Grounding line migration as a response to cycles of sliding perturbations and initial geometries in the MISMIP^{3D} experiment

Session CR7.2: EGU2014-11455 B845

Introduction

The poster presents results of the response of an artificial ice sheet-ice shelf system to periodic basal sliding perturbations concerning grounding line migration. Modelling grounding line migrations is a crucial component for estimating future behaviour of large ice masses in i.e. Antarctica or Greenland linked to the impact on the sea level rise.

All experiments are performed with the full-Stokes ice flow model TIM-FD³ (Kleiner & Humbert, 2014) with a fixed grid implementation. For subsequent cycles of sliding perturbation the abort criterion ε_{l} is set to $\varepsilon_{l} = 10^{-6}$ or a maximum number of iterations, maxNL = 250, which appeared to be sufficient proved by tests. Horizontal resolutions of the performed experiments reach from 10, 5 to 2.5 and 1.25 km at a maximum.

MISMIP^{3D}

Cycles of sliding perturbations extend the experiments performed for MISMIP^{3D} (Pattyn et al., 2013). The benchmark tested several models concerning the reversibility criterion stated by Schoof (2007) meaning that a basal sliding perturbation of an ice flow resting on a linear sloping bedrock is reversible. TIM-FD³ participated as one of three full-Stokes models.

Experiments of the benchmark used a given geometry obtained with the high-resolution ice model Elmer/Ice. A perturbation C^* is applied for 100 a on an area of $x_c = 150$ km and $y_c = 10$ km at the grounding line on the basal sliding coefficient. The grounding line advances. Afterwards C* is reset to the initial C. The grounding line retreats until a steady state is reached.

• Durand, G., Gagliardini, O., Zwinger, T., Le Meur, E., and Hindmarsh, R. C. A.: Full Stokes modeling of marine ice sheets: influence of the grid size, Annals of Glaciology, 50, 109–114, doi:10.3189/172756409789624283, 2009. Kleiner, T. and Humbert, A.: Numerical simulations of major ice streams in western Dronning Maud Land, Antarctica, under wet and dry basal conditions, Journal of Glaciology, 60, 215–232, doi:10.3189/2014JoG13J006, 2014. • Pattyn, F., Perichon, L., Durand, G., Favier, L., Gagliardini, O., Hindmarsh, R. C. H., Zwinger, T., Albrecht, T., Conford, S., Docquier, D., Fürst, J. J., Goldberg, D., Gudmundsson, H., Humbert, A., Hütten, M., Huybrechts, P., Jouvet, G., Kleiner, T., Larour, E., Martin, D., Morlighem, M., Payne, A. J., Pollard, D., Rückamp, M., Rybak., O., Seroussi, H., Thoma, M., and Wilkens, N.: Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison, Journal of Glaciology, 59, 410-422, doi:10.3189/2013JoG12J129, 2013 • Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability and hysteresis, Journal of Geophysical Research, 112, doi:10.1029/2006JF000664, 2007.

Geometry spin-up

For further perturbation experiments steady state geometries are crucial. Therefore the model TIM-FD³ evolves two idealised geometries (H_{opt} , H_{max}) and a 1000 m thick slab (H_{1000}). All geometries reach a steady state during <10 ka. There are no following changes of the grounding line or ice thickness until the end of the spin-up at 20 ka. The initial geometries do not converge to the same geometry.

In agreement with Durand et al. (2009) the grounding line positions of coarser horizontal resolutions are farther downstream.

Dependency on initial geometry

Results of the geometry spin-up show an inverted resolution dependency compared to the set of the 1 km thick slab and the two idealised geometries (see above).

Furthermore, it stays in contrast to Durand $\overline{\tilde{v}}$ et al. (2009) and the thesis that a coarser resolution leads to a grounding line farther downstream. Like in MISMIP^{3D} the initial geometry is a 200 m thick slab.

Steady state geometries after 20 ka of different initial slabs thicknesses (200, 500, 708, 900, 1000 m, Elmer). H₇₀₈ has its initial grounding line at t = 0 a at the position of \mathbf{f} H_{Elmer} . The solutions do not converge to the $\frac{2}{3}$ same steady state geometry linked to different grounding line positions. Only H_{200} and H_{500} end up on an identical geometry.

M. Nieschlag (moritz.nieschlag@awi.de), T. Kleiner, A. Humbert

Cycles of sliding perturbations

Results of periodic basal sliding perturbations show different characteristica. Due to the geometry spin-up H_{opt} and H_{1000} are always close to each other. In all experimental setups H_{Elmer} is reversible. The perturbation duration of the 100-1000 setting is identical to MISMIP^{3D}. H_{opt} and H_{1000} show a slight advance, while H_{max} retreats. The 10-100 setting reveals the same trend although some perturbation cycles are reversible. The 1-10 setting does not show any retreat of advance. All perturbations of only 1 year every 10 years are reversible. Experiments with H_{max} and H_{opt} over >25 ka obtaining MISMIP^{3D}-conditions that advances or retreats of the grounding line cannot be extrapolated linearly as the progression is asymptotically.

Conclusion

- irreversible changes of the grounding line position.
- Which parameter initiates the migration is still unclear.
- initial slab thickness and the horizontal model resolution.
- on the obtained steady state geometry.

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG

The simulations show that basal sliding perturbations on a small time scale (1-10) experiments) appear to be reversible. Perturbations on longer time scales indicate

It is necessary to investigate the influence of initial conditions on the grounding line position, as results of the geometry spin-up show a strong dependency on the

• The initial slab thickness or geometry in general appears to have a strong impact

LFRED-WEGENER-INSTITU

