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Abstract Two full-year mooring records of sea-ice, physical, and bio-optical parameters illuminate tight
temporal coupling between the retreating seasonal ice edge and the summer phytoplankton bloom on
the Laptev Sea shelf. Our records showed no sign of pelagic under-ice blooms despite available nutrients and
thinning sea ice in early summer, presumably because stratification had not yet developed. Chlorophyll
blooms were detected immediately after the ice retreated in late May 2014 and late July 2015. Despite
radically different timing, the blooms were similar in both magnitude and length, interpreted as
community-level nutrient limitation. Acoustic backscatter records suggest the delayed 2015 bloom resulted
in lower zooplankton abundance, perhaps due to a timing mismatch between ice algal and pelagic blooms
and unfavorable thermal conditions. Our observations provide classical examples of ice-edge blooms and
further emphasize the complexity of high-latitude shelves and the need to understand vertical mixing
processes important for stratification and nutrient fluxes.

1. Introduction

Sea ice dominatesmany aspects of the Arctic ecosystem, as it regulates air-sea heat fluxes, mechanical mixing,
and light availability for primary production. Under a changing climate, the sea-ice cover has recently retreated
to record lowsummerextents suchas thoseobserved in2007and2012 [Comisoet al., 2008;Perovichetal., 2012].
Trends in open water duration, delayed freezeup, and air temperatures are positive in nearly all Arctic sectors
[Stroeve et al., 2014], which has substantial consequences for regional ecosystems and global climate.

Primary production is generally limited by nutrients and light, which are in turn controlled by the presence of
sea ice and the stratification needed tomaintain algae suspended in the euphotic zone. Secondary producers
depend on this primary production, but their biomass and reproduction success are controlled by additional
factors such as the timing of the bloom [Søreide et al., 2010; Leu et al., 2011], ocean temperatures [Feng et al.,
2016], and predation. Much of the deep central Arctic Ocean maintains its ice cover year-round, and vertical
mixing and nutrient replenishment is overall weak, so that the central Arctic is characterized by low pelagic
production and an ecosystem that is dominated by ice-dwelling species [Gosselin et al., 1997; Boetius et al.,
2013; Kohlbach et al., 2016]. However, nearly half of the Arctic Ocean area is occupied by seasonally ice-
covered shelf seas with ice edges that increasingly retreat well poleward of the shelf breaks, which funda-
mentally changes the light regime along the Arctic periphery [Perovich et al., 2008; Slagstad et al., 2015].

Numerical model-based and remote sensing-based Arctic Ocean ecosystem studies predict earlier blooms
[Kahru et al., 2011] and an overall increase in biological productivity under diminishing sea-ice cover [Arrigo
et al., 2008; Popova et al., 2012; Slagstad et al., 2015]. Regional patterns in biological production depend on a
combinationofphysical parameters that arenot yet fully understooddue to thechallengingnatureanddifficult
field conditions of the Arctic Ocean. Further, physical processes in the Arctic such as eddies, meanders, and
boundary currents occur on smaller scales (1–10 km) than at lower latitudes, which requires high, and compu-
tationally expensive resolution to realistically simulate coupled physical and biogeochemical processes.
Satellite-basedchlorophyll studies relyonobservations for calibration,which is further complicatedby regional
differences in water mass composition, for instance, on the large river-dominated Siberian shelves where sus-
pended and dissolved bio-optical properties may bias the satellite interpretations [Matsuoka et al., 2007;
ArrigoandvanDijken, 2011;Heimetal., 2014]. Finally, the timingof springblooms is extremelydifficult topredict
as theymay occur initially as under-ice blooms [Strass andNöthig, 1996; Arrigo et al., 2014] during a time of year
whenmuch of the Arctic Ocean is not yet accessible by ship.
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The shallow Siberian shelves cover a significant part of the Arctic Ocean and are crucial pathways for
river water [Morison et al., 2012], as well as for sea-ice production and export [Alexandrov et al., 2000].
Despite their importance, these shelves remain among the poorest understood Arctic regions. Our recent
multidisciplinary Russian-German research activities focused their efforts on the Laptev Sea shelf where
we operated an under-ice mooring equipped with bio-physical sensors from 2013 to 2015. The data
from this mooring have provided new insights regarding sea-ice retreat and the timing of the
spring bloom.

2. Data and Methods
2.1. Data

The mooring (76°N, 126°E; Figure 1) was deployed during two consecutive full-year cycles (2013–2015)
on the 45m deep central Laptev Sea shelf, with September deployments and recoveries during

Figure 1. (a) Map of the Arctic Ocean including themooring location (red star), names of themarginal shelf seas, and the 1000m isobath. (b) Average April–May ERA-
Interim [Dee et al., 2011] meridional winds (1992–2015) near the mooring location. The box in Figure 1a highlights (c–e) the study region, where the colors (5 day
increments) show the date of sea ice retreat in 2014 (Figure 1c) and 2015 (Figure 1d) compared with a 1992–2015 average (Figure 1e; note that grid points where ice
was retained year-round in more than half of the years were left blank).
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Laptev Sea expeditions aboard R/V Viktor Buinitsky. The mooring was equipped with four CTD (conduc-
tivity-temperature-depth) recorders (Sea-Bird Electronics 37) mounted evenly spaced between ~22m and
the seafloor. A Wetlabs Ecotriplet sensor was mounted right above the upper SBE37 and collected three-
hourly information on fluorescence. Raw data were converted to chlorophyll a (Chl a) by using the fac-
tory formula and adjusted to the baseline with in situ measured Chl a values. Currents were recorded
hourly in 1m bins with upward looking 300 kHz Teledyne RD Instruments Workhorse Sentinel Acoustic
Doppler Current Profilers (ADCP) mounted near the seafloor. The ADCP’s bottom tracking function was
used to derive information on sea-ice drift and daily mean ice thickness, estimated from the distance
between the transducer to the underside of the ice. These were compared with the daily mean ice thick-
ness above the mooring in 2013–2014 (Figure 2), recorded with an upward looking sonar (ULS, IPS5 by
ASL Environmental Sciences Inc., sampling rate 1Hz). The ADCP’s echo intensity of the sound reflectance
on particles was used to gain qualitative information on the presence and vertical distribution of zoo-
plankton. The raw data were converted into mean volume backscatter (MVBS) following Cisewski and
Strass [2016]. Satellite sea-ice concentration data were made available by the Institut français de recherche
pour l’exploitation de la mer [Ezraty et al., 2007] and are based on 85GHz Special Sensor Microwave
Imager brightness temperatures, using the Arctic Radiation and Turbulence Interaction STudy Sea Ice
algorithm developed at the University of Bremen [Spreen et al., 2008], which result in 12.5 × 12.5 km2 pixel
sizes. The date of sea-ice retreat (Figure 1) was estimated for each year at each grid point and defined as
the first day in a series of at least 10 days with a sea-ice concentration of zero. Daily mean sea surface
temperatures (SSTs) were extracted from the Arctic L4 SST product METNO-ARC-SST-HR-L4-NRT-OBS, pro-
vided by Global High Resolution SST, the Norwegian Meteorological Institute, and the Copernicus Marine
Environment Monitoring Service regional data assembly center with a 0.03° spatial resolution. Validation
of this product against observations showed a mean difference of �0.58 K with a standard deviation of
0.63 K (technical details are provided in Høyer and She [2007]).

Figure 2. Ocean and sea-ice parameters from the central Laptev Sea shelf in April–August 2014 (blue) and 2015 (red):
(a) ADCP-derived (thin lines) and ULS-measured ice draft (m, thick blue line; 2014 only); (b) ADCP-derived sea-ice cover
at the mooring location (horizontal lines) and 1 day smoothed chlorophyll a measured at ~22m (thick lines). (c) Vertical
shear of the M2 tide (major axis) computed between 5 and 20m depth, here used as a qualitative measure of stratification
(near-zero values imply well-mixed conditions). (d) Daily mean satellite-derived sea surface (thick lines) and half-hourly
mooring-sampled 20m temperatures (°C, thin lines).
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2.2. Limitations and Opportunities of Moored Observations

In regions such as the Laptev Sea, sea-ice ridges require that oceanographic moorings remain at a safe dis-
tance below the surface, which traditionally leads to missing CTD and bio-optical observations from the
upper ~20m and further prevents quantification of water column stratification. This paper discusses the tim-
ing of summer plankton blooms relative to sea-ice retreat based on amoored (~22m) chlorophyll time series,
which requires a qualitative understanding of the seasonal cycle of stratification in order to put the midwater
(20–25m) processes in perspective with the upper (0–15m) layer. Water column structure can be inferred
from the ADCP record since vertical velocity shear is generally maximal in the pycnocline [Howard et al.,
2004; Randelhoff et al., 2014]. In the Laptev Sea, semidiurnal tides dominate the variability of currents and
shear [Janout and Lenn, 2014], and hence, the vertical structure of the semidiurnal M2 tide (extracted from
the ADCP record using the MATLAB T-Tide package [Pawlowicz et al., 2002]) is used as a proxy for stratifica-
tion. Periods of weak tidal shear coincide with weak stratification, and a small vertical difference between
the M2-major axis at 5m and 20m (Figure 2) implies that stratification was absent prior to the ice retreat in
both 2014 and 2015. So while a single fluorometer mounted at ~22m could not have captured blooms that
may have occurred in shallow near-surface meltwater lenses [Gradinger, 1996], it would have likely registered
indications of substantial production near the surface in a weakly stratified water column as for instance
underlined by fluorescence-profiles sampled during a Bering Sea ice-edge bloom [Cooper et al., 2012]. The
necessary limitations of our measurements prohibit an overly detailed discussion on biological and physical
near-surface processes, and further largely ignore the three dimensionality of the Laptev shelf system, but
should overall provide first-order knowledge of the oceanographic conditions as well as of the timing of
sea-ice retreat and the summer pelagic plankton bloom.

3. Results and Discussion
3.1. The Spring Blooms in 2014 and 2015 and Associated Environmental Conditions

A clear relationship between the retreating sea-ice cover and the highest annual accumulation of water col-
umn Chl a (at ~22m) was established from a 2 year time series on the central Laptev Sea shelf (Figure 2). The
sea-ice season at this location extended from late October until late May in 2014 and until mid-July in 2015
(Figure 1). Both years were characterized by very low pelagic Chl a levels throughout the ice-covered season.
However, as soon as the ice retreated, Chl a increased rapidly, peaking at 4–5mgm�3 (daily means) approxi-
mately 1week after the ice retreat. Curiously, both peaks were nearly similar in magnitude and duration,
which might be explained by mixed layer nutrient limitation. Our observations nicely mirror results from pre-
vious subarctic ecosystem studies [Waite et al., 1992], which measured a 2–3 weeklong spring bloom (similar
to ours) at the base of the mixed layer. Their bloom started approximately 1week earlier near the surface,
which is consistent with our observed delay between sea-ice retreat and the 22m chlorophyll peak. The 6–
8week delay between the 2014 and 2015 blooms (Figure 2) is expected to have substantial impacts on
the ecosystem as will be discussed later.

On average, sea-ice retreat in the Laptev Sea starts in June north of the Lena Delta (Figure 1) in the prominent
polynya regions along the fast ice edge [Bareiss and Görgen, 2005]. The ice first retreated there in 2014,
although earlier than average (Figure 1). Anomalously strong southerly winds in April and May 2014
(Figure 1) initially opened the polynya and replaced the 1–2m thick ice cover present in January–March with
thinner (<1m) ice above the mooring (Figure 2). The winds led to offshore-directed sea-ice drift (13 cm s�1)
and upper ocean (0–20m) currents (6 cm s�1), shortly before the ice disappeared in late May 2014. Similar
winds and early ice retreat were observed in 2012, which then led to extremely warm waters [Janout et al.,
2016] in a completely ice-free Laptev Sea and a marginal ice zone that retreated far beyond the shelf break.
In contrast, winds over the central shelf were weak in spring and early summer 2015 (Figure 1), and the sea-
ice cover remained closed south of the mooring site, underlined by weak ice drift and ocean currents (both
<3 cm s�1). Sea ice first disintegrated due north of the Lena River outflow, followed by a slow westward pro-
gression of the ice edge, which reached the mooring in late July 2015 (Figure 1).

Our moored observations provide two examples of classical ice-edge blooms. Considering a well-mixed
water column before the ice retreat (see section 2.2), we expect that our observations would have captured
indications if there had been any substantial under-ice blooms such as observed near the Chukchi Sea shelf
break [Arrigo et al., 2014]. The nutrient-rich Chukchi Sea was stratified under a closed ice cover following
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upwelling events [Spall et al., 2014], and a bloom was initiated there in early July once light levels became
sufficient through thinning ice and melt ponds. The Laptev Sea shelf is also nutrient-replenished in winter,
as supported by maximum nitrate (6.6μM) and phosphate (1.1μM) levels measured in March/April 2009–
200 km south of the mooring site. This leaves light and stratification as key potentially limiting parameters
for bloom primary production and biomass. Because tides and other physical processes on the central shelf
help to erode the seasonal stratification through shear instabilities and enhanced ice-ocean stress, the water
column is presumably well mixed by winter or spring [Janout et al., 2016]. This would cause algae cells to set-
tle out of the euphotic zone and prevent growth, even if sufficient light was available under the ice. Further,
based on previous Arctic under-ice light measurements, extensive snowmelt and melt pond formation and
therefore enhanced transmissivity of light through the ice are not expected until midsummer [Perovich
and Polashenski, 2012; Arndt and Nicolaus, 2014]. Applying these insights to the Laptev Sea, prebloom light
conditions were quite different between years—likely sufficient to potentially promote growth under the
thinning ice in July 2015 but unlikely under >1m thick ice as early in the year as May 2014. However,
under-ice stratification was absent or weak in both years, and (as argued earlier) any substantial under-ice
production should have at least led to excursions from the baseline in our Chl a record. We therefore
hypothesize that the onset of stratification after ice retreat is a key mechanism triggering the onset of the
summer bloom via increases in light availability to phytoplankton as the mixed layer shallows.

3.2. Ice Melt Versus Solar Warming: What Sets the Stratification After Ice Retreat?

The onset of stratification is driven by a number of mechanisms associated with the freshening and warming
of waters at the ice edge. In 2015, the south-to-north ice retreat in the eastern Laptev Sea resulted in the
maintenance of ice on the central shelf until mid-July, in contrast to the earlier retreat in 2014, with profound
consequences on water column structure in these contrasting years. As detailed in section 2.2, we inferred
that the water column was well mixed under the ice in both years. When the ice was removed by southerly
winds in May 2014, our ice thickness time series indicates a rapid transition from 0.5 to 1m thick ice to open
water in late May. While some melt always occurs along the marginal ice zone, significant local ice melt and
associated melt-induced stratification were unlikely due to the rapid sea-ice export. Soon after the ice
retreated, SST increased and warming was observed in our 22m temperature record, which implies that
the depth where the Chl a peak was measured was in the pycnocline. In 2015, local melt was more likely
at this advanced time of year, when strong winds and ice drift were absent, and melt-induced stratification
was likely considerably stronger than during 2014. Hence, in contrast to the 2014 middepth warming signal,
the 22m temperatures in 2015 remained cold (�1.8 to �1.5°C) throughout the summer, implying that this
depth was located at the base of the seasonal pycnocline and not in immediate contact with warm near-
surface waters. Strong offshore winds such as observed in spring 2014 precondition the region for early
ice retreat with large thin ice areas [Krumpen et al., 2013], which disintegrate faster and are exported more
efficiently by winds. This ultimately leads to early open waters with weaker temperature-controlled stratifica-
tion. In 2015 offshore winds were absent, and local melt likely produced a stronger salinity-stratified water
column, with a retreating ice edge at the central shelf mooring that was 6–8weeks later than the
previous year.

3.3. Timing of the Bloom and Consequences for Secondary Producers

The summer bloom is likely to have been initiated by increased stratification triggering growth via relief
of light limitation at the ice edge. This was visible in data from both 2014 and 2015, despite radically dif-
ferent atmospheric and sea-ice conditions, which led to a nearly 2month shift in the timing of the sum-
mer bloom between the two years (Figure 2). The importance of timing of sea-ice retreat on primary and
secondary producers was previously highlighted by ecosystem studies northeast of Svalbard by using a
suite of moored and shipboard biophysical observations also during two contrasting years [Leu et al.,
2011]. There, the dominant copepod species Calanus glacialis reproduces during the solar zenith angle-
controlled ice algal bloom, and then depends on a favorable timing of the pelagic bloom for their off-
spring to build up lipids. Unfavorable timing occurred in the second year of their study, when a 1month
delay in ice retreat resulted in a fivefold lower observed Calanus biomass, which then implies conse-
quences for higher trophic levels.

Despite limited ancillary observations, we can gather qualitative ideas regarding the presence and vertical
migration of zooplankton relative to the bloom from an acoustic backscatter record. Zooplankton are widely
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assumed to be the main scatterers at the operating frequency of our ADCP [Cisewski and Strass, 2016, and
references therein], especially during the growing season in summer and fall when zooplankton are most
abundant and active. During winter and spring, turbulent microstructure at the pycnocline and near-
surface may have enhanced the backscatter unrelated to zooplankton [Ross and Lueck, 2003]. Indeed, this
is confirmed by maximum shear levels generally found at the pycnocline coincident with elevated back-
scatter, which only holds during the biologically quiet season. Clear indication of the dominance of zoo-
plankton in our data set was manifested in diel vertical migration (Figure 3), when zooplankton vertically
migrate in an attempt to avoid predation [Lampert, 1989]. In 2014, backscatter was strongly enhanced
after the ice retreated and the Chl a levels increased in early June. The levels remained high for nearly
2months and then decreased in August. Curiously, backscatter also increased in June 2015 for a few
weeks under the ice perhaps due to grazing on ice algae [Runge and Ingram, 1991; Søreide et al., 2010]
before it was reduced again until the ice finally retreated. After that a backscatter maximum was found
near the surface and subsequently deepened, which we infer was the zooplankton’s descent to graze
on sedimenting algae, as highlighted by the temporal match between increasing backscatter and Chl a
at 22m (Figure 3). The backscatter remained elevated throughout the water column for the duration of
the 2–3 weeklong Chl a peak measured at depth and retreated to the upper 15m as soon as Chl a
declined (Figure 3). After the 2014 peak, Chl a remained slightly elevated until it dropped to base levels
in August. This indicates that a small but steady food source may be available at or below the pycnocline
throughout the summer and underlines the necessity to quantify nutrient fluxes and diapycnal mixing
processes. While the backscatter records only allow a qualitative zooplankton assessment [Fielding et al.,
2004], our data suggest that the earlier sea-ice retreat in 2014 led to more favorable zooplankton condi-
tions compared with the late ice retreat in 2015. Whether the secondary producers benefitted from a
favorable timing between ice algal and pelagic blooms [Søreide et al., 2010; Leu et al., 2011] remains spec-
ulation and can only be addressed by more extensive biological sampling.

Figure 3. Daily mean volume backscatter (MVBS, in dB) in (a) 2013–2014 and (b) 2014–2015 from the two yearlong ADCP
echo intensity records. The black bars indicate the presence of sea ice, and the Chl a-time series (magenta line) is overlaid
at the depth of measurement (magenta dot) to indicate the bloom’s timing relative to MVBS. The black stars at the
beginning and end of the record indicate the position of the pycnocline from CTD profiles that weremeasured in September
2013 and 2014 (2015 profile is not available). Hourly values of MVBS during a subset (21 August to 13 September 2014)
indicate diel vertical zooplankton migration.
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3.4. Thermal Conditions and Ecological Consequences

In addition to the difference in timing of food availability, these two years were characterized by contrasting
thermal conditions. SST during the bloom in early June 2014 were below 0°C, while the surrounding waters
during the late-July 2015 bloom were 2–4°C during this advanced time of year. However, mean upper ocean
temperatures (averaged between SST and our 22m CTD) from 1 June through 31 August were warmer in
2014 (1.3°C) than in 2015 (�0.6°C), due to the longer open water period and more effective solar warming
in 2014. Secondary producers depend on the summer bloom for their development and to store lipids, which
helps their survival through the overwintering stages. Hence, zooplankton reproduction and developmental
success is controlled by both food availability and thermal conditions. A 2° temperature increase on summer
average (such as we found in the Laptev Sea in 2014 relative to 2015) may reduce the development time from
egg to adult by as much as 40 days [Feng et al., 2016], which significantly improves the chances of reaching
the diapause stage and surviving through winter.

Our analysis emphasizes the importance of the bloom’s timing and the associated ocean temperatures on
higher trophic levels, as was previously highlighted in Bering Sea ecosystem studies [Wiese et al., 2012].
There, enhanced Pollock survival was linked with the availability of large copepods favoring an early bloom
in cold water, while smaller copepods and warm water blooms were less favorable for Pollock survival [Coyle
et al., 2011]. Unfortunately, the impact of the observed contrasting thermal conditions on higher trophic
levels in the Laptev Sea remains undetermined. Zooplankton were only sampled in September 2014 follow-
ing the early bloom and warm summer waters and were then dominated by small copepods (Oithona similis;
E. Abramova, unpublished data). Earlier surveys found a large biomass of small brackish and euryhaline cope-
pods on the shallow shelf, while larger copepods such as C. glacialiswere most abundant in the deeper north-
ern Laptev Sea [Kosobokova et al., 1998; Lischka et al., 2001]. Previously, interannual differences in abundance
and species composition throughout the shelf were primarily linked with the variable distribution of the Lena
River plume [Abramova and Tuschling, 2005], but the long open water seasons and strong temperature varia-
bility observed in recent years [Janout et al., 2016] might additionally lead to shifts in species distribution in a
warming Arctic Ocean [Feng et al., 2016].

4. Summary and Conclusion

A 2 year oceanographic mooring deployment (2013–2015) on the central Laptev Sea shelf equipped with bio-
physical and sea-ice sensors documented the pelagic algal bloom under very contrasting environmental con-
ditions. In 2014, enhanced southerly winds removed the pack ice north of the landfast ice zone at ~10 kmd�1

until the ice edge passed the central shelf mooring location in late May. In contrast, winds were weak and
variable in 2015, which led to localized melt and a nearly 2month delay in ice retreat compared with the pre-
vious year. Nevertheless, in both years the blooms started almost immediately after the ice retreat and were
similar in magnitude and duration, which contradicts simple predictions that the observed trends to earlier
ice retreat will automatically result in higher productivity. Instead, they emphasize the potential role of nutri-
ent limitation in bloom termination and the need to better understand vertical mixing and associated nutri-
ent fluxes to the upper ocean. Based on the backscatter records (Figure 3) and overall warmer ocean
conditions in 2014, it seems plausible that favorable timing of the bloom and thermal conditions during sum-
mer promote zooplankton through efficient grazing of primary production, which may benefit pelagic mem-
bers of the food chain to the disadvantage of benthic communities as described for the Pacific Arctic sector
[Grebmeier et al., 2006].

We argue that stratification and (in one out of two years) light are the limiting parameters controlling the
onset of the summer bloom, both of which are mediated by the sea-ice cover. Light measurements do not
exist for this period, but in particular, the deteriorating and likely melt-ponded ice cover before the late-
July 2015 bloom gives reason to assume that light levels should have been sufficient to promote under-ice
growth [Perovich and Polashenski, 2012]. Stratification was inferred from the vertical structure of currents
and tides (section 2.2), and our data suggested, for both years, that stratification prior the ice retreat
(Figure 2) was too weak to keep algae suspended in the euphotic zone. Whether under-ice blooms presently
occur under different preconditions on the central Laptev Sea shelf, or perhaps closer to freshwater sources
where stratification is more likely to persist under the ice, remains undetermined and requires
more observations.
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Our measurements illustrate that first-order information regarding the timing of the summer bloom can
be gained by adding single bio-optical instruments to oceanographic moorings. These types of measure-
ments are particularly valuable for remote, seasonally ice-covered regions such as the Laptev Sea that are
under present ice conditions inaccessible for shipboard biological in situ sampling in early summer.
However, the level of interpretation is limited by the lack of specifically targeted biological observations
and missing bio-physical near-surface measurements. These are urgently needed to quantify the seasonal
variability of stratification and to understand the vertical progression of phytoplankton blooms, in spite of
risks of ice keels that occasionally exceed 15m at this location. The challenge remains to generate com-
prehensive sets of physical, biogeochemical, and higher trophic level observations, which are needed to
gain a solid understanding of the present state in order to provide meaningful predictions for Arctic eco-
systems under a changing climate.
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