PAZ I and PAZ IIb similar to each other but completely 

opposed to the intermediate zone (PAZ II). 



Results 

31 

 

Alnus and Betula are negative correlated with axis 1. Together with Ericaceae, Cassiope type and 

Caryophyllaceae, they are the characterizing species in the PAZ I and PAZ IIb. Different to that, 

PAZ IIa is more dominated by herb taxa. Rumex, Potentilla type, Cyperaceae and also Salix are 

plotted in the positive quadrant of both axes and explain a half of the samples within this zone. 

The other samples are also located positively to the first axis, but negatively to the second axis. 

These samples are more characterized by Poaceae, Artemisia, Rosaceae, cf. Saxifraga and 

Brassicaceae. Also Larix is more dominant in PAZ IIa than in PAZ I and IIb. 

 
Figure 19: RDA biplot of the first two axes, which together explain 64.73% of the total variance of the data set. The 64 

investigated samples are printed as symbols according to their zones. The depth from 32cm to 22.5cm is displayed by 

the yellow squares of Zone I. The samples between 22cm and 3.5cm of the core are presented by the green helix of 

Zone IIa and the upper samples from 3cm to the top of the core are displayed by the blue stars. The taxa scores are 

printed as red arrows. 
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4.3 Pollen diagram 

4.3.1 General Characteristics of the pollen diagram and the pollen spectra 

General characteristics of the pollen diagram 

The pollen diagram in Figure 20 displays highly resolved abundance fluctuations for terrestrial 

pollen taxa (AP, NAP), types of NPP as well as the sample specific relation of the sum of tree and 

shrub pollen to sum of herb and grass pollen (AP:NAP). The percentages are plotted as silhouettes 

against depth and ascertained ages of the samples. An exaggeration line (exaggeration multiplier 

factor 10) visualizes small abundant taxa more clearly. The dendrogram as the result of the cluster 

analysis structures the pollen assemblages into three significant zones – PAZ I, PAZ IIa and PAZ IIb. 

The pollen spectrum of the pollen diagram includes the following 29 terrestrial taxa: Betula, 

Alnus, Pinaceae, Salix, Larix, Cyperaceae, Poaceae, Vaccinium type, Cassiope type, Ericaceae, 

Artemisia, Senecio type, Potentilla type, Rosaceae, Rumex, Brassicaceae, Caryophyllaceae, 

Ranunculaceae, cf Saxifragaceae, Thalictrum, Lamiaceae, Valeriana,  Chenopodiaceae, Primula 

type, Gentianaceae, Apiaceae, Fabaceae, Parnassia and cf Scrophulariaceae. These conform to all 

taxa which were used for statistical analyses (n=19) and supplemented species, which were found 

during field surveys (n=10) to reflect the local flora, because the pollen percentages of herbs and 

grasses are dominating in the pollen assemblage. 

Characteristic of the pollen spectra throughout the core 

The following characteristic of the pollen spectrum is also given as an overview in Table 5. On 

average, the non-arboreal pollen predominate slightly the pollen assemblages throughout the 

short core with 53.49% and vary between 28.06% and 68.42% in relation to the sum of arboreal 

pollen (Figure 21). Cyperaceae shows the highest percentages among all taxa with a minimum of 

12.71% and a maximum of 49.04%. The sedges provide in average one third (33.33%) of the 

pollen assemblage. Although Poaceae have been found to show the second highest percentages 

of NAP with a mean value of 7.52%, they also show a high variability in their abundance from 

1.00% to 11.64% in consecutively samples, in 27-26cm depth of the core. Herb taxa, which are 

pollinated by insects, present obviously lower percentages. Most of them present higher 

percentages up from the central part to the top of the core (22-3cm) and more scattered deposits 

in the lower and upper samples. However, the Ericaceae together with their morpho-types 

Vaccinium type and Cassiope type, allocate the most common herb taxa (on average 4.05%), 

whereas their combined minimum of 1.73% is found in the upper most samples (4cm depth) and 

their maximum reach up to 10.98% in the depth of 27cm. Also Rosaceae together with Potentilla 

type (0.21-4.18%, mean of 1.73%) and the types of Asteraceae (0.00-4.99%, mean of 1.67%) – 

Artemisia and Senecio type – show comparatively low values. All other herb taxa occur in average 

less than 1.00%, e.g. Rumex, Brassicaceae, Caryophyllaceae and Ranunculaceae (including 

Thalictrum). 
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Tree and shrub pollen vary between 31.58% in the middle section and 71.94% in the lowest 

samples around 31cm depth (46.51% in mean). Betula embodies the most common species inside 

the group of AP with a minimum of 16.31% and a maximum of 33.94%. Consequently, Betula 

shows the second highest mean value (25.23%) of all terrestrial taxa. The highest values of Alnus 

are present in the lower part of the pollen diagram (till 27cm), whereas the percentages reach 

their maximum of 42.93% in the depth of 31cm. Due to lower values towards younger samples 

and especially in the middle section, Alnus accounts 14.02% for an all sample mean and is 

reaching a minimum of 4.31%. Most pollen percentages of Pinaceae (including the species of 

Picea and Pinus) are fluctuating around the mean of 3.64%, but some samples show a high 

variability in terms of the minimum value at 0.92% and the maximum at 11.64%. Salix presents a 

similar mean of 3.37% and minimum at 0.71% like Pinaceae. Higher values of Salix were found in 

the middle and upper section (21-6cm) of the core and increases up to 6.73%. Larix embodies the 

lowest common species inside the group of AP (on average 0.25%), which were ascertained in 37 

of 64 samples with abundances not higher than 1.31%. 

Table 5: Overview of the minimum, maximum and mean for AP, NAP and their corresponding taxa, which 

occur on average higher than 1% throughout the core 11-CH-12D. 

 Taxa Minimum Maximum Mean value   

AP 

Betula 

Alnus 

Pinaceae 

Salix 

16.31% 

4.31% 

0.92% 

0.71% 

33.94% 

42.93% 

11.64% 

6.73% 

25.23% 

14.02% 

3.64% 

3.37% 

Minimum 

Maximum 

Mean value 

31.58% 

71.94% 

46.51% 

NAP 

Cyperaceae 

Poaceae 

Ericaceae 

Rosaceae 

Asteraceae 

12.71% 

1.00% 

1.73% 

0.21% 

0.00% 

49.04% 

11.64% 

10.98% 

4.18% 

4.99% 

33.33% 

7.52% 

4.05% 

1.73% 

1.67% 

Minimum 

Maximum 

Mean value 

28.06% 

68.42% 

53.49% 

4.3.2 Characteristic of the pollen assemblage zones (PAZ) 

The following results refer to the pollen diagram (Figure 20), the Iversendiagram (Figure 21) and 

the statistical processing of the percentages directed towards their zones (Appendix 8.5). 

PAZ I (975-1308 AD) is the oldest zone of the core and includes 20 samples in the depth between 

32cm and 22.5cm. This zone is characterized by higher percentages of tree and shrub pollen to 

those of herbs and grasses. However, the sum of AP is decreasing around 10% (from 60-70% to 

50-60%). The variations between the amount of AP and NAP are accompanied by the contrary 

abundance fluctuations of Alnus and Cyperaceae. Alnus is decreasing around 5% (from 25% to 

20%) on side of AP, while Cyperaceae is increasing around 5% (from 25% to 30%) over the first 

section. The percentages of Poaceae are a quarter less to Cyperaceae, but present comparable 

fluctuations. Generally, Betula is the most common taxa within PAZ I, fluctuating between 20% 

and 30% but neither present high fluctuations nor show in- respectively decreasing trends like 

Alnus and Cyperaceae. But a distinct pattern emerges in view of Vaccinium type and Pinaceae 
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(Pinus and Picea) in comparison to Betula. While Vaccinium type and Pinaceae increase 

simultaneously (smaller increases at 32cm, 30cm, 29cm and 25cm; greater at 27cm, 23.5cm 

depth), Betula is always decreasing at the mentioned depths. The peaks of Vaccinium type (8.35% 

at 27cm depth) and Pinaceae (11.64% at 23.5cm depth) are also reflected by Potentilla type, 

Rosaceae, Rumex, Brassicaceae, Caryophyllaceae and Apiaceae whereas Betula, Alnus, 

Cyperaceae, Poaceae and Artemisia show counter developments at those points. In general, all 

other taxa do not present significant pattern. Cassiope type belongs to Ericaceae but do not show 

similar development, while Vaccinium type is increasing from 1% to 2%, Cassiope type is 

decreasing by half from 3% to 1.5% over the first section. Although Larix belongs to the family of 

Pinaceae, that species represents a separate group inside this study but do not present significant 

fluctuations and is less abundant (<0.5%). Notwithstanding the single peak of Salix at the depth of 

29 cm (6.22%), Salix pollen occurs between 1-4% within PAZ I. 

The pollen assemblage zones are also characterized by their quantities of non-pollen 

palynomorphs. They were not involved for calculations of the cluster analysis, but they show 

abundance fluctuations within the three ascertained zones. HdV-187D for example show contrary 

fluctuations as Pediastrum or Botryococcus and has higher abundances with two maxima in the 

depth between 27cm and 30cm (30% and 26%), while the other two of NPP (Pediastrum and 

Botryococcus )are less abundant. Pediastrum and Botryococcus develop similar. Both are relatively 

less abundant in the lower most samples (1-5%) but increase to values more than 20% around 24-

25cm before they decrease to their levels before. 

PAZ II includes 44 samples from 22cm onwards to the top of the core, which encompass the years 

from 1308 to 2011. This zone was statistically clustered into the following two subzones: 

PAZ IIa represents more than half of the core. These thirty-eight samples at the depth between 

22cm and 3.5cm of 11-CH-12D encompass the years between 1308 and 1961. On average, this 

zone is characterized by higher percentages of herb and grass pollen (59.36%) compared to those 

of trees and shrubs (40.64%). The relation of AP to NAP does not show a significant trend over the 

period of time. However, NAP present higher proportions between 13.5cm and 7cm depth (1623-

1857 AD) where they count the maximum reflecting two-third (60-68%) of the sum of terrestrial 

pollen. The percentages of Cyperaceae vary between 27% and 49% within PAZ IIa. Their 

fluctuations are mainly determining the variations of NAP and run counter to the fluctuations of 

Betula (16-31%) and Alnus (4-17%), which change similar and determine most of the fluctuations 

of AP. Poaceae show the second highest percentages (4-11%) of NAP in that zone. The 

fluctuations of Poaceae are comparable to Cyperaceae but delayed. At the depth of 13.5 cm 

Cyperaceae and Poaceae are representing more than a half (approximately 58%) of the terrestrial 

pollen. At the same point, Alnus is reaching the minimum of 4.31% within the whole core and the 

percentages of Betula and Pinaceae are also decreasing. Pinaceae and Salix show counter 

fluctuations. At the depth of 20cm and also between 6.5 and 7.5cm Salix has been found to 

present the highest percentages of the whole core (6.73%) whereas Pinaceae decreases to its 

minimum of 0.92% for the whole core. Next to Salix, also Larix and in general most of the herb 

taxa, these are Vaccinium type, Artemisia, Senecio type, Potentilla type, Rosaceae, Rumex, 
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Brassicaceae, Ranunculaceae, Thalictrum, Valeriana, Primula type, Gentianaceae, Parnassia, cf 

Saxifraga and cf Scrophulariaceae are more abundant in PAZ IIa as in the section before. It is 

obviously that Rosaceae show a characteristic establishment within PAZ IIa, at the depth between 

17cm and 7cm whereby the higher percentages are concentrated between 13cm and 7cm 

reaching a maximum of 2.86%. Also Lamiaceae, Valeriana, Gentianaceae, cf Scophulariaceae and 

Primula type occur more often within this depth. And as mentioned before, also Cyperaceae and 

Poaceae present their highest composition of the whole core within this part. The same trend 

applies for Artemisia, Senecio type, Brassicaceae, cf Saxifraga and Larix on the one hand and for 

Rumex and Potentilla type on the other hand. Although the latter groups of taxa present higher 

abundances between 13cm and 7cm, their single fluctuations run counter to one another.  

According the NPP, all three of the investigated types have their maximum occurrences within 

PAZ IIa. Pediastrum and Botryococcus show similar fluctuations which run counter to those of 

HdV-187D, whereby Botryococcus is more abundant in the lower part of PAZ IIa reaching the 

maximum of 45%, while Pediastrum is more abundant in the younger part of PAZ IIa and presents 

the maximum of approximately 73%. HdV-187D has been found to have its maximum of the 

whole core (approximately 78%) at the depth of 15cm within PAZ IIa, whereas Pediastrum and 

Botryococcus decrease to lower values around 13% and 10%. 

PAZ IIb includes the six upmost samples of the core from 3.5cm up to the top of the core. These 

samples are dated to the years between 1961 and 2011. The percentages of tree and shrub pollen 

are slightly higher (53.25%) in the uppermost zone compared those of herbs and grasses 

(46.75%). The most common taxa of AP are increasing – Alnus is increasing to a high of 22% at the 

depth of 1.5cm and the percentages of Betula are increasing to a maximum around 34% at the 

top of the whole core (mean of 29%). These increases are accompanied by simultaneously 

occurrences of Lamiaceae and Chenopodiaceae, each around 0.7%, and decreases of Pinaceae 

(>1%), Salix (>1%), Cyperaceae (>7%) and especially Artemisia (around 0.9%). 

Pediastrum (42%) and Botryococcus (30%) are most abundant within PAZ IIb. Different to their 

establishments, HdV-187D is decreasing to a minimum of 0.45% within the whole core at the 

depth of 1.5cm (mean at 7%). 
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Figure 21: Iversendiagramm. Relation between trees and shrubs (AP) to herbs and grasses (NAP) with 

their commonest taxa Alnus and Betula (AP), Cyperaceae and Poaceae (NAP). 
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4.3.3 Pollen concentration and pollen influx 

The following results refer to the pollen concentration and pollen influx diagram in Figure 22. The 

sample specific pollen concentration of all terrestrial pollen varies around 8,600 to 37,500 grains 

per cubic centimeter throughout the core. The mean pollen concentration is approximately 

22,600 grains/cm³. However, the total amounts of pollen grains, which were accumulated on one 

square centimeter per year, depend on the sedimentation rates over time. The so called influx of 

the entire pollen composition of terrestrial plants varies between around 250 and 2050 grains cm-

2 y-1 (mean around 750 grains cm-2 y-1). 

The cluster analyses verify three phases of statistic significant pollen accumulation rates. Their 

subdivisions are similar but not equivalent to those of the pollen assemblage zones.  The first 

phase of the pollen influx encompasses the lower fourth of the core from 32 to 24cm. Within this 

period Betula, Alnus, Ericaceae, and Cassiope type show decreasing pollen accumulation rates 

(PARs) of approximately two-third of their first ascertained values (baseline values of the short 

core). Whereas the accumulation rates of Salix, Cyperaceae, Poaceae, Potentilla type and 

Artemisia are increasing about 50 to 300% of their baseline values. A local peak of Salix at the 

depth of 29,5cm can be also found for Cyperaceae, Poaceae, Cassiope type and Potentilla type. 

The transition to the second phase at the depth of 24cm is strikingly, because almost all of the 

regarded taxa (except Pinaceae) are characterized by an abrupt decrease of their pollen 

accumulation. Also the pollen concentration and the pollen influx of the entire pollen of terrestrial 

plants are pointing that change. This change is also visible in the Ericaceae, but in 23cm depth. 

Compared to the first section, the total amounts of pollen per samples are reflecting the lower 

pollen accumulation rates in the second phase (24-5cm) of the core. Both are increasing after the 

depression within this phase until the second event, where most of the regarded taxa drop again 

at 5cm. Several fluctuations with smaller peaks and lows of the single taxa are represented in the 

development of the entire pollen influx and pollen concentration. However, one peak and one 

low are characterizing the major range of the PARs in the middle of this section around 14 to 

12cm depth. The peak at 14cm is represented in increasing Betula, Pinaceae, Salix, Cyperaceae, 

Poaceae, Vaccinium type, Cassiope type, Potentilla type and Artemisia accumulation rates at the 

same time. All of these taxa drop down to a low at 12cm depth, so that the pollen influx and the 

pollen concentration point the second depression throughout the core, while the first one was 

more significant. Like the transition from the first to the second phase, that from the second to 

the third phase is associated with a decrease in the PARs too. This signal at 5cm depth embodies 

the third depression of lower pollen concentration within the samples.  

In contrast to the development after the first depression into the second phase, the upper 5cm 

are displaying a positive trend of PAR development to higher pollen influx and pollen 

concentration. This pattern applies for all taxa with a local maximum around 2cm depth. At this 

point, the investigated taxa reach up to a maximum, on average two times higher than the 

baseline values in the first phase. 

 



 

 
Figure 22: Pollen concentration and pollen influx diagram for the most common taxa: Betula, Alnus, Pinaceae, Salix, Cyperaceae, Poaceae, Ericaceae, Vaccinium type, 

Cassiope type, Rosaceae, Potentilla type and Artemisia. 
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5 Discussion 

5.1 Pollen source area, pollen productivity and pollen deposition 

Pollen is an important item of food for small animals living in and around the water, which will then 

displace the exines before excreting them again. (Faegri and Iversen 1989) And in case that the 

pollen swims on the water surface and is not yet accumulated on the ground of the lake, the 

temporary active overflow of the lake can also bear a special problem for the pollen deposit. Ritchie 

(1974) investigated pollen deposits from moss polygons and lake surface sediments. He found out 

that recent samples from lake mud reflect accurately the surrounding vegetation, whereas samples 

from moss cushions are subject to large fluctuations because the regional pollen rain is variably 

masked by the local elements of the plant communities. Beside the random effects of the nature, 

lake sediments are reliable archives for palynological studies. 

Pollen analysis is one of the most important tools for reconstructing past vegetation changes over 

timescales from hundreds to thousands of years but the understanding is not as simple, because 

plants have different pollen production and dispersal characteristics so that the relationship between 

the pollen assemblage and the surrounding vegetation is not transferable one to one. (Davis 1963; 

Davis 2000) 

The PolleŶ sourĐe area depeŶds oŶ the lake size. ͞The larger the ďasiŶ size, the greater the 
proportioŶ of polleŶ loadiŶg ĐoŵiŶg froŵ the regioŶal sourĐes.͟ ;Poska et al. ϮϬϭϭͿ The investigated 

lake (0.0286 km2) is much smaller than the neighboring Labaz Lake (470km²) and therefore expected 

to reflect mainly the local vegetation. However, a regional influx of pine and spruce pollen has been 

found in the samples of the core. Pinus and Picea pollen are prepared to fly over long distances due 

to their special air sacs (see in Appendix 8.1). Pine pollen is smaller and lighter than spruce pollen and 

known to traverse greater distances, so that Pinus is often found in stratigraphic pollen assemblages 

far beyond the tree line and Picea forms a significant proportion of the tundra pollen assemblage 

(Campbell et al. 1999). The pollen of Pinus and Picea are displayed by their family Pinaceae in the 

pollen diagram (Figure 20) and are likely to represent the long-distance transport of pollen, because 

the species limit of distribution does not reach into the study area, e.g. Picea obovata has its 

northern limits in the Yenisei and Poppigai estuary and between these northern ranges south of the 

Putorana Plateau (Roloff et al. 2008).  The relatively high influence of long-distance transported 

pollen has been accepted in lacustrine pollen records from the northern latitudes due to the scant 

vegetation like the short growing seasons and the harsh growing conditions. The low pollen 

productivity (mean of 20,000 grains per cm³) of the vegetation in the study area is reflected in the 

low pollen concentration of the samples (Figure 22). Another reason for less pollen in lacustrine 

deposits can be the rapid growth of the deposits, so that the pollen influx is highly distorted by the 

sedimentation rate (Faegri and Iversen 1989). But the ascertained sedimentation rate of the core 

(0.029 cm per year) is typically low (Douglas et al. 1994) for the northern latitudes so that the lower 

bioproductivity suggests the lower pollen concentration (Kraus et al. 2003). Beside the Pinaceae 

pollen, Alnus seems to reflect the local-regional flora, because alder shrubs were not documented in 

the immediate lake surroundings but in the region and the pollen represent a key species in the 
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pollen diagram. Alnus depends, like Betula, Salix, Cyperaceae and Poaceae to the wind pollinated 

plants. These taxa produce higher amounts of pollen than insect pollinated species, e.g. Cassiope, 

Vaccinium, Senecio, Potentilla, Rubus, Saxifraga as well as other herb species, which have been found 

in the study area and are expected to display the local flora. 

Modern studies estimate the relatively pollen productivity as a step further towards the quantitative 

reconstruction of the vegetation history, e.g. Räsänen et al. (2007) and Poska et al. (2011). They 

found out, that Picea and Pinus depend to a group of plants, which produce higher amounts of pollen 

than Poaceae, Cyperaceae and Betula and these in turn more than Salix, Artemisia, Vaccinium and 

Empetrum. So, Pinaceae is overrepresented in the lake deposits due to their high amounts of pollen 

production and the long-distance transport, while Salix, Artemisia and Ericaceae might be 

underrepresented in relation to Poaceae, Cyperaceae and Betula. Larix is known to produce large 

and heavy pollen (Fedotov 2002), which is poorly dispersed (Hahne and Melles 1997). Due to the 

local habitats of larch around the lake site but the low pollen percentages within the samples, Larix is 

also assumed to be underrepresented in the lake deposits. A reason can be the grain morphology 

that the pollen is too large and too heavy, without any air sacs, to get representatively accumulated 

within the lake. Furthermore, Larix gmelinii represents the only tree species at the study site and in 

the lake samples so that their pollen productivity differs from shrubs and herbs. In artificially greened 

forests, Larix gmelinii enters the reproductive stage in the age of 20 years but achieve the highest 

amounts of fruits only after 35 years (Roloff et al. 2008). The growing conditions are much worse 

northern the treeline and mostly temperature limited, so that these single individuals or small groups 

of larch trees are under competition or stress and produce less pollen than further south and in 

artificially greened forests. 

5.2. Stages of the vegetation development inferred from the palynological record and the 

reference to climate signals 

The length of the short core reaches back to the year 957 AD and covers therefore a bit more than 

the last one thousand years. Previous developments in the study area can be not deduced from the 

core, but the record from the Lama Lake (Hahne and Melles 1997) reveals the boundary of the first 

Holocene non-arboreal pollen (NAP) maximum around 40% at 1000 years BP, due to the generally 

cooling trend, which also resulted in the lowering of precipitation in the Northern Hemisphere and 

the southward retreat of the treeline since 5300 BP. However the vegetation community around the 

Lama Lake is different to that of the study site, because of the natural occurrence of spruce and tree 

birch (Betula exilis), the pollen record of this study set in this trend with exactly the same values. The 

relation of NAP to AP increases from 40% to 50% within PAZ I, especially due to the decrease of the 

percentages of Alnus pollen. 

The pollen spectrum was subdivided into three pollen assemblage zones (PAZ I, PAZ IIa and PAZ IIb) 

by cluster analysis. The principle environmental gradients, which explain most of the variance in the 

pollen composition, were ascertained via the principle component analysis (see RDA-biplot, Figure 

19). In view of the natural indicator values of plants (Ellenberg et al. 1992), it is likely that the first 

axis is reflecting the temperature gradient from warmer to cooler conditions. The distribution of the 
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taxa ranges from southern tundra vegetation, reflected by Betula and Alnus, to typical tundra 

vegetation, which is mostly reflected by the concentration of the herb species as well as Cyperaceae 

and Poaceae. (Alexandrova 2009) The oldest and the youngest zones, PAZ I and IIb, are likely to 

reflect the southern tundra vegetation community, while the temperature gradient between these 

both changed to cooler conditions, so that PAZ II is likely to reflect the typical tundra association. Due 

to the fact, that all tundra communities are tolerating well-lit till full light places and need the sun 

irradiation due to the short growing season, it is more likely that the second axis reflects the 

moisture gradient. Cyperaceae, Salix and Rumex indicate damp and wet sites, while Potentilla was 

observed during expedition to grow on temporary flooded areas of the lakeshore. On the other hand, 

Saxifraga, Cassiope and Larix, were observed to grow on well exposed heights around the lake, which 

are well drained. The second axis is not reflecting the vegetation development throughout the 

sequence. PC2 is more likely to indicate the different habitat requirements of the tundra vegetation 

in view of the availability of water. 

The following description of the vegetation change during the last millennium is based on the just 

discussed temporal placement of the pollen spectrum in the vegetation history of northern Central 

Siberia, the results of the cluster and ordination analyses as well as the palynological data. 

PAZ I (975-1308 AD): southern tundra 

The oldest part of the core lasts until the beginning of the 14th century and is characterized by a 

significant decrease of one of the main taxa, Alnus. Despite the grouping of Alnus pollen into a single 

taxonomic unit and the possible loss of palaeoecological information, it is likely that alder played an 

important role in plant succession and ecosystem dynamics throughout the late Quaternary period 

and that alder species facilitate the establishment of conifers (May and Lacourse 2012). This would 

indicate the warmer conditions of the Medieval Warm Period and matches with the temperature 

gradient (PC1), which associates the vegetation community of the southern tundra. Hahne and 

Melles (1997) reported that Larix grew in form of dwarf shrubs on favourable places in the area of 

the Labaz Lake, where they produced pollen only in warm summers, which might explain the 

negligible quantities of Larix within 11-CH-12D. The interaction between Alnus and Larix couldn´t be 

documented in this pollen record, however the pollen of green alder (Alnus viridis) have been found 

in the samples, which indicates that the shrubby growth form of Alnus must have been present 

during that time too. The percentages of Betula are rather homogenous (30% pollen) than those of 

Alnus. Betula shrubs, e.g. Betula nana, and variously Salix shrubs have been always a major part of 

the southern tundra and also in the study area. Betula is an important species in plant community 

succession and the most common shrub species throughout the core. The dwarf birch shrubs are 

known to establish damp and protected sites, but they have been found also on favourable exposed 

slopes, whereas Salix is more typical to grow on fresh and well protected sites of the lakeshore. It is 

likely that Salix formed an admixture to Betula so that they formed a dwarf birch and willow 

association in fresh and protected sites around the lake, while single individuals of dwarf birch are 

likely to grew also on the slopes. On this better drained places, Betula formed lighter associations 

with herbs like Cassiope (Ericaceae), Vaccinium (Ericaceae), Saxifraga (Saxifargaceae), Pedicularis 

(Scrophulariaceae), Dryas (Rosaceae), Parrya (Brassicaceae) and others. 
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Salix was found to produce less pollen than Betula and can therefore be relatively lower represented 

than birches (Räsänen et al. 2007; Poska et al. 2011). But in view of the pollen influx diagram (in 

Figure 22), it is obviously that Salix was less abundant than Betula in the vegetation community due 

to around one tenth of the pollen influx of Betula. Interestingly, there can be deduced an interaction 

between Salix, Cyperaceae, Poaceae and Potentilla type, each in comparison to Alnus. While Alnus is 

decreasing drastically, the other mentioned taxa present higher pollen influx rates. The reason for 

that interaction can be found in the results of the ordination analysis. The RDA-biplot presents Alnus 

well correlated to the temperature gradient and so as one of the major taxa of the southern tundra 

association. The decrease of Alnus in relation to the increase of Salix, Cyperaceae, Poaceae and 

Potentilla type visualizes temperature decreases. So that the continuously decrease of Alnus within 

the first pollen assemblages zone reflects the reaction of the cooling climate. Similar developments 

have been found in Andreev et al. (2002) and are known to represent the transition between the 

Medieval Warm Period and the Little Ice Age. The mild conditions cooled between 1000 and 1308 AD 

in the study area and initiate the end of the Medieval Warm Period (Figure 23). Overpeck et al. 

(1997) found that the Arctic was not anomalously warm during the Medieval Warm Period but that 

milder conditions prevailed during the 9th and 14th century in the circumpolar Arctic. Andreev and 

Klimanov (2002) investigated different pollen spectra of the Russian Arctic and indicated the 

Medieval Warm Period also between the 9th and 14th century. Sidorova et al. (2013) analysed larch 

tree samples from the permafrost zone in the east of the Taimyr Peninsula and datelined the 

Medieval Warm Period only between 917-1150 AD, because these were the northern ranges of Larix 

in northern Central Siberia and highly sensitive to climate fluctuations. Hahne and Melles (1997) 

documented significant decreases of spruce and larch pollen since in the record of the Lama Lake, 

while pine pollen increased significant due to the opened up spruce-larch forests and the tundra 

communities, which occupied the former forest areas since 2500 BP so that the long-distance 

transport of pine pollen could be more effective. MacDonald et al. (2008) revealed from 

dendroecological studies that the Medieval Warm Period reached from 800-1300 AD within the 

Russian Arctic, which agrees with the pollen spectrum of this study the best. 

PAZ IIa (1308-1961 AD): typical tundra  

The middle part of the core reaches from 1308 to 1961 AD. The pollen spectrum of this period is first 

of all characterized by high amounts of Betula and Cyperaceae. Betula decreased a bit in comparison 

to PAZ I, but is further on homogeneous (around 25%), while Cyperaceae increased and fluctuates 

around 35% within the pollen assemblages of PAZ IIa. Alnus finally reached down to a level of around 

9% within the pollen assemblages.  

Due to the decreasing trend of the major taxa of the Medieval Warm Period, Betula and Alnus, on 

the one hand and increasing percentages of Cyperaceae, Poaceae, Salix and most of the herb species, 

e.g. Artemisia, Potentilla type, Senecio type, Vaccinium type, Valeriana, cf. Saxifraga, cf. 

Scrophulariaceae as well as others on the other hand, it is very likely that the climatic deterioration in 

the end of the Medieval Warm Period lead to the beginning of the Little Ice Age. The sum of arboreal 

pollen reached down to its minimum of the whole core (approximately 30%) in the beginning of the 
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16th century, whereas the non-arboreal pollen record their maximum of about 70%. The southern 

tundra vegetation communities changed to typical tundra associations within in the study area.  

Cyperaceae, Salix, Potentilla type and Rumex have been found to present their highest percentages 

(49%, 7%, 3% and 1%) of the whole core. Due to the results of the PCA (Figure 19) it is likely, that 

these species mostly occurred on the damp and wet sites around the lake. Different kinds of 

Eriophorum (Cyperaceae), like E. angustifolium and E. scheuchzeri, are known to grow on wet places 

around the lakeshore. Other kinds, like Carex (Cyperaceae), are known to grow on damp sites and 

temporarily flooded areas, while some smaller individuals have been also found on better drained 

sites or on the top of the slopes. Even the other herb species, which are mostly insect-pollinated and 

produce therefore a lower sum of pollen, are displaying their maximum percentages and reflecting 

their commonest occurrences during that cold period. E.g. Artemisia and Thalictrum are indicating 

cold and dry climate (Kraus et al. 2003). Saxifraga, Brassicaceae, such as Parrya or Cardamine, 

Parnassia, Valeriana, Rosaceae, like Rubus, or Scorphulariaceae, like Pedicularis, are likely to have 

formed lighter communities on sun exposed and well drained areas. The percentages of Larix pollen 

are still very low, but increased remarkably during the Little Ice Age. The reason for that 

development is not clear, because the northern ranges of Larix are temperature limited (Andreev 

and Klimanov 2000; Frost and Epstein 2014; Hahne and Melles 1997; Laing and Smol 2003; Naidina 

and Bauch 2001; MacDonald et al. 200 and others). A cooler and drier climate over hundreds of years 

would infer the lowering of Larix pollen through to the retreat of the individuals. A reason for the low 

increases could be the lower pollen concentration during the Little Ice Age and the generally lower 

pollen influx of the wind pollinated plants (Figure 22), so that in relation to those, the sum of Larix 

pollen might increase.  

Fedotov et al. (2012) reconstructed the thawing of the permafrost during the last 170 years from lake 

sediment samples and pollen analyses on the Taimyr Peninsula. He found out, that the Little Ice Age 

most likely ended 1840 on Taimyr. That corresponds exactly to the pollen record of this study, 

because the sum of AP started to increase at that time (see the development of AP to NAP in Figure 

21 around 1840). Also Laing and Smol (2003) inferred from rare diatom assemblages in a lake on the 

western Taimyr Peninsula a warming for the last 100-150 years. They assumed a stronger summer 

insolation and the heating of the water surface since the last 120 years. The pollen concentration and 

pollen influx of the investigated core increased significant (Figure 22) in the beginning of the 20th 

century as a response to the improvement in growth conditions. 

PAZ IIb (1961-2011 AD): southern tundra 

The youngest part of the core reaches from the middle of the 20
th

 century to the time, when the core 

was drilled and presents the last 50 years of the vegetation development. The present vegetation 

communities of the southern tundra established the study area. The pollen influx diagram records 

distinctive increases of the pollen concentration and pollen influx rates of the investigated taxa 

(Figure 22). A distinct increase of the percentages of Alnus and Betula are characterizing the 

response to the improvement in growth conditions and form the major taxa of the southern tundra 

again. The sample composition develops to comparable pollen assemblages like during the Medieval 
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Warm Period, what can be deduced from the dispersion of the samples in the RDA-biplot (Figure 19). 

The warming would generally lead to the northward expansion of the treeline, but the thawing of the 

ice can induce also a decrease of the tree cover (Frost and Epstein 2014). Fedotov et al. (2012) found 

three phases of increased permafrost melting on the Taimyr Peninsular since the last 170 years and 

clustered the pollen record into three phases. The youngest pollen assemblage zone of Fedotov et al. 

(2012) reaches from 1961 to the present and includes the youngest phase of significant permafrost 

thawing (1960-1965). The temporal placement of the pollen assemblage zone of the recent warming, 

inferred from the Lake Makarov and the Lake Dalgan (Fedotov et al. 2013), matches exactly with the 

PAZ IIb of this study. Fedotov et al. (2012) observed increasing active layer depths and surface 

temperatures since the past 50 years and inferred that the global Arctic Oscillation changed towards 

a positive phase. Osborn and Briffa (2006) as well as Sidorova et al. (2013) came to the result, that 

the 20th century warming is the warmest period during the past millennium or longer in the Northern 

Hemisphere (Osborn and Briffa 2006). However, the warming is not unprecedented in the Siberian 

north. Frost and Epstein (2014) compared satellite photos from 1965-1969 with modern imagery and 

quantified changes in tall shrub and tree canopy in widely distributed Siberian ecotonal landscapes. 

They conclude that the shrub (mostly of Alnus) and tree cover (Larix) is increasing in most of the 

tundra ecotones in Northern Siberia, but the rates increase vary regionally and at the landscape scale 

(Frost and Epstein 2014).  

 

 

Figure 23: Reconstructions of Taimyr early-summer temperatures. (1) shown as yearly values and roughly 50-year 

smoothed values and reconstructions of mean annual temperatures (2) shown as five-year and superimposed 50-year 

smoothed values. [Naurzbaev et al. 2002] 
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5.3 Limitation of the data set and possible enhancements 

The exines of the pollen grains are so inert, that analyses of fossil pollen are generally possible to 

reconstruct past vegetation and environmental changes. But it is necessary to be aware of the 

uncertainties, which can limit the interpretation of the pollen assemblages. For example, different 

plants produce different amounts of pollen and some pollen grains disperse more effectively than 

others, so that some species are underrepresented and other overrepresented in the samples. 

Furthermore, wetland plants are more likely to be growing nearby the lake and so will be better 

represented than distant dry-land plants. And some pollen are more delicate, so that they are 

damaged or decomposed more easily. Such pollen will produce a lack in the pollen assemblages, 

which cannot be comprehensible afterwards. The process of pollen analyses follows the principle of 

random. The lake is one of numerous thermokarst lakes in the vicinity of Chatanga. The core 

represents a sample of the lake. The slices of the core get sampled for laboratory work and in turn 

one drop of the extracted pollen-glycerol suspension gets counted for vegetation analyses. It is 

difficult to distinguish the pollen taxa on the species level, so that the pollen are mainly determined 

on a family level, which may lead to wrong conclusions due to different habitat requirements of 

species of a single family. Of course, it is necessary to be aware of the uncertainties of the scientific 

methodology, but they are natural and need to be accepted. 

The focus of this study was to reconstruct the vegetation changes of the last millennium inferred 

from a pollen record and to examine, whether the ascertained vegetation changes can be related to 

recorded climatic variations. The more detailed analysis and interpretation of the NPP´s would be 

desirable to deduce funded information about the local environment and the lake characteristic. 

Other analyses like grain size analyses, biochemistry analyses (total nitrogen, total carbon and total 

organic carbon) or stable isotope analyses can be done to apply a multi-proxy approach. Such 

analyses enable to reconstruct the environmental development and to find signals as possible 

impacts of these changes. This would support the determination of the parameters, which lead to 

the changes, and to understand the investigated area, the lake as well as the surroundings, as an 

entire system. 
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6 Conclusion 

Palynological analyses were conducted to recognize the stages of vegetation development in the 

vicinity of Chatanga during the last millennium. Records of this period bear critical information about 

significant climate changes including the transition from the Medieval Warm Period to the Little Ice 

Age, the Recent Waming and the beginning of anthropogenic global warming. The phases of the 

vegetation changes were related to recorded climatic variations from other palaeoenvironmental 

studies in the vicinity of the study area. Three pollen assemblage zones were identified within the 

short core, which represent the three stages of vegetation development in the study area. The first 

pollen assemblage zone is the oldest one and reaches from 975 to 1308 AD. The pollen composition 

is characterized by southern tundra associations at the time of the Medieval Warm Period. The 

second pollen assemblage zone reaches from 1308 to 1961 AD and illustrates the change of the 

southern tundra vegetation to typical tundra communities. This period is reflecting the Little Ice Age 

which is assumed to end around 1840 on the Taimyr Peninsula. The youngest part of the core spans 

the last 50 years of the vegetation development within the study area.  The pollen concentration and 

pollen influx rate of the investigated taxa increased remarkable since the beginning of the 20th 

century. The recent warming improves the local growing conditions but can also lead to the thawing 

of permafrost and limit the distribution of woody plants. 
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8 Appendix 

Appendix 8.1: Exemplary pictures from microscopy work. A: Betula. B: Rumex. C: Salix. D: Alnus. E: 

Artemisia. F: Potentilla type. G: Cassiope type. H: Valeriana. I: Pinus. J: Thalictrum. K: Matricaria type. 

L: Larix. M: Poaceae. N: Cyperaceae. O: HdV-187D. P: Botryococcus. Q: Lycopodium. R: Pediastrum. 

[Photos: Xenia Schreiber] 
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Appendix 8.3: Broken-stick model verifying more than two but less than three numbers of zones, 

which can be significantly described over the length of the core 11-CH-12. 

 

Appendix 8.4: RDA-biplot. 
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Appendix 8.5: Statistical processing of the percentages directed towards their zones. 

              PAZ             

Taxa 

 llb   IIa   I  

 Min Max Mean Min Max Mean Min Max Mean 

 Betula 24.30 33.94 29.00 30.95 16.31 23.73 31.15 20.05 26.95 

 Alnus 13.33 22.00 17.25 17.41 4.31 9.14 42.93 8.45 22.32 

AP Pinaceae 3.13 5.51 4.21 6.12 0.92 3.60 11.64 1.83 3.54 

 Salix  1.56 3.77 2.71 6.73 0.78 3.83 6.22 0.71 2.70 

 Larix 0.00 0.25 0.08 1.31 0.00 0.34 0.47 0.00 0.14 

 Cyperaceae 25.67 33.16 29.40 49.04 27.12 37.60 44.06 12.71 26.38 

 Poaceae 4.55 8.99 6.47 11.31 4.40 8.29 11.64 1.00 6.36 

 Vaccinium type 1.77 2.72 2.16 4.93 1.08 2.42 8.35 0.69 1.91 

 Cassiope type 0.23 2.01 1.17 2.59 0.00 1.26 3.66 0.31 1.58 

 Ericaceae p.p. 0.00 0.61 0.14 1.36 0.00 0.27 3.77 0.00 0.92 

 Artemisia 0.00 2.61 1.25 4.99 0.00 1.83 2.00 0.24 1.01 

 Senecio type 0.00 0.22 0.04 1.00 0.00 0.23 0.27 0.00 0.04 

 Potentilla type 0.00 2.12 0.95 3.36 0.29 1.28 1.61 0.00 0.68 

 Rosaceae p.p. 0.00 1.36 0.66 2.86 0.00 0.82 0.94 0.00 0.39 

 Rumex 0.00 1.82 0.80 2.33 0.00 0.99 1.89 0.24 0.90 

NAP Brassicaceae 0.00 0.81 0.37 2.11 0.00 0.82 1.90 0.00 0.67 

 Caryophyllaceae 0.00 1.01 0.31 1.46 0.00 0.48 1.20 0.00 0.62 

 Ranunculaceae 

p.p. 
0.00 0.23 0.07 0.88 0.00 0.28 1.55 0.00 0.25 

 Thalictrum 0.00 0.29 0.20 0.96 0.00 0.21 0.64 0.00 0.12 

 Lamiaceae 0.00 0.67 0.16 0.98 0.00 0.17 0.57 0.00 0.18 

 Valeriana 0.00 0.51 0.13 1.00 0.00 0.21 0.46 0.00 0.06 

 Chenopodiaceae 0.00 0.67 0.16 0.68 0.00 0.13 0.82 0.00 0.14 

 Primula type 0.00 0.30 0.08 1.29 0.00 0.14 0.57 0.00 0.09 

 Gentianaceae 0.00 0.45 0.12 0.79 0.00 0.12 0.48 0.00 0.05 

 Apiaceae 0.00 0.00 0.00 0.64 0.00 0.06 1.26 0.00 0.18 

 Fabaceae 0.00 0.76 0.13 0.99 0.00 0.10 0.24 0.00 0.01 

 Parnassia 0.00 0.00 0.00 1.10 0.00 0.07 0.42 0.00 0.03 

 cf. Saxifraga 0.00 0.45 0.15 1.12 0.00 0.23 0.54 0.00 0.06 

 cf. 

Scrophulariaceae 
0.00 0.22 0.04 1.17 0.00 0.20 0.63 0.00 0.06 

 Pediastrum 31.90 45.80 42.03 73.16 5.76 18.70 24.21 0.64 6.28 

NPP Botryococcus 20.00 39.46 30.19 44.90 7.47 19.71 21.82 1.44 6.53 

 HdV-187D 0.45 11.88 7.11 78.40 1.75 20.43 30.21 0.96 11.87 

trees + shrubs/herbs + 

grasses 
46.33 57.14 53.25 51.08 31.58 40.64 71.94 37.11 55.64 
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