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Figure 1. Climate records of the last glacial period. (a) Greenland ice core !18O from the North Greenland Ice Core Project (NGRIP) core [NGRIP Community
Members, 2004] on the GICC05modelext chronology [Rasmussen et al., 2006, 2013]. (b) Atmospheric CO2 composite record [Bereiter et al., 2015]. (c) Antarctic
temperature stack (ATS, green) in ∘C relative to present day [Parrenin et al., 2013]. (d) Antarctic ice core !18O from the EPICA Dronning Maud Land (EDML) (purple)
and West Antarctic Ice Sheet (WAIS) Divide ice core (orange) [EPICA Community Members, 2006; WAIS Divide Project Members, 2015]. (e) Relative sea level. Blue
crosses, solid curve, and shading give Red Sea sea level data the 1 ka smoothed record (Gaussian filter) and the ±2" uncertainty envelope, respectively [Grant
et al., 2012; Rohling et al., 2009]. Grey crosses and solid curve give the compiled sea level data and reconstruction, respectively, by Carlson and Clark [2012].
(f ) Southern Ocean opal flux as a proxy for upwelling from marine sediment core TNO57-14PC [Anderson et al., 2009], using an updated chronology [Obrochta et al.,
2014]. (g) Milanković forcing: summer solstice insolation at 65∘N. Yellow vertical bars with numbering denote the major DO/Antarctic isotopic maximum events.

Piotrowski et al., 2008; Vidal et al., 1997], and the extent of sea ice in the North Atlantic [Li et al., 2005; Broecker,
2006]. Here we shall use “stadial AMOC mode” and “interstadial AMOC mode” as a shorthand to describe
the states associated with a weak AMOC/cold North Atlantic and with a strong AMOC/warm North Atlantic,
respectively. A third glacial AMOC mode has been associated with Heinrich events—periods of extreme cold
in the North Atlantic, identified by layers of ice-rafted debris in ocean sediments [Hemming, 2004; Rahmstorf ,
2002]. In this mode, the AMOC is thought to be at its weakest, with strongly reduced GNAIW formation and
enhanced intrusion of southern-sourced waters into the North Atlantic [Vidal et al., 1997; Keigwin and Boyle,
1999; Martrat et al., 2007; Böhm et al., 2015].

Not all DO cycles are created equal, as their duration, recurrence time and magnitude varies through time.
Detecting structure within the DO time series is complicated by both chronological uncertainties and the
limited number of event realizations in the Greenland ice core record (25 DO events have been identified in
the last glacial). Some of the commonly recognized patterns include the following:

1. DO events, particularly those of marine isotope stage (MIS) 3, appear to be grouped into so-called Bond
cycles [Bond et al., 1993; Lehman, 1993] that are separated by Heinrich events; successive DO events within
each Bond cycle have a decreasing interstadial duration and amplitude.
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14 SCIENCE HIGHLIGHTS: Tipping poinTs

the Atlantic Meridional Overturning 
Circulation (AMOC) redistributes heat, salt 
and carbon as part of the global thermo-
haline circulation. Major changes of the 
AMOC would have global impacts and, as 
a potential tipping element (Lenton et al. 
2008), it is a focus for future projections. the 
IPCC (2013) concluded that it is very unlikely 
that an abrupt transition or collapse of the 
AMOC will occur during the next century for 
the scenarios considered. However, it is not 
clear that, under realistic forcing conditions, 
the complex models used for future climate 
scenarios are capable of producing the 
abrupt changes that occurred relatively fre-
quently during the last glacial period (Valdes 
2011).

Paleo evidence for abrupt change
temperature records obtained from 
Greenland ice cores provided the first 
convincing evidence of past abrupt climate 
change (Fig. 1). the Greenland records 
revealed repeated transitions (the so-called 
Dansgaard-Oeschger, D-O, oscillations) 
between cold, stadial conditions and warmer 
interstadial conditions, with extremely fast 
(decades or less) shifts between these states 
(NGRIP members 2004). these alternations 
are one expression of a global system, ca-
pable of driving major changes in compo-
nents ranging from ocean temperatures to 
monsoon rainfall. Massive ice-rafting events 
across the North Atlantic (Heinrich Events, 
HE) during some stadial phases (Hs events) 
were associated with particularly cold condi-
tions across the North Atlantic (shackleton et 
al. 2000) and suggest the existence of three 
distinct climate “states” during glacial times.

The ocean’s role in rapid climate change
It has long been argued that D-O and 
Heinrich variability involved changes in the 
AMOC and many attempts have been made 
to test this using paleodata. On a basin 
scale, water mass tracers, such as benthic 
foraminiferal δ13C and Cd/Ca ratios and 
seawater Nd isotopes, suggest a reduction 
in the ratio of northern versus southern deep 
water end-members in the Atlantic during 
northern cold events, particularly those 
associated with H-Events (shackleton et 
al. 2000). On a regional scale, variations in 

the transport of North Atlantic Deep Water 
have been reconstructed using a variety of 
methods including sediment composition, 
grain size and magnetic analysis (Kissel et al. 
2008). these studies suggest a systematic 
link between high-latitude climate change 
and variations in deep ocean circulation, 
even for non-Heinrich stadial events. they 
suggest a reduction in the deep overflows 
emanating from the Nordic seas during cold 

events, implying a decrease in the produc-
tion of deep waters through open ocean 
convection north of scotland. Concomitant 
variations in wintertime sea-ice cover across 
the Nordic seas have been proposed as an 
effective means of explaining the very large 
changes in temperature observed across 
Greenland associated with D-O transitions 
(Li et al. 2010).

Ocean circulation within the Atlantic is capable of changing rapidly, with important consequences for global climate. 
Evidence from various climate archives suggests that abrupt transitions in the past were preceded by systematic 
behavior that could have provided early warning indicators.

A paleo-perspective on the 
AMoC as a tipping element
stephen Barker1 and Gregor Knorr2

Figure 1: Abrupt climate change over the past 70 kyr. the blue bars indicate stadial events. (A) Greenland 
temperature proxy record showing the abrupt D-O transitions (NGRIP members 2004). Orbital component is a 7 
kyr running mean. (B) Antarctic temperature proxy record showing a more gradual behavior (Jouzel et al. 2007). 
(C) Millennial-scale component of Greenland temperature. (D) Rate of change of Antarctic temperature showing 
systematic warming during Greenland stadials and cooling during interstadials (Barker et al. 2011). (E) Proxy 
record showing sub-surface warming in the North East Atlantic during stadial events (Ezat et al. 2014).
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Freshwater	perturbation	is	supposed	to	be	the	main	trigger	for	DO	events.
Freshwater	controls	climate	stability	(AMOC	stability)

Debate:	
1.	Freshwater	timing,	magnitude	and	history
(e.g.	Bond	et	al	1995,	Alvarez-Solas et	al	2010,	Barker	et	al	2015)

2.	Linear	response	of	AMOC	to	freshwater	in	AOGCMs	(e.g.	Liu	et	al	2009)

Menviel et	al.,	2014,	Clim.	Past

Background
AM

O
C	
st
re
ng
th
	(S
v)

Or



Model setup 



ï�� ï�� ï�� ï�� ï�� ï�� ï�� ï�� �

ï��

ï��

ï��

ï��

kyr BP

*
,6
3�

�G
HO
WD
��
� �

ï���

ï���

ï��

ï��

ï��

ï��

�

��

R
SL

 (m
)

Millennial	variability	at	intermediate	sea	level

Empirical evidence:	

Abrupt	climate shifts occur
at	intermediate	sea	level

(e.g.	Schulz	et	al.,	2002,	GRL)
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provide a novel and broad framework for understanding the occurrence
of rapid climate changes during glacials, indicating that only minor
changes in NHISs, atmospheric carbon dioxide and/or hydrological bal-
ance in the North Atlantic may induce abrupt ocean circulation change
at the intermediate heights of the ice sheets.

The timing of millennial-scale fluctuations in sea level during stadials
and interstadials is heavily debated21,26. The AMOC hysteresis presented
here suggests that a transition from a weak (or strong) to strong (or weak)
AMOC mode is compatible with a decrease (or increase) in sea level at
the end of stadials (or interstadials). Furthermore, our study indicates
a key tempo-spatial change in internal climate variability during rapid
glacial climate changes, providing a new dynamic framework to explain
the recorded sea surface warming and its increased fluctuation during
ice-rafting or at the end of stadials in the northern North Atlantic27,28.
This characteristic can potentially reconcile the large uncertainty of sea
surface reconstructions in the northern North Atlantic and Nordic Sea
during glacials27–29. Nevertheless, new high-resolution records using
improved age models are required for testing these hypotheses further.

Having additionally tested the response of the climate system to chang-
ing orbital configurations, we found no significant response in AMOC in
our model (Methods). However, the ice sheets in our study are prescribed

according to the Last Glacial Maximum configuration and are thus decou-
pled from changes in external forcing and the internal atmosphere–ocean
system. Further studies with similar climate models, preferably includ-
ing dynamic interactive ice sheet components, should be able to test
whether rapid changes in glacial climate can be triggered by variability
in ice sheets related to internal feedbacks within atmosphere–ocean–
cryosphere systems15,30 and to weak external forcing9.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.

Received 17 January; accepted 10 June 2014.
Published online 13 August 2014.

1. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr
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Figure 3 | AMOC hysteresis with respect to changes in NHIS height and its
relationship to recorded abrupt climate variability. a, Response of glacial
ocean to variations in the NHIS heights. b, AMOC index for the experiments
associated with the AMOC hysteresis (Methods). c, Simulated annual mean
SAT anomaly between the strong and weak AMOC modes with reconstructed
temperature changes (circles; Methods). The strong (or weak) mode in c and in
Fig. 4 is an ensemble mean model results for points b-e (or f–h, a) of the
hysteresis curve in a. Numbers in b correspond to the hysteresis branches
defined in a. The AMOC strength in the pre-industrial (PI) control run is
,16 Sv in our model16. The low AMOC indices corresponding to the weak
modes do not represent an ‘off’ AMOC state (as indicated by the freshwater-
hosing-induced Heinrich mode6,16), but rather a weakened AMOC (Fig. 2 and
Methods). Crosses in a represent the experiments performed to analyse the
response of the glacial ocean to NHIS change; circles indicate the simulations
related to the hysteresis behaviour of glacial ocean (Methods). The NHIS height
difference between the Last Glacial Maximum (LGM) and the present-day
level is equivalent to a change in sea level of ,92 m, indicating an ESL difference
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Greenland	Dust
(de-jumped)

Atmospheric	CO2

Antarctic	Temp.

(e.g., ref. 38). These effects include reduced precipitation over
large parts of the northern hemisphere and increased rainfall in
South America and Africa caused by a southward shift in the
Intertropical Convergence Zone (38). However, although the
near-instantaneous effects of Heinrich AMOC collapses may be
global, this does not necessarily imply that all D–O events should
be expected to have the same influence. It is clear that Heinrich
stadial events should be considered distinct from ‘‘regular’’ D–O
stadials, as evidenced by a range of oceanic proxies (e.g., refs. 3
and 39–41). Further evidence from Brazilian speleothems also
suggests that southward migration of the ITCZ during MIS 3 was
particularly pronounced only during Heinrich events, highlight-
ing the anomalous conditions during these periods. We argue
that records such as that from Hulu Cave may well be expected
to show a composite signal comprising the effects of near-
instantaneous shifts in atmospheric circulation superimposed on
a background variability that we contend reflects Antarctic-style
climate fluctuations. This argument is based on the observation
of the Antarctic signal in influential regions such as the tropical
Pacific as well as its appearance in the DD record.

A question may then be raised concerning the DD record;
should this not also reflect Heinrich events? In fact, the record
does show maxima (perhaps corresponding to the dry conditions
associated with a weakened monsoon) during Heinrich stadials.
This directly reflects the fact that the highest values in the raw
dust record occur during these intervals (Fig. 1). This observa-
tion in itself may be used to argue for a relationship between the
Hulu Cave monsoon record and the Greenland dust record that
is not shared by the Greenland temperature record; namely that
Heinrich events (which are reflected by extrema in both Green-
land dust and Hulu !18O) are not marked by ‘‘extremely’’ cold
conditions over Greenland (42). If records such as that from
Hulu Cave and the surrounding region do contain signals of
multiple origin (notably D–O type variability superimposed
upon an Antarctic-style modulation) it is possible that the
deconvolution method applied here may obscure D–O type
variability associated with the source region as well as that
associated with transport to Greenland. Future work is required
to better constrain the individual components of climate signals
from this region and more generally.

Global Transmission of the Antarctic Signal
The observation of Antarctic-style climate variability in proxy
records from remote settings such as the tropical Pacific and its
appearance in the record of dust accumulation in Greenland
suggest that this climate signal is more pervasive than perhaps
previously assumed. An immediate question is then what enables
the global transmission of such a signal? In fact, ‘‘time-delayed’’
variants of an ‘‘Antarctic-style’’ climate signal may be found
elsewhere. For example, the close correspondence between
Antarctic temperature and atmospheric CO2 is well established
for various time scales over the last 650 kyr (e.g., ref. 26)
including the millennial scale variability observed in Antarctica
during MIS 3 (24, 25). This correspondence highlights the
important role of the Southern Ocean for atmospheric CO2
variability. Of particular relevance here is an apparent time lag
of CO2 behind Antarctic temperature. Several studies have
attempted to quantify the precise phase relationship between
these key variables. Those focusing on glacial terminations have
identified lags of 600 ! 400 yr (43), 800 ! 200 yr (44), and 800 !
600 yr (45), whereas a detailed statistical analysis of the last 420
kyr yielded an estimate of 1,300 ! 1,000 yr (46). Two studies of
CO2 variability during MIS 3 provide estimates of 1200 ! 700 yr
(24) and 720 ! 370 yr (25) for the lag of CO2 behind temperature
during this interval. This is similar to the observed lag of our DD
record behind Antarctic temperature as highlighted by the close
temporal correspondence between CO2 and the dejumped
record when plotted on a common time scale (Fig. 4). The fact
that changes in atmospheric CO2 lag behind Antarctic temper-
ature variations does not diminish the potential role of CO2 as
a driver of climate change.

On the other hand it may be argued that CO2 variations of
10–20 ppmv, as observed during MIS 3, might not have been
sufficient to drive climatic changes such as those implied by the
DD record. The oceans represent a potential alternative medium
for transmission of the Antarctic signal (quite beyond the fact
that they may also represent the origin of this signal) because
changes in CO2 themselves are likely to be driven by oceanic
processes. We have mentioned the observation of an Antarctic-
style signal from several marine settings including the influential
tropical surface Pacific. However, as yet there is no way to tune
these records to investigate the precise temporal relationship
between them and the high southern latitudes. This represents an
important step that should be tackled in the near future. One
marine record that can be tuned to ice-core records with
sufficient precision to address this issue is from core MD95-2042,
taken at 3,146 m on the Iberian margin (5). Shackleton et al. (5)
demonstrated that the benthic oxygen isotope record from this
core resembles Antarctic temperature variability when placed on
the ice-core time scale by tuning of the planktonic isotope record
to Greenland. This tuning exercise permits us to identify a
variable phase lag of up to several hundred years between
Antarctic temperature and the deep Atlantic benthic !18O
record (Fig. 4 and SI Text). Although we cannot assess here the
individual components that comprise the benthic !18O signal
(i.e., the temperature and oxygen isotopic composition of sea-
water including ice volume effects), it is clear that oceanic
processes do act to transmit an Antarctic-style signal with a finite
lag behind the ice-core temperature record.

The D–O oscillations provide the most dramatic example of
abrupt climate variability during the last glacial cycle. The
underlying cause of these abrupt climate shifts has yet to be
resolved but changes in North Atlantic sea ice cover are thought
to play a crucial role in the associated temperature changes over
Greenland (47, 48). Abrupt changes in sea ice cover must be
driven by changes in other parts of the climate system (48), which
may themselves be more gradual in nature. For example changes
in ocean circulation, which might be either local (49, 50) or more
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(e.g., ref. 38). These effects include reduced precipitation over
large parts of the northern hemisphere and increased rainfall in
South America and Africa caused by a southward shift in the
Intertropical Convergence Zone (38). However, although the
near-instantaneous effects of Heinrich AMOC collapses may be
global, this does not necessarily imply that all D–O events should
be expected to have the same influence. It is clear that Heinrich
stadial events should be considered distinct from ‘‘regular’’ D–O
stadials, as evidenced by a range of oceanic proxies (e.g., refs. 3
and 39–41). Further evidence from Brazilian speleothems also
suggests that southward migration of the ITCZ during MIS 3 was
particularly pronounced only during Heinrich events, highlight-
ing the anomalous conditions during these periods. We argue
that records such as that from Hulu Cave may well be expected
to show a composite signal comprising the effects of near-
instantaneous shifts in atmospheric circulation superimposed on
a background variability that we contend reflects Antarctic-style
climate fluctuations. This argument is based on the observation
of the Antarctic signal in influential regions such as the tropical
Pacific as well as its appearance in the DD record.

A question may then be raised concerning the DD record;
should this not also reflect Heinrich events? In fact, the record
does show maxima (perhaps corresponding to the dry conditions
associated with a weakened monsoon) during Heinrich stadials.
This directly reflects the fact that the highest values in the raw
dust record occur during these intervals (Fig. 1). This observa-
tion in itself may be used to argue for a relationship between the
Hulu Cave monsoon record and the Greenland dust record that
is not shared by the Greenland temperature record; namely that
Heinrich events (which are reflected by extrema in both Green-
land dust and Hulu !18O) are not marked by ‘‘extremely’’ cold
conditions over Greenland (42). If records such as that from
Hulu Cave and the surrounding region do contain signals of
multiple origin (notably D–O type variability superimposed
upon an Antarctic-style modulation) it is possible that the
deconvolution method applied here may obscure D–O type
variability associated with the source region as well as that
associated with transport to Greenland. Future work is required
to better constrain the individual components of climate signals
from this region and more generally.

Global Transmission of the Antarctic Signal
The observation of Antarctic-style climate variability in proxy
records from remote settings such as the tropical Pacific and its
appearance in the record of dust accumulation in Greenland
suggest that this climate signal is more pervasive than perhaps
previously assumed. An immediate question is then what enables
the global transmission of such a signal? In fact, ‘‘time-delayed’’
variants of an ‘‘Antarctic-style’’ climate signal may be found
elsewhere. For example, the close correspondence between
Antarctic temperature and atmospheric CO2 is well established
for various time scales over the last 650 kyr (e.g., ref. 26)
including the millennial scale variability observed in Antarctica
during MIS 3 (24, 25). This correspondence highlights the
important role of the Southern Ocean for atmospheric CO2
variability. Of particular relevance here is an apparent time lag
of CO2 behind Antarctic temperature. Several studies have
attempted to quantify the precise phase relationship between
these key variables. Those focusing on glacial terminations have
identified lags of 600 ! 400 yr (43), 800 ! 200 yr (44), and 800 !
600 yr (45), whereas a detailed statistical analysis of the last 420
kyr yielded an estimate of 1,300 ! 1,000 yr (46). Two studies of
CO2 variability during MIS 3 provide estimates of 1200 ! 700 yr
(24) and 720 ! 370 yr (25) for the lag of CO2 behind temperature
during this interval. This is similar to the observed lag of our DD
record behind Antarctic temperature as highlighted by the close
temporal correspondence between CO2 and the dejumped
record when plotted on a common time scale (Fig. 4). The fact
that changes in atmospheric CO2 lag behind Antarctic temper-
ature variations does not diminish the potential role of CO2 as
a driver of climate change.

On the other hand it may be argued that CO2 variations of
10–20 ppmv, as observed during MIS 3, might not have been
sufficient to drive climatic changes such as those implied by the
DD record. The oceans represent a potential alternative medium
for transmission of the Antarctic signal (quite beyond the fact
that they may also represent the origin of this signal) because
changes in CO2 themselves are likely to be driven by oceanic
processes. We have mentioned the observation of an Antarctic-
style signal from several marine settings including the influential
tropical surface Pacific. However, as yet there is no way to tune
these records to investigate the precise temporal relationship
between them and the high southern latitudes. This represents an
important step that should be tackled in the near future. One
marine record that can be tuned to ice-core records with
sufficient precision to address this issue is from core MD95-2042,
taken at 3,146 m on the Iberian margin (5). Shackleton et al. (5)
demonstrated that the benthic oxygen isotope record from this
core resembles Antarctic temperature variability when placed on
the ice-core time scale by tuning of the planktonic isotope record
to Greenland. This tuning exercise permits us to identify a
variable phase lag of up to several hundred years between
Antarctic temperature and the deep Atlantic benthic !18O
record (Fig. 4 and SI Text). Although we cannot assess here the
individual components that comprise the benthic !18O signal
(i.e., the temperature and oxygen isotopic composition of sea-
water including ice volume effects), it is clear that oceanic
processes do act to transmit an Antarctic-style signal with a finite
lag behind the ice-core temperature record.

The D–O oscillations provide the most dramatic example of
abrupt climate variability during the last glacial cycle. The
underlying cause of these abrupt climate shifts has yet to be
resolved but changes in North Atlantic sea ice cover are thought
to play a crucial role in the associated temperature changes over
Greenland (47, 48). Abrupt changes in sea ice cover must be
driven by changes in other parts of the climate system (48), which
may themselves be more gradual in nature. For example changes
in ocean circulation, which might be either local (49, 50) or more
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Fig. 4. The DD record as compared with atmospheric CO2 [from the Byrd (25)
and Taylor Dome (24) ice cores], deep Atlantic benthic foraminiferal !18O (plus
3-point running mean) (5) and Antarctic temperature (7). All records are on
the GISP2 time scale. The two records of CO2 have been detrended by sub-
traction of a linear decrease of 0.3 ppmv/kyr centered on 45 kyr ago. Shaded
gray areas loosely define warming periods in Antarctica. The DD, CO2, and
benthic !18O records all display apparent time delays behind the Antarctic
record. See also SI Text and SI Fig. 8.
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(e.g., ref. 38). These effects include reduced precipitation over
large parts of the northern hemisphere and increased rainfall in
South America and Africa caused by a southward shift in the
Intertropical Convergence Zone (38). However, although the
near-instantaneous effects of Heinrich AMOC collapses may be
global, this does not necessarily imply that all D–O events should
be expected to have the same influence. It is clear that Heinrich
stadial events should be considered distinct from ‘‘regular’’ D–O
stadials, as evidenced by a range of oceanic proxies (e.g., refs. 3
and 39–41). Further evidence from Brazilian speleothems also
suggests that southward migration of the ITCZ during MIS 3 was
particularly pronounced only during Heinrich events, highlight-
ing the anomalous conditions during these periods. We argue
that records such as that from Hulu Cave may well be expected
to show a composite signal comprising the effects of near-
instantaneous shifts in atmospheric circulation superimposed on
a background variability that we contend reflects Antarctic-style
climate fluctuations. This argument is based on the observation
of the Antarctic signal in influential regions such as the tropical
Pacific as well as its appearance in the DD record.

A question may then be raised concerning the DD record;
should this not also reflect Heinrich events? In fact, the record
does show maxima (perhaps corresponding to the dry conditions
associated with a weakened monsoon) during Heinrich stadials.
This directly reflects the fact that the highest values in the raw
dust record occur during these intervals (Fig. 1). This observa-
tion in itself may be used to argue for a relationship between the
Hulu Cave monsoon record and the Greenland dust record that
is not shared by the Greenland temperature record; namely that
Heinrich events (which are reflected by extrema in both Green-
land dust and Hulu !18O) are not marked by ‘‘extremely’’ cold
conditions over Greenland (42). If records such as that from
Hulu Cave and the surrounding region do contain signals of
multiple origin (notably D–O type variability superimposed
upon an Antarctic-style modulation) it is possible that the
deconvolution method applied here may obscure D–O type
variability associated with the source region as well as that
associated with transport to Greenland. Future work is required
to better constrain the individual components of climate signals
from this region and more generally.

Global Transmission of the Antarctic Signal
The observation of Antarctic-style climate variability in proxy
records from remote settings such as the tropical Pacific and its
appearance in the record of dust accumulation in Greenland
suggest that this climate signal is more pervasive than perhaps
previously assumed. An immediate question is then what enables
the global transmission of such a signal? In fact, ‘‘time-delayed’’
variants of an ‘‘Antarctic-style’’ climate signal may be found
elsewhere. For example, the close correspondence between
Antarctic temperature and atmospheric CO2 is well established
for various time scales over the last 650 kyr (e.g., ref. 26)
including the millennial scale variability observed in Antarctica
during MIS 3 (24, 25). This correspondence highlights the
important role of the Southern Ocean for atmospheric CO2
variability. Of particular relevance here is an apparent time lag
of CO2 behind Antarctic temperature. Several studies have
attempted to quantify the precise phase relationship between
these key variables. Those focusing on glacial terminations have
identified lags of 600 ! 400 yr (43), 800 ! 200 yr (44), and 800 !
600 yr (45), whereas a detailed statistical analysis of the last 420
kyr yielded an estimate of 1,300 ! 1,000 yr (46). Two studies of
CO2 variability during MIS 3 provide estimates of 1200 ! 700 yr
(24) and 720 ! 370 yr (25) for the lag of CO2 behind temperature
during this interval. This is similar to the observed lag of our DD
record behind Antarctic temperature as highlighted by the close
temporal correspondence between CO2 and the dejumped
record when plotted on a common time scale (Fig. 4). The fact
that changes in atmospheric CO2 lag behind Antarctic temper-
ature variations does not diminish the potential role of CO2 as
a driver of climate change.

On the other hand it may be argued that CO2 variations of
10–20 ppmv, as observed during MIS 3, might not have been
sufficient to drive climatic changes such as those implied by the
DD record. The oceans represent a potential alternative medium
for transmission of the Antarctic signal (quite beyond the fact
that they may also represent the origin of this signal) because
changes in CO2 themselves are likely to be driven by oceanic
processes. We have mentioned the observation of an Antarctic-
style signal from several marine settings including the influential
tropical surface Pacific. However, as yet there is no way to tune
these records to investigate the precise temporal relationship
between them and the high southern latitudes. This represents an
important step that should be tackled in the near future. One
marine record that can be tuned to ice-core records with
sufficient precision to address this issue is from core MD95-2042,
taken at 3,146 m on the Iberian margin (5). Shackleton et al. (5)
demonstrated that the benthic oxygen isotope record from this
core resembles Antarctic temperature variability when placed on
the ice-core time scale by tuning of the planktonic isotope record
to Greenland. This tuning exercise permits us to identify a
variable phase lag of up to several hundred years between
Antarctic temperature and the deep Atlantic benthic !18O
record (Fig. 4 and SI Text). Although we cannot assess here the
individual components that comprise the benthic !18O signal
(i.e., the temperature and oxygen isotopic composition of sea-
water including ice volume effects), it is clear that oceanic
processes do act to transmit an Antarctic-style signal with a finite
lag behind the ice-core temperature record.

The D–O oscillations provide the most dramatic example of
abrupt climate variability during the last glacial cycle. The
underlying cause of these abrupt climate shifts has yet to be
resolved but changes in North Atlantic sea ice cover are thought
to play a crucial role in the associated temperature changes over
Greenland (47, 48). Abrupt changes in sea ice cover must be
driven by changes in other parts of the climate system (48), which
may themselves be more gradual in nature. For example changes
in ocean circulation, which might be either local (49, 50) or more
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Fig. 4. The DD record as compared with atmospheric CO2 [from the Byrd (25)
and Taylor Dome (24) ice cores], deep Atlantic benthic foraminiferal !18O (plus
3-point running mean) (5) and Antarctic temperature (7). All records are on
the GISP2 time scale. The two records of CO2 have been detrended by sub-
traction of a linear decrease of 0.3 ppmv/kyr centered on 45 kyr ago. Shaded
gray areas loosely define warming periods in Antarctica. The DD, CO2, and
benthic !18O records all display apparent time delays behind the Antarctic
record. See also SI Text and SI Fig. 8.
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(e.g.,ref.38).Theseeffectsincludereducedprecipitationover
largepartsofthenorthernhemisphereandincreasedrainfallin
SouthAmericaandAfricacausedbyasouthwardshiftinthe
IntertropicalConvergenceZone(38).However,althoughthe
near-instantaneouseffectsofHeinrichAMOCcollapsesmaybe
global,thisdoesnotnecessarilyimplythatallD–Oeventsshould
beexpectedtohavethesameinfluence.ItisclearthatHeinrich
stadialeventsshouldbeconsidereddistinctfrom‘‘regular’’D–O
stadials,asevidencedbyarangeofoceanicproxies(e.g.,refs.3
and39–41).FurtherevidencefromBrazilianspeleothemsalso
suggeststhatsouthwardmigrationoftheITCZduringMIS3was
particularlypronouncedonlyduringHeinrichevents,highlight-
ingtheanomalousconditionsduringtheseperiods.Weargue
thatrecordssuchasthatfromHuluCavemaywellbeexpected
toshowacompositesignalcomprisingtheeffectsofnear-
instantaneousshiftsinatmosphericcirculationsuperimposedon
abackgroundvariabilitythatwecontendreflectsAntarctic-style
climatefluctuations.Thisargumentisbasedontheobservation
oftheAntarcticsignalininfluentialregionssuchasthetropical
PacificaswellasitsappearanceintheDDrecord.

AquestionmaythenberaisedconcerningtheDDrecord;
shouldthisnotalsoreflectHeinrichevents?Infact,therecord
doesshowmaxima(perhapscorrespondingtothedryconditions
associatedwithaweakenedmonsoon)duringHeinrichstadials.
Thisdirectlyreflectsthefactthatthehighestvaluesintheraw
dustrecordoccurduringtheseintervals(Fig.1).Thisobserva-
tioninitselfmaybeusedtoargueforarelationshipbetweenthe
HuluCavemonsoonrecordandtheGreenlanddustrecordthat
isnotsharedbytheGreenlandtemperaturerecord;namelythat
Heinrichevents(whicharereflectedbyextremainbothGreen-
landdustandHulu!18O)arenotmarkedby‘‘extremely’’cold
conditionsoverGreenland(42).Ifrecordssuchasthatfrom
HuluCaveandthesurroundingregiondocontainsignalsof
multipleorigin(notablyD–Otypevariabilitysuperimposed
uponanAntarctic-stylemodulation)itispossiblethatthe
deconvolutionmethodappliedheremayobscureD–Otype
variabilityassociatedwiththesourceregionaswellasthat
associatedwithtransporttoGreenland.Futureworkisrequired
tobetterconstraintheindividualcomponentsofclimatesignals
fromthisregionandmoregenerally.

GlobalTransmissionoftheAntarcticSignal
TheobservationofAntarctic-styleclimatevariabilityinproxy
recordsfromremotesettingssuchasthetropicalPacificandits
appearanceintherecordofdustaccumulationinGreenland
suggestthatthisclimatesignalismorepervasivethanperhaps
previouslyassumed.Animmediatequestionisthenwhatenables
theglobaltransmissionofsuchasignal?Infact,‘‘time-delayed’’
variantsofan‘‘Antarctic-style’’climatesignalmaybefound
elsewhere.Forexample,theclosecorrespondencebetween
AntarctictemperatureandatmosphericCO2iswellestablished
forvarioustimescalesoverthelast650kyr(e.g.,ref.26)
includingthemillennialscalevariabilityobservedinAntarctica
duringMIS3(24,25).Thiscorrespondencehighlightsthe
importantroleoftheSouthernOceanforatmosphericCO2
variability.Ofparticularrelevancehereisanapparenttimelag
ofCO2behindAntarctictemperature.Severalstudieshave
attemptedtoquantifytheprecisephaserelationshipbetween
thesekeyvariables.Thosefocusingonglacialterminationshave
identifiedlagsof600!400yr(43),800!200yr(44),and800!
600yr(45),whereasadetailedstatisticalanalysisofthelast420
kyryieldedanestimateof1,300!1,000yr(46).Twostudiesof
CO2variabilityduringMIS3provideestimatesof1200!700yr
(24)and720!370yr(25)forthelagofCO2behindtemperature
duringthisinterval.ThisissimilartotheobservedlagofourDD
recordbehindAntarctictemperatureashighlightedbytheclose
temporalcorrespondencebetweenCO2andthedejumped
recordwhenplottedonacommontimescale(Fig.4).Thefact
thatchangesinatmosphericCO2lagbehindAntarctictemper-
aturevariationsdoesnotdiminishthepotentialroleofCO2as
adriverofclimatechange.

OntheotherhanditmaybearguedthatCO2variationsof
10–20ppmv,asobservedduringMIS3,mightnothavebeen
sufficienttodriveclimaticchangessuchasthoseimpliedbythe
DDrecord.Theoceansrepresentapotentialalternativemedium
fortransmissionoftheAntarcticsignal(quitebeyondthefact
thattheymayalsorepresenttheoriginofthissignal)because
changesinCO2themselvesarelikelytobedrivenbyoceanic
processes.WehavementionedtheobservationofanAntarctic-
stylesignalfromseveralmarinesettingsincludingtheinfluential
tropicalsurfacePacific.However,asyetthereisnowaytotune
theserecordstoinvestigatetheprecisetemporalrelationship
betweenthemandthehighsouthernlatitudes.Thisrepresentsan
importantstepthatshouldbetackledinthenearfuture.One
marinerecordthatcanbetunedtoice-corerecordswith
sufficientprecisiontoaddressthisissueisfromcoreMD95-2042,
takenat3,146montheIberianmargin(5).Shackletonetal.(5)
demonstratedthatthebenthicoxygenisotoperecordfromthis
coreresemblesAntarctictemperaturevariabilitywhenplacedon
theice-coretimescalebytuningoftheplanktonicisotoperecord
toGreenland.Thistuningexercisepermitsustoidentifya
variablephaselagofuptoseveralhundredyearsbetween
AntarctictemperatureandthedeepAtlanticbenthic!18O
record(Fig.4andSIText).Althoughwecannotassessherethe
individualcomponentsthatcomprisethebenthic!18Osignal
(i.e.,thetemperatureandoxygenisotopiccompositionofsea-
waterincludingicevolumeeffects),itisclearthatoceanic
processesdoacttotransmitanAntarctic-stylesignalwithafinite
lagbehindtheice-coretemperaturerecord.

TheD–Ooscillationsprovidethemostdramaticexampleof
abruptclimatevariabilityduringthelastglacialcycle.The
underlyingcauseoftheseabruptclimateshiftshasyettobe
resolvedbutchangesinNorthAtlanticseaicecoverarethought
toplayacrucialroleintheassociatedtemperaturechangesover
Greenland(47,48).Abruptchangesinseaicecovermustbe
drivenbychangesinotherpartsoftheclimatesystem(48),which
maythemselvesbemoregradualinnature.Forexamplechanges
inoceancirculation,whichmightbeeitherlocal(49,50)ormore
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Fig.4.TheDDrecordascomparedwithatmosphericCO2[fromtheByrd(25)
andTaylorDome(24)icecores],deepAtlanticbenthicforaminiferal!18O(plus
3-pointrunningmean)(5)andAntarctictemperature(7).Allrecordsareon
theGISP2timescale.ThetworecordsofCO2havebeendetrendedbysub-
tractionofalineardecreaseof0.3ppmv/kyrcenteredon45kyrago.Shaded
grayareaslooselydefinewarmingperiodsinAntarctica.TheDD,CO2,and
benthic!18OrecordsalldisplayapparenttimedelaysbehindtheAntarctic
record.SeealsoSITextandSIFig.8.
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Records	in	Greenland	ice	core	are	characterized	by	an	Antarctic-style	climate	variability,	which	
cannot	be	explained	by	nonlinearity	of	the	AMOC	alone.

The	Antarctic-style	signal	(temperature	and	atmospheric	CO2)	can	also	be	found	in	other	
proxy	data,	indicating	existence	of	a	global	agent	controlling	on	millennial-scale	climate	
variability.

Barker	and	Knorr	2007
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Figure 1. Climate records of the last glacial period. (a) Greenland ice core !18O from the North Greenland Ice Core Project (NGRIP) core [NGRIP Community
Members, 2004] on the GICC05modelext chronology [Rasmussen et al., 2006, 2013]. (b) Atmospheric CO2 composite record [Bereiter et al., 2015]. (c) Antarctic
temperature stack (ATS, green) in ∘C relative to present day [Parrenin et al., 2013]. (d) Antarctic ice core !18O from the EPICA Dronning Maud Land (EDML) (purple)
and West Antarctic Ice Sheet (WAIS) Divide ice core (orange) [EPICA Community Members, 2006; WAIS Divide Project Members, 2015]. (e) Relative sea level. Blue
crosses, solid curve, and shading give Red Sea sea level data the 1 ka smoothed record (Gaussian filter) and the ±2" uncertainty envelope, respectively [Grant
et al., 2012; Rohling et al., 2009]. Grey crosses and solid curve give the compiled sea level data and reconstruction, respectively, by Carlson and Clark [2012].
(f ) Southern Ocean opal flux as a proxy for upwelling from marine sediment core TNO57-14PC [Anderson et al., 2009], using an updated chronology [Obrochta et al.,
2014]. (g) Milanković forcing: summer solstice insolation at 65∘N. Yellow vertical bars with numbering denote the major DO/Antarctic isotopic maximum events.

Piotrowski et al., 2008; Vidal et al., 1997], and the extent of sea ice in the North Atlantic [Li et al., 2005; Broecker,
2006]. Here we shall use “stadial AMOC mode” and “interstadial AMOC mode” as a shorthand to describe
the states associated with a weak AMOC/cold North Atlantic and with a strong AMOC/warm North Atlantic,
respectively. A third glacial AMOC mode has been associated with Heinrich events—periods of extreme cold
in the North Atlantic, identified by layers of ice-rafted debris in ocean sediments [Hemming, 2004; Rahmstorf ,
2002]. In this mode, the AMOC is thought to be at its weakest, with strongly reduced GNAIW formation and
enhanced intrusion of southern-sourced waters into the North Atlantic [Vidal et al., 1997; Keigwin and Boyle,
1999; Martrat et al., 2007; Böhm et al., 2015].

Not all DO cycles are created equal, as their duration, recurrence time and magnitude varies through time.
Detecting structure within the DO time series is complicated by both chronological uncertainties and the
limited number of event realizations in the Greenland ice core record (25 DO events have been identified in
the last glacial). Some of the commonly recognized patterns include the following:

1. DO events, particularly those of marine isotope stage (MIS) 3, appear to be grouped into so-called Bond
cycles [Bond et al., 1993; Lehman, 1993] that are separated by Heinrich events; successive DO events within
each Bond cycle have a decreasing interstadial duration and amplitude.
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and West Antarctic Ice Sheet (WAIS) Divide ice core (orange) [EPICA Community Members, 2006; WAIS Divide Project Members, 2015]. (e) Relative sea level. Blue
crosses, solid curve, and shading give Red Sea sea level data the 1 ka smoothed record (Gaussian filter) and the ±2" uncertainty envelope, respectively [Grant
et al., 2012; Rohling et al., 2009]. Grey crosses and solid curve give the compiled sea level data and reconstruction, respectively, by Carlson and Clark [2012].
(f ) Southern Ocean opal flux as a proxy for upwelling from marine sediment core TNO57-14PC [Anderson et al., 2009], using an updated chronology [Obrochta et al.,
2014]. (g) Milanković forcing: summer solstice insolation at 65∘N. Yellow vertical bars with numbering denote the major DO/Antarctic isotopic maximum events.

Piotrowski et al., 2008; Vidal et al., 1997], and the extent of sea ice in the North Atlantic [Li et al., 2005; Broecker,
2006]. Here we shall use “stadial AMOC mode” and “interstadial AMOC mode” as a shorthand to describe
the states associated with a weak AMOC/cold North Atlantic and with a strong AMOC/warm North Atlantic,
respectively. A third glacial AMOC mode has been associated with Heinrich events—periods of extreme cold
in the North Atlantic, identified by layers of ice-rafted debris in ocean sediments [Hemming, 2004; Rahmstorf ,
2002]. In this mode, the AMOC is thought to be at its weakest, with strongly reduced GNAIW formation and
enhanced intrusion of southern-sourced waters into the North Atlantic [Vidal et al., 1997; Keigwin and Boyle,
1999; Martrat et al., 2007; Böhm et al., 2015].

Not all DO cycles are created equal, as their duration, recurrence time and magnitude varies through time.
Detecting structure within the DO time series is complicated by both chronological uncertainties and the
limited number of event realizations in the Greenland ice core record (25 DO events have been identified in
the last glacial). Some of the commonly recognized patterns include the following:

1. DO events, particularly those of marine isotope stage (MIS) 3, appear to be grouped into so-called Bond
cycles [Bond et al., 1993; Lehman, 1993] that are separated by Heinrich events; successive DO events within
each Bond cycle have a decreasing interstadial duration and amplitude.
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1.	DO	events	are	very	evident	when	atmospheric	CO2 levels	are	at	intermediate	level,	in	
addition	to	intermediate	ice	volume.
2.	Big	DO	events	are	in	company	with	CO2 variations.
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Thanks	for	your	attention,	questions	are	warmly	welcome!

Taking	home	message	…
Ice	sheet	height	and	atmospheric	CO2 are	key	control	on	glacial	climate	
(AMOC)	stability	within	glacial-interglacial	cycles.

CO2 might	represent	an	internal	feedback	agent	by	promoting	
spontaneous	transitions	between	climate	states	during	glacials.

A	combination	of	the	three	controlling	factors (ice sheet height,
atmospheric CO2 and freshwater) can	explain	a	broader	spectrum	of	
millennial-scale	variability	and	abrupt	climate	transitions,	e.g.	Bølling-
Allerød warming	(~14.6ka	BP)	during	the	last	deglaciation.	


