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In field studies of active hydrocarbon seeps the carbon isotopic composition of Rose Bengal stained benthic
foraminiferal tests (δ13Ctest) and bottom water DIC (δ13CDIC) deviates from their normal marine ratios. This
circumstance led to ongoing discussions on whether aerobic foraminifers like Cibicides wuellerstorfi are capable
of living at seepage sites and, more importantly, if their tests reflect the low δ13C values of emanating methane.
To evaluate the discrepancy between δ13CDIC and δ13Ctest, we conducted methane seepage-emulating culture
experiments on undepressurized sediments from the Håkon Mosby Mud Volcano, a modern methane seepage
structure that hosts living C. wuellerstorfi with distinct negative δ13C values. The collected sediments
were cultured at a site-alike pressure and mean bottom water methane concentration using newly developed
high-pressure aquaria. Over an experimental period of 5 months our novel technology enabled a successful
reproduction of all calcareous deep-sea benthic foraminiferal species living at that site, notably the first
C. wuellerstorfi cultured in the laboratory. To show the influence of methane on δ13Ctest, we ran parallel
experimentswith N99% 12C- and 99% 13C-methane in the experimental “bottomwater”. During the experimental
running time methanotrophs in the water column obviously converted the experimentally added methane
source to δ13C-enriched and -depleted DIC, respectively. Since whole sediment cores were cultured, it was
impossible to keep δ13CDIC constant over the 5-month duration, which is reflected in a variability of δ13Ctest in
foraminiferal shells. Irrespective of that, the methane source is reflected in δ13Ctest of foraminiferal shells, and
for the natural seep-conditions simulating 12C-experiment the mean δ13CDIC and δ13Ctest in C. wuellerstorfi were
equal. Although for future culturing experiments improvements of the experimental conditions are advisable,
our first results are evidence that persistent methane emanation impacts the carbon isotopic composition of
deep-sea benthic foraminifera.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Our understanding of palaeo-deep-water circulation modes and
deep-water renewal in the world's oceans is essentially based on isoto-
pic and geochemical ratios recorded in tests of selected calcareous deep-
water benthic foraminiferal species (e.g. Hester and Boyle, 1982; Lea
and Boyle, 1989). Hereby, it is assumed that the foraminiferal calcite re-
flects the elemental or isotopic composition of the past ocean at the time
of calcification, with constant ratios and offsets (Emiliani, 1955;
Shackleton and Opdyke, 1973; Hester and Boyle, 1982; Curry and
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Lohmann, 1982; Boyle, 1988, 1992; Lea and Boyle, 1989, 1990;
Nürnberg et al., 1996; Marchitto et al., 2000; Elderfield and Ganssen,
2000; Lea et al., 1999, 2000; Anand et al., 2003; Bickert and
Mackensen, 2004; Curry and Oppo, 2005). Based on field data the
δ13Ctest of epifaunal deep-sea foraminifers, notably of Cibicides
wuellerstorfi, reflects the δ13C of the bottom water's dissolved inorganic
carbon (DIC) with a principally constant offset from equilibrium calcite
(e.g. Woodruff et al., 1980; Belanger et al., 1981; Graham et al., 1981;
Duplessy et al., 1984; Zahn et al., 1986; Curry et al., 1988; Mackensen,
2008).

However, these assumptions are exclusively based on field data and
therefore afflicted with several problems. Foraminifers grow in an array
of interacting environmental parameters. Thus, it is difficult to assess
the influence of individual environmental parameters on foraminiferal
calcite and, since at field sites just a selection of environmental param-
eters ismeasured, essential influences are easily obscured. Furthermore,
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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a foraminiferal shell recovered during an expedition may record the
mean of an environmental parameter over its growth period of days
to months (e.g. Saraswat et al., 2011; Keul et al., 2013; Hohenegger
et al., 2014), whereas the water mass measurement during that cruise
and at that particular site is just a snapshot. Especially at high latitudes
(e.g. Wollenburg and Kuhnt, 2000) and seepage sites there (e.g. Berndt
et al., 2014), environmental parameters vary significantly between
seasons, fromweek to week, and day to day. At high northern latitudes
at the majority of sites primary and export production occurs during
short periods of time. Since a water mass δ13CDIC reflects multiple or-
ganic matter contributors, at high northern latitudinal seepage sites
this value may vary seasonally, disregarding on the consistency of the
site's methane emanation. Moreover, in northern polar waters even
the water temperature may vary seasonally (Rudels et al., 2014) affect-
ing the decay of gas-hydrates (Berndt et al., 2014). Therefore, we have
to be aware that as we nowadays collect increasingly more modern
field data, we observe increasingly more sites where water mass and
field data deviate from formerly field-based established relationships.

All studies on modern cold seep sites so far show a disequilibrium
between stable isotope ratios of Rose Bengal stained foraminifera and
DIC (Torres et al., 2003; Herguera et al., 2004; Hill et al, 2003, 2004;
Rathburn et al., 2003; Martin et al., 2004; Mackensen et al., 2006;
Lobegeier and Sen Gupta, 2008; Bernhard et al., 2010). Naturally occur-
ring methane is impoverished in the 13C isotope and easily oxidized
after its release to the bottom water. Therefore, at seep sites both bot-
tom water δ13CDIC and δ13Ctest values should be significantly depleted
(Rathburn et al., 2003). In this context, large negative excursions in
the δ13Ctest record of benthic foraminifera have been interpreted as
indicating mass releases of methane from clathrate deposits (Kennett
et al., 2000, 2002, 2003). However, until now such a relationship has
not been confirmed in field studies. Opposed to the typical marine envi-
ronment where δ13Ctest of living benthic foraminifers and δ13CDIC co-
vary, at seep sites the two parameters are decoupled. At some seep
sites δ13Ctest of Rose Bengal-stained benthic foraminifers resembles
that from nearby non-seep sites in spite of extremely low pore-
water δ13CDIC (Torres et al., 2003), whereas at others foraminifers
show large variability in δ13Ctest (Bernhard et al., 2010; Rathburn
et al., 2003). Finally, at siboglinoid tubeworm sites of the Håkon
Mosby Mud Volcano (HMMV) δ13Ctest of living foraminifers, e.g.
C. wuellerstorfi, is by up to 4.4‰ lower than at the reference sites
not affected by methane venting, whereas the bottom water δ13CDIC

of seepage and reference sites were the same at the time of sampling
(Mackensen et al., 2006).

The discrepancy between δ13Ctest and δ13CDIC has been interpreted to
indicate either that 1)methane-derived CO2 has no significant influence
on bottom water δ13CDIC, and/or low δ13Ctest values may reflect carbon
oxidation or enhanced photosynthetic carbon rain (Stott et al., 2002),
or that 2) bacterial diets or endosymbionts spoil the common relation-
ship of foraminiferal shell to DIC (Hill et al., 2004; Mackensen et al.,
2006), or that 3) most/all species do not live, or precipitate only little
new shell material if any, at sites/times of venting (Torres et al., 2003;
Bernhard et al., 2010). Dead foraminiferal cytoplasm can be stained
with Rose Bengal from weeks to months after an individual's death
(Jorissen et al., 1995; Bernhard, 1988; Bernhard et al., 2010), and ultra-
structural analyses of Monterey Bay seep Rose Bengal stained speci-
mens showed that all C. wuellerstorfi (2 specimens) and approx. 2/3 of
all Rose Bengal stained specimens had deceased (Bernhard et al.,
2010). This prompted the discussion whether the observed carbon iso-
tope offsets between Rose Bengal stained foraminifera and DIC simply
originate from a methodological error (Bernhard et al., 2010). The
impossibility to establish a relation between δ13CDIC and δ13Ctest at the
investigated seep sites thus far questions the credibility of paleo-
environmental records derived from benthic foraminiferal δ13Ctest not
only at seepage sites but also in general. The majority of paleo-
deepwater circulation models relies on a constant δ13Ctest to δ13CDIC

ratio (in equilibrium for C. wuellerstorfi) (e.g. Bickert and Mackensen,
2004; Curry and Oppo, 2005; Murgese and Deckker, 2007; Ahamad
et al., 2008). Since observations at modern seeps unhinge this rela-
tionship, culture experiments under controlled conditions, aiming to
document the capability of benthic foraminiferal δ13Ctest to record
deep-water δ13CDIC seem necessary and are addressed in this study.

Growing foraminifers in the laboratory under known and stable
environmental conditions is a valuable alternative to empirical field
studies. Culturing allows the establishment of reliable calibration curves
for proxies influenced by one or more environmental parameters and
tests to verify limits and failures of proxies based on field studies. Here-
by, shallow-water foraminifera have been investigated in the laboratory
over the last four decades (e.g. Arnold, 1974; Lee, 1980; Bender, 1989;
Havach et al., 2001; Langezaal et al, 2004; Raitzsch et al., 2010;
Dueñas-Bohórquez et al., 2011), whereas deep-sea species are more
difficult to maintain in laboratory cultures. However, since the study
by Kitazato (1989) an increasing number of successful attempts have
been made (e.g. Linke, 1989, 1992; Weinberg, 1990, 1991; Turley
et al., 1993; Hemleben and Kitazato, 1995; Gross, 1998; Heinz et al.,
2001, 2002; Geslin et al., 2004; Nomaki et al., 2005). To date deep-sea
foraminifera are usually cultured at atmospheric pressure, but Turley
et al. (1993) and Gross (1998) carried out limited and short-lasting
pressure experiments. Most deep-sea foraminifera survive a pressure
difference of 120–180 bar without obvious harm. However, many spe-
cies like notably C. wuellerstorfi neither grow nor reproduce when cul-
tured at 1 bar (e.g. Gross, 1998, unpubl. pers. observation). Laboratory
studies on deep-sea samples collected and kept under in-situ conditions
(retention of pressure, sediment structure and composition, micro- and
macrofauna) are missing. In this study, we give a comprehensive func-
tional introduction in our newly developed high-pressure laboratory
facilities (Wollenburg and Tiedemann, 2010a,b) that allows culturing
of undepressurized sediments and show initial results on our experi-
ments on the incorporation of methane-derived δ13C in foraminiferal
tests (e.g. C. wuellerstorfi) from seepage sites.

2. Material and methods

2.1. Equipment

Our equipment is constructed of stainless steel, glass, polyether
ether ketone (PEEK), fluorinated ethylene propylene (FEP), poly-
methylmethacrylat (PMMA), and of gas-proof materials unknown to
discharge plasticizers. All materials used were cleaned for a minimum
of 2 h in 70% ethanol prior to their use in the systems. Exceptions are
the pushcore tube and head both constructed of PMMA. This material
embrittles when it is exposed to alcohol.

2.1.1. High-pressure aquarium basic construction (Fig. 1a)
Our high-pressure aquaria are designed for a maximum pressure of

250 bar and consist of a two-piece high-pressure sample container con-
structed of non-corrosive steel. The aquarium was affixed securely to
the drawer of the Remotely Operated Vehicle (ROV) Quest Marum
Bremen, which was used to perform in situ sampling. Therefore the
aquarium's size and weight is determined by the limitations of the
ROV's drawer, that is to a closed height of 430 mm, and an air-weight
of 42 kg. Inside the sample container is rounded cylindrical and has a
total capacity of 3 L. This is sufficiently large to store a pushcorer with
a dimension of 110 mm in diameter and 210 mm in length (Fig. 1b).
The concave bottom of the sample container is filled with sterilized
gravel (diameter ≥2 to b8 mm), followed by a core-deposition ring
and pushcore-tube catcher where the sample container merges to the
straight part. A pushcore-tube catcher is necessary to lock the sediment
core-containing pushcore tube in the aquarium. Each sample container
has five ball valve-lockable in-/outlets, three at the bottom of the sam-
ple container, and two in the lid (Fig. 1a). A manometer is adjusted in
front of one of the lid's ball valves (Fig. 2).
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2.1.2. Pushcore basic construction (Fig. 1b)
To allow visual control of the sediment penetration depth during the

coring, pushcore tube and head are constructed of transparent PMMA
(Fig. 1b). Because the pushcore has to penetrate ductile sediments
sticky enough to stay in the tube during the core transfer, the tube's di-
mension is adapted to the type of sediments at the respective core sites.
For unconsolidated sediments at the Håkon Mosby Mud Volcano we
used tube lengths of 230 mm and fixed a comb-like core catcher to
the lower tube edge to prevent sediment loss (Fig. 1b). The tube body
holds multiple holes in the upper part to enable “bottom water” ex-
change during culturing (Fig. 2). Mesh covered slits in the middle tube
part allow limited pore-water exchange within the top-most 40 mm
of the sediment core. The remaining tube is imperforated but shows a
row of screws that becomes latched onto the pushcore-tube catcher
while being transferred (Fig. 1a, b). The pushcore head shows marker
lines indicating the desired sediment penetration depth during coring
and the depth at which the pushcore tube becomes latched onto the
aquarium's pushcore-tube catcher after transfer. The pushcore head is
equippedwith a valve system that allows water to escape during coring
and the pushcore-head removal, whereas it is closed once the corer is
removed from the seafloor to prevent sediment loss during the
pushcore transfer.

2.1.3. High-pressure aquarium operation (Fig. 2)
In preparation of the descent to the seafloor the spring-operatedme-

chanical construction groups for the opening and closure of the aquari-
um have to be prepared, these are set into action by pulling respective
monkey fists. Then the semi-closed (unlocked) aquarium is fixed with
screws in the ROV's drawer and the pushcore rack is mounted in front
of the drawer. The aquarium's ball valves are opened and a spring is
fixed between the aquarium's lid and drawer. The latter one prevents
an unwanted backward pivoting of the opened aquarium's lid during
the core transfer.

During the dive the ROV searches for a suitable core site, then stops,
opens the drawer and the high-pressure aquarium's lid (Fig. 2). Then
the manipulator takes a pushcore handle and starts the coring process.
Controlled by the video systems the pushcore penetrates the sediment
until the respective marker line contacts the sediment surface (Fig. 2).
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Inside the pushcorer the sediment surface is now positioned at the
upper border of the mesh-covered slits in the pushcore. Carefully the
core is transferred into the high-pressure aquarium where it has
reached its optimum position when the red marker line visually con-
tacts the sample containers border. Now the screws on the pushcore
tubes exterior (Fig. 1b) got latched onto the aquarium's pushcore tube
catcher. This is a prerequisite so that the pushcore head can be removed.
Only the sediment-filled pushcore tube remains inside the sample con-
tainer. After the core transfer the aquarium's lid and ball valves are
closed, then the drawer is retracted, and the ROV is ready for
resurfacing. On deck the high-pressure aquarium is unscrewed from
the drawer and carried into the cold room (Fig. 2).

2.2. Sample material

In 2009, RV POLARSTERN (expedition ARK-XXIV/2) visited the
strong negative δ13C-methane-emanating Håkon Mosby Mud volcano
(HMMV) located at roughly 1280 m water depth on the continental
slope of the SW Barents Sea (72°N, 14°E) (Damm and Budéus, 2003;
Klages, 2010) (Fig. 3). The circular structure (diameter 1.5 km) consists
of three concentric habitats (Gebruk et al., 2003), the central two of
which are nearly devoid of living foraminifera (Wollenburg and
Mackensen, 2009). Two endemic siboglinoid tubeworm species charac-
terize the hummocky periphery of the HMMV (Smirnov, 2000; Gebruk
et al., 2003). The small (b7 cm) and more abundant (80%) Sclerolinum
contortum occupies oxic sediments, whereas the large (N20 cm)
Oligobrachia haakonmosbiensis prefers more reduced surface sediments.
Fromprevious expeditionswe know that tubes of living S. contortum are
usually densely covered with living C. wuellerstorfi, whereas tubes of
O. haakonmosbiensis and the sediments are devoid of living
C. wuellerstorfi (Wollenburg and Mackensen, 2009). Thus, controlled
by multiple video systems of the ROV Quest (Marum Bremen) we
prospected a suitable site, densely covered by S. contortum and visually
free of O. haakonmosbiensis, for our core collection. Here in the north of
the HMMV, located at roughly 72°0.38′N and 14°43.5′E, the ROV Quest
collected three sediment cores plus overlaying water and transferred
them into the high-pressure retaining aquaria at the seafloor (Figs. 2–
3). Since the total volume of the high-pressure retaining aquarium is
N72°
0.6’

N72°
0.4’

N72°
0.2’

N72°

E14°8 ’                                                                   E14°43.6’ E14°45’

HMMV

100m

Fig. 3. Coring sites for high-pressure culture experiments at siboglinoid tubeworm sites of
the Håkon Mosby mud volcano (HMMV) occupied by R/V Polarstern and ROV Quest
Marum Bremen in 2009. Microbathymetric map is based on remotely operated vehicle
(ROV)-based echosounding in 2003 (IFREMER). Full image of colors represents water
depths between 1249 and 1289 m.
3 L, the aquarium was filled with 1 L sediment and approx. 2 L of the
site's bottom water.

2.3. Experimental setup

After resurfacing the aquaria were immediately transferred into a
cold lab, running at a site-alike temperature of 0 °C. Chains of valves
were fixed to each high-pressure aquarium's ball valves (Fig. 3). Hereby
one chain of valves controlled the seawater outflow, the other chain
accomplished the seawater inflow into the aquaria by isocratic and iso-
baric high-pressure pumps. Each aquarium was connected to its own
seawater cycle with a total volume of 25 L split over 4 gas-proof glass
bottles (Schott bottles with Bola-connections). Every day 2–4 L of this
volume was replenished.

We ran our experiments during the remaining expedition with
bottom water collected at the HMMV from a CTD cast. Thereafter, in
thehome laboratoryweusedNorth Seawater adjusted to the respective
core site salinity (34.9‰) by addition of Hobby Marine sea salt for the
subsequent replenishing of parts of the experimental seawater cycle.
Hereby, filtering over a 2 μm mesh ensured the removal of potential
North Sea foraminiferal propagules (Alve and Goldstein, 2003;
Goldstein and Alve, 2014). The experimental seawater was tagged
with 0.01 g/L Calcein (Bernhard et al., 2004). This method allows
distinguishing experimentally precipitated shell material by fluo-
rescence microscopy (excitation wavelength 470 nm) from non-
fluorescent pre-experimentally precipitated shells or shell parts (e.g.
Dissard et al., 2009, 2010). Since the basic work of Bernhard et al.
(2004) labeling foraminifers in Calcein has become a common tool to
differentiate between pre-experimental shell material and the shell
parts that were secreted during the experiments. Because most experi-
ments are carried out on isolated foraminiferal specimens, they are usu-
ally incubated in Calcein prior to the experiments. During the
experiment no Calcein is added and experimentally precipitated shell
material is non-fluorescent. Since we have cultured whole sediment
cores with many empty tests we ran our experiments for the entire du-
rationwith Calcein-taggedwater (see also Bernhard et al., 2004; Dissard
et al., 2010).

Two experiments were conducted. High-pressure aquaria 1 and 2
were connected to a circuit enriched in 13C-methane (Campro Scientific,
Methane-13C gas, minimum 99 at.% 13C). Otherwise, by using standard
N90% 12C-methane with an isotopic composition that approximates
the HMMV fieldmethane values (Damm and Budéus, 2003), the carbon
isotopic composition of an experimental offspring would have been
close to natural values, which might have been misinterpreted as a
pure reflection of nutrition on 12C-enriched organic detritus by the for-
aminifers (Hill et al., 2004; Mackensen et al., 2006). For high-pressure
aquarium 3, HMMV-conditions were simulated by an addition of 12C-
methane (Campro Scientific, Methane-12C gas, minimum 99.95 at.%
12C). Hereby, an experimental setup was designed to emulate sibogli-
noid tubeworm-sites mean bottom water methane concentrations of
0 to 129 μmol/L (de Beer et al., 2006; Sauter et al., 2006) and minimum
oxygen concentrations of N100 μmol/L to assure a high survival proba-
bility for C. wuellerstorfi. To achieve such methane concentrations we
circulated an adjustable proportion of the aquarium's outflow via peri-
staltic pumps over a gas-enrichment bottle. In this 5 L bottle a 2 Lmeth-
ane atmosphere, replenished twice per week, topped the seawater
(Fig. 2c). The inflowing seawater, via a fixed air stone, passed the atmo-
sphere as small drops adsorbing methane. Through variable flow rates
of the respective peristaltic pumps seawater from the aeration and
gas-enrichment bottles were mixed to meet the mean marginal
HMMV methane and oxygen concentrations (Fig. 2c). With aid of a
high-pressure piston pump this marginal HMMV-alike water of the
mixing or inflow bottle was then pumped with 7 mL/min through the
aquaria. At this exchange rate the pressure inside the high-pressure
aquaria remained stable, whereas, despite pulsation dampeners and re-
striction valves the pressure seemed to vary at higher pumping speeds.



able 1
igh-pressure aquaria 1 & 2: variations in bottom water oxygen (extract from daily measurements), and methane concentrations and δ13CDIC values. Variability of duplicate oxygen
easurements was b1 μmol/L.

Date O2(μmol/L) CH4(μmol/L) CH4 Std.Dev. δ13C DIC δ13C Std.Dev.

7/23/2009 297.12 1.09 0.04
7/24/2009 298.50
7/25/2009 298.32
7/26/2009 299.58
7/27/2009 300.12 36.79 1.18
7/28/2009 300.12
7/29/2009 300.15
7/30/2009 300.16
7/31/2009 300.29
8/1/2009 300.35
8/2/2009 309.15 88.71 3.78 3.24 1.12
8/3/2009 308.96
8/4/2009 312.22
8/5/2009 318.12
8/6/2009 318.14 86.68 3.21
8/7/2009 318.56
8/8/2009 319.01
8/9/2009 321.23 80.92 3.45
8/10/2009 322.45
8/11/2009 325.61
8/12/2009 329.68
8/13/2009 328.76 74.17 3.52 352.81 9.89
8/14/2009 316.89
8/15/2009 297.76 58.35 2.80 1167.71 195.55
8/16/2009 296.54
8/17/2009 298.36
8/18/2009 299.13
8/19/2009 303.51 56.13 2.84
8/20/2009 299.88
8/21/2009 254.44
8/22/2009 214.06 54.70 1.90
8/23/2009 234.65
8/24/2009 239.99
8/25/2009 246.01 51.91 2.56
8/26/2009 265.88
8/27/2009 271.57 50.06 2.49
8/28/2009 272.83
8/29/2009 268.54
8/30/2009 270.32
8/31/2009 270.15 65.43 2.39
9/1/2009 269.99
9/2/2009 268.56
9/3/2009 268.56
9/4/2009 267.41 73.69 3.77
9/5/2009 268.99
9/6/2009 268.98
9/7/2009 268.45
9/8/2009 268.37 81.89 3.87
9/9/2009 265.44
9/10/2009 261.98 88.75 4.26
9/11/2009 268.94
9/12/2009 271.57 95.40 4.74 1449.10 2.19
9/13/2009 272.34
9/14/2009 270.64
9/15/2009 269.99
9/16/2009 267.69 100.67 4.78
9/17/2009 259.98
9/18/2009 258.64
9/19/2009 258.34
9/20/2009 257.89 98.65 3.98
21/09/09 257.64
22/09/09 257.34
23/09/09 256.83
24/09/09 256.63 100.23 5.02
25/09/09 255.83
26/09/09 255.23
27/09/09 254.89
28/09/09 253.67 89.13 4.89
29/09/09 253.23
30/09/09 250.83
01/10/09 248.74
02/10/09 247.93
03/10/09 246.53 102.12 5.69
04/10/09 246.00
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Table 1 (continued)

Date O2(μmol/L) CH4(μmol/L) CH4 Std.Dev. δ13C DIC δ13C Std.Dev.

05/10/09 244.23
06/10/09 243.98
07/10/09 243.19 99.58 3.99
08/10/09 240.37
09/10/09 239.29
10/10/09 238.98
11/10/09 235.11 96.34 3.76
12/10/09 233.67
13/10/09 231.24
14/10/09 230.21
15/10/09 228.89 94.34 4.67
18/10/09 224.66
19/10/09 218.67
20/10/09 217.53
21/10/09 214.06 102.75 4.98 1055.39 3.78
22/10/09 201.01
25/10/09 198.65
26/10/09 185.86
27/10/09 175.72 105.77 5.26
28/10/09 179.99
29/10/09 182.11 86.26 4.27
30/10/09 195.67
31/10/09 198.73
01/11/09 199.21
02/11/09 205.24
03/11/09 210.86 71.48 3.48 1333.84 43.79
04/11/09 245.32
05/11/09 261.98 73.63 3.56
08/11/09 258.91
09/11/09 243.22
10/11/09 220.45 83.78 4.01
11/11/09 200.11
12/11/09 194.89 105.97 4.77
13/11/09 193.21
14/11/09 198.72
15/11/09 203.49
16/11/09 234.21
17/11/09 255.59 111.09 5.60
18/11/09 228.71
19/11/09 201.28 108.53 5.20 1346.89 97.45
20/11/09 204.88
21/11/09 210.58
22/11/09 230.87
23/11/09 256.71
24/11/09 271.57 97.62 4.75
25/11/09 268.93
26/11/09 255.59 89.69 4.44
27/11/09 249.71
28/11/09 246.59
29/11/09 232.23
30/11/09 226.71
01/12/09 220.45 72.00 3.23 1415.80 317.80
02/12/09 219.21
03/12/09 217.25 56.64 2.81
06/12/09 219.63
07/12/09 220.55
08/12/09 223.64 72.98 2.83
09/12/09 221.83
10/12/09 220.45 88.86 2.83 1651.50 2.15
13/12/09 234.64
14/12/09 234.53
15/12/09 230.12
16/12/09 226.77

Mean 253.44 Mean 80.84 Mean 3.73 Mean 1086.25 Mean 74.86
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During the experimentwe kept the high-pressure aquaria environment
at a ‘site-alike’ pressure of 125–130 bar, constant temperatures (0 °C),
constant pH (7.9), and within a certain tolerance, stable oxygen
(N100–500 μmol/L) and methane (at the beginning 0, then 40–
150 μmol/L) “bottomwater” concentrations (de Beer et al., 2006). How-
ever, no foodwas added.With no visual control of the amount of poten-
tially ingested algae, there would have been the risk of decaying algae
accumulation on top of the sediments, creating a strong δ13C gradient
from the liberation of δ13C-depleted CO2 (Mackensen et al., 1993; Sen
Gupta, 1999; Jorissen and Wittling, 1999).

Oxygen concentrations were measured daily, pH once per week.
Water samples for subsequent methane measurements were taken
twice, for δ13C analyses on DIC once perweek (Tables 1, 2; Fig. 4). Here-
by, water sampling for geochemical measurements were conducted
directly from the aquarium's outflow. DIC samples were poisoned
with mercury chloride (0.006 mL mercury chloride solution (3.6 g



Table 2
High-pressure aquarium 3: variations in bottom water oxygen (extract from daily measurements), and methane concentrations and δ13CDIC values. Variability of duplicate oxygen
measurements was b1 μmol/L.

Date O2(μmol/L) CH4(μmol/L) CH4 Std.Dev. δ13C DIC δ13C Std.Dev.

7/23/2009 325.88 0.00
7/24/2009 327.90
7/25/2009 330.21
7/26/2009 339.20
7/27/2009 346.80 15.62 0.89
7/28/2009 359.90
7/29/2009 367.50
7/30/2009 365.30
7/31/2009 372.43
8/1/2009 378.65
8/2/2009 380.19 23.43 1.17 −0.38 0
8/3/2009 381.36
8/4/2009 372.25
8/5/2009 375.38
8/6/2009 373.48 45.67 1.53
8/7/2009 369.85
8/8/2009 370.54
8/9/2009 369.71 59.82 2.32
8/10/2009 365.42
8/11/2009 368.17
8/12/2009 365.13
8/13/2009 364.22 53.50 2.68 −0.46 0.04
8/14/2009 356.71
8/15/2009 335.46 69.65 3.48
8/16/2009 338.71
8/17/2009 339.84
8/18/2009 336.63
8/19/2009 335.46 95.40 4.67 −0.78 0.04
8/20/2009 340.82
8/21/2009 358.72
8/22/2009 361.02 101.70 5.09 −1.20 0.03
8/23/2009 362.83
8/24/2009 365.43
8/25/2009 367.41 66.65 3.33
8/26/2009 354.23
8/27/2009 338.66 59.25 2.96
8/28/2009 341.23
8/29/2009 342.68
8/30/2009 346.53
8/31/2009 343.21 85.93 3.12
9/1/2009 342.87
9/2/2009 341.70
9/3/2009 344.51
9/4/2009 344.53 79.13 2.89
9/5/2009 344.54
9/6/2009 345.08
9/7/2009 345.05
9/8/2009 345.05 98.34 4.92 −1.19 0.02
9/9/2009 332.18
9/10/2009 322.68 103.87 5.19
9/11/2009 316.72
9/12/2009 313.10 84.87 4.24
9/13/2009 318.21
9/14/2009 321.49
9/15/2009 319.86
9/16/2009 318.53 101.34 3.52
9/17/2009 318.03
9/18/2009 317.40
9/19/2009 317.00
9/20/2009 315.80 101.32 4.98
21/09/09 313.65
22/09/09 311.91
23/09/09 311.63
24/09/09 311.43 98.64 3.82 −1.22 0.03
25/09/09 308.63
26/09/09 308.42
27/09/09 306.97
28/09/09 304.84 100.56 5.01
29/09/09 303.29
30/09/09 300.83
01/10/09 297.84
02/10/09 293.42
03/10/09 290.65 96.72 3.46
04/10/09 287.69
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Table 2 (continued)

Date O2(μmol/L) CH4(μmol/L) CH4 Std.Dev. δ13C DIC δ13C Std.Dev.

05/10/09 285.94
06/10/09 284.35
07/10/09 309.90 95.87 4.05
08/10/09 319.49
09/10/09 320.21
10/10/09 317.64
11/10/09 313.10 87.86 4.36
12/10/09 338.66
13/10/09 345.05
14/10/09 332.27
15/10/09 329.07 63.27 3.27
18/10/09 322.68
19/10/09 309.90
20/10/09 293.93
21/10/09 313.10 46.00 2.30
22/10/09 293.93
25/10/09 293.93
26/10/09 252.40
27/10/09 277.96 56.25 2.81 −1.25
28/10/09 268.37
29/10/09 284.35 56.00 2.80
30/10/09 284.68
31/10/09 285.75
01/11/09 287.54
02/11/09 271.57
03/11/09 293.93 53.55 2.68
04/11/09 261.98
05/11/09 258.79 98.85 4.94 −1.61
08/11/09 297.12
09/11/09 259.43
10/11/09 236.42 147.50 3.93
11/11/09 217.25
12/11/09 261.98 148.90 6.45
13/11/09 259.71
14/11/09 253.82
15/11/09 246.01
16/11/09 253.35
17/11/09 239.62 100.90 5.05 −1.39
18/11/09 233.23
19/11/09 236.42 105.35 5.27 −1.57
20/11/09 243.83
21/11/09 250.78
22/11/09 255.59
23/11/09 268.37
24/11/09 242.81 74.75 3.74 −1.99
25/11/09 290.73
26/11/09 276.63 80.75 4.00
27/11/09 282.45
28/11/09 265.78
29/11/09 252.40
30/11/09 277.96
01/12/09 281.15 116.85 4.84 −2.24
02/12/09 287.54
03/12/09 249.20 123.50 5.38
06/12/09 226.84
07/12/09 246.01
08/12/09 268.37 84.80 4.24
09/12/09 233.23
10/12/09 233.23 32.80 1.64 −1.99
13/12/09 239.62
14/12/09 210.86
15/12/09 271.57
16/12/09 271.57

Mean 309.06 Mean 79.88 Mean 3.71 Mean −1.33 Mean 0.03
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mercury chloride in 100mL purifiedwater) per 9994mLwater sample)
and stored in waxed 10 mL-borosilicate vials until measurement. Prior
to measurements samples were sterile-filtered (0.2 μm) to eliminate
bacteria and particulate organic matter. DIC was extracted from sea-
water with phosphoric acid in an automatic preparation line (Finnegan
Gasbench I), coupled online with a Finnigan MAT 252 mass spectrome-
ter to determine its 13C/12C ratio (Mackensen, 2013). All samples were
run at least twice. For methane measurements water samples were
1:10 diluted with demineralized water, and topped with 2 mL Argon
space for 12 h. Thereafter, methane concentrations from the head
space were measured with a gas chromatograph (GC) (Chrompack,
9003) with flame ionization detector (FID). The standard error of dupli-
cate measurements including both gas extraction and GC analysis was
~5%.

After 5 months we stopped the experiments, opened the high-
pressure aquaria lids and pushed a circular steel sheet inside the
pushcore tube to prevent a sediment loss through the drills in the
upper pushcore tube during sampling. We fixed the pushcore head on



Fig. 4.Monitored concentrations of oxygen, methane and carbon isotopic composition of
DIC in a) aquaria 1 and 2 (12C-enrichedmethane added), and b) aquarium3 (13C-enriched
methane added). Orange and black lines represent 3-pt running averages, and the blue
line a smoothed spline through data.
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the pushcore tube, and unscrewed the pushcore-tube catcher. This en-
abled the transfer of the pushcore–pushcore tube catcher unit onto a
sediment ejector. The sediment was ejected, sliced in 1 cm thick slices
and immediately wet-sieved with tap water using a 63 μm mesh. The
residuewas oven-dried at 50 °C. From the dried residue all benthic fora-
minifera from a minimum sample split of 1/8 equivalent to 10 cm2 sur-
face area × 1 cm sediment depth were selected and analyzed under an
Axiovert 200 microscope (Table 3). Using an excitation wavelength of
470 nm experimentally precipitated specimen could be distinguished
by their bright yellow-green color (emission wavelength 490 nm)
from older non-fluorescent shells (Fig. 5). For stable isotope analyses
specimens were selected not only from the split but the total residue.

2.4. Analytical methods

Foraminiferal stable isotope analyses were carried out on pristine
fully Calcein-labeled thus fully fluorescent specimens. We have ana-
lyzed each shell carefully in fluorescent transmission light. Only when
these analyses ensured that a specimen's septa and walls were exclu-
sively built of layered fluorescent calcite, the walls were pristine and
the pores perfect circles, this specimen was regarded as belonging to
the experimental offspring (see Fig. 5 and Suppl. Plate). High-
magnification analyses under fluorescent transmission light ensured
that we didn't overlook a potential overgrowth by authigenic carbon-
ates or corrosion. We didn't routinely verify the potential fluorescence
of corroded specimens that were obviously already dead before the ex-
periments started. However, when cross-checked for potential fluores-
cence we noticed that sometimes dull-looking as well as heavily
corroded tests show a bright surface fluorescence under the fluores-
cence microscope (supplementary Plate 1). Apparently, Calcein pene-
trated to a certain depth into heavily corroded test parts. Yet, in
contrast to our experimental offspring Calcein did not label the
precipitated calcite crystallites but an amorphous-looking calcite mass
on the corroded tests surface. The bright fluorescent layered chamber
walls of Calcein-labeled precipitated shell material are lacking (Fig. 5).

According to the standard pretreatment of carbonate samples in iso-
tope laboratories, tests were only ultrasonically cleaned if contamina-
tions from sediments were visible under the microscope. This method
was chosen despite the fact that the carbon isotopic composition of or-
ganic linings in foraminiferal shells is isotopically lighter than the calcite
(e.g., Ravelo and Hillaire-Marcel, 2007) due tometabolic (respired) CO2

bound in the organic linings (Ní Fhlaithearta et al., 2013.). However,
experiments on different cleaning techniques of planktonic forami-
nifera prior to stable isotope analyses have shown that the difference
between uncleaned samples and oxidized (organics removed) samples
is statistically not significant (Löwemark et al., 2005). These authors
even recommended analyzing untreated samples in order to prevent
the loss of carbonate material from the later chambers that are thinner
and thus preferentially removed during the oxidation step while the
initial chambers from a different ontogenetic stage are preserved. Fur-
thermore, one intension of this study was to support and elucidate the
findings of Mackensen et al. (2006) on Rose Bengal stained foraminifers
of the HMMV. Therefore, tests were treated in the same way and or-
ganics were not removed prior to isotope analyses.

The carbon stable isotopic composition of benthic foraminiferal tests
was determined with a Finnigan MAT 251 isotope ratio gas mass spec-
trometer directly coupled to an automated carbonate preparation de-
vice (Kiel II) and calibrated via NIST 19 international standard to the
Vienna Pee Dee Belemnite (VPDB) scale. Depending on the specimen
size and shell thickness, we used pristine fully fluorescent specimens
of C. wuellerstorfi (n = 3–5), Lobatula lobatula (n = 3–5), Cassidulina
neoteretis (n = 25), Epistominella exigua (n = 25), Pullenia bulloides
(n = 25), Melonis zaandami (n = 25), and Cassidulina reniforme (n =
40) for analyses. Due to static charging of their very thin shells, we
lost most Bolivina pseudopunctata specimen from the gas mass spec-
trometer carousels hampering isotopic measurements on this at
the HMMV abundant taxon. The precision of the measurements at
1σ based on replicate analyses of an internal laboratory standard
(Solnhofen limestone) over a 1-year period was better than ±0.08
and ±0.06% for oxygen and carbon isotopes, respectively.

3. Results and discussion

3.1. High-pressure culturing of deep-sea foraminifera

After opening the aquaria we first noticed that mobile macrofauna,
sea spiders and gastropodswere still crawling on the sediment surfaces.
When we analyzed the dried and sieved sediments we found that most
rotaliid and lageniid species that according to previous Rose Bengal
analyses were found living at this site (Rose Bengal analyses of
Wollenburg and Mackensen, 2009), did reproduce during the duration
of experiment (Table 3; Fig. 5). However, due since Calcein labeling
just works for calcareous not agglutinated taxa and Calcein penetration
can hardly been differentiated from precipitation in miliolids we could
not verify a potential reproduction ofmiliolids and agglutinated species.
The fully fluorescent offspring of rotaliid and lageniid species was 110,
102, and 128 specimens in one eight split of the total surface centimeter
(78 cm2 × 1 cm depth) in high-pressure aquaria 1, 2 and 3, respectively
(Table 3). Since the number of fully fluorescent calcareous tests approx-
imates the number of Rose Bengal stained specimens in previous field
studies from that area (Wollenburg and Mackensen, 2010a,b), we de-
duce that Calcein neither affected the survival nor the reproduction of
foraminifers in our cultures. Furthermore, despite the exposure to ele-
vated “bottom water” methane concentrations and the cessation of
phytodetritus rain specimen(s) of all abundant benthic rotaliid and
lageniid species stayed alive and reproduced. As at the previously stud-
ied site PS66-02, the rotaliid foraminiferal fauna is strongly dominated
by B. pseudopunctata, a species that already in the HMMV field study



Table 3
Absolute abundance of fully fluorescent experimental offspring per 10 cm2, and number of fully fluorescent specimens selected for isotope measurements in high-pressure aquaria 1–3,
and absolute number of Rose Bengal stained foraminifers per 10 cm2 at site PS66-02 (Wollenburg and Mackensen, 2009) close to the ROV push-coring site. X denotes b1 specimen in
Wollenburg and Mackensen (2009).

Species High-pressure High-pressure High-pressure aquarium 3

No. spec.
10 cm2

No. spec. selected for
isotope measurement

No. spec.
10 cm2

No. spec. selected for
isotope measurement

No. spec.
10 cm2

No. spec. selected for
isotope measurement

PS66-02 no. spec. 10 cm2

(Wollenburg and Mackensen, 2009)

Astrononion gallowayi – – 1 – – – –

Bolivina pseudopunctata 83 328 57 456 80 559 164
Cassidulinoides bradyi – – 4 – – – 4
Cassidulina reniforme 6 51 4 32 15 127 15
Cassidulina teretis 4 31 4 35 23 91 6
Ceratobulimina arctica 2 – 1 – 2 – X
Cibicides wuellerstorfi 2 16 3 22 2 16 1
Epistominella arctica 2 – – – – – –

Epistominella exigua 2 13 2 18 – – –

Epistominella pusilla – – 1 – – – –

Fursenkoina fusiformis 3 – – – 1 – –

Guttulina glacialis – – – – 1 – –

Ioanella tumidula – – 1 – – – –

Islandiella helenae – – 1 – – – –

Islandiella norcrossi – – 1 – – – –

Lobatula lobatula 2 15 2 16 1 2 –

Marginulina glabra – – – – 1 – –

Melonis zaandamae 1 12 1 17 – 0 –

Oridorsalis tener 2 6 1 3 1 2 –

Patellina corrugata – – 2 – – – X
Pullenia bulloides – – 3 26 – – X
Pullenia osloensis – – 2 – – – X
Pullenia quinqueloba – – 1 – – – –

Robertinoides charlottensis – – 1 – – – X
Robertinoides pumillum – – 1 – – – –

Rosalina vilardeboana – – 1 – – – –

Seabrokia earlandi 1 – 1 – 1 – 1
Scutuloris tegminis – – 1 – – – –

Spirillina vivipara – – 1 – – – X
Stainforthia spp. – – 1 – – – –

Stetsonia horvathi – – 1 – – – –

Unilocular spp. – – 1 – – – X
Valvulineria arctica – – 1 – – – X
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was identified as a local methane seepage indicator species with dwin-
dling abundances in theHMMVnon-seepage oligotrophic surroundings
(Soltwedel et al., 2005;Wollenburg andMackensen, 2009). Since bacte-
ria and archaea are the only carbon source that is much denser at the
HMMV than in its' surroundings it has been suggested that
B. pseudopunctata feeds on them rather than on phytodetritus. Such a
diet may also explain why this species dominates our experimental off-
spring in similar proportions as at the previously studied seep site. Over
the experimental running time the experimentally used methane source
becameprogressively evident in the δ13CDIC signal. Thus, the bacterial and
archaean density in thewater column probably not decreased, but rather
increased over the 5months experimental running time. However, since
B. pseudopunctata is an infaunal species, it should feed on carbon sources
in the sediment. The cores we collected should already have had a high
microbial density prior the experiments. If, after being cut off from
HMMV's methane seepage from depths, the S. contortum specimens
with their methane seep-dependant endosymbiontic bacteria died
during the experiment, this likewise should have increased rather
than decreased the bacterial density within the sediment. It is not sur-
prising that the density of all other taxa decreased compared to
B. pseudopunctata since all these species are presumed to be directly or
indirectly (via bacteria-that-diet-on-phytodetritus) linked to an algae
flux to the sea floor, which that was not provided during the experiment
(Lutze and Thiel, 1989; Linke and Lutze, 1993; Gooday and Lambshead,
1989; Wollenburg andMackensen, 1998). The fact that these taxa none-
theless reproduced in our aquaria was a pleasant surprise and may indi-
cate that these taxa nourished either on phytodetritus that accumulated
before coring or that they facultatively also digest bacteria or archaea
(Hill et al., 2004; Mackensen et al., 2006).
Besides the time-consuming effort to isolate the experimental
offspring, culture experiments on bulk sediments have been criticized
because different sediment cores harbor multiple, varying and in parts
unknown interacting environmental parameters (Hintz et al., 2004,
2006). However, it was alsomentioned that at least for the reproduction
of certain species culturing in original sediments is crucial (Hintz et al.,
2004). For instance, none of the dominant species at the HMMV has
ever been successfully cultured on artificial sediments. Furthermore,
we deliberately ran experiments with sediment cores to verify the ap-
plicability of paleoenvironmental proxies in certain oceanic areas.
Focus of this study was a verification of findings of field studies at the
HMMV (Mackensen et al., 2006; Wollenburg and Mackensen, 2009).

The culturing technique described here allows foraminiferal cul-
turing at ambient deep-sea environmental conditions for the first
time. A high-pressure approach is important for the following rea-
sons: (1) High-pressure culturing has allowed the first reproduction
and shell growth of the barophilic C. wuellerstorfi. Proxies related to
the shell composition of this species are the most valuable tools for
reconstructions of past ocean deep-water circulation; (2) the solu-
bility of gases in seawater is dependent on pressure. Thus, culture
studies on the influence of CO2 or methane on the geochemistry, iso-
topic composition or simple survival of calcareous deep-sea foramin-
ifers (Bernhard et al., 2009) require the systems to run at equivalent
pressure. (3) In oligotrophic deep-sea areas of e.g. the Arctic Ocean
or North Atlantic or at sites with extremely high bacterial standing
stocks, foraminifers may feed on bacteria (Gooday and Turley,
1990; Kröncke et al., 2000; Hill et al., 2004; Mackensen et al.,
2006). Because many deep-sea bacteria are barophilic (Yayanos,
1986), culturing benthic foraminifera at atmospheric pressure may
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Fig. 5. Fluorescent experimental offspring of HMMV experiments 2007/2009. All photos were taken with an Axiovert microscope and connected Zeiss camera. A) A sample of pristine
calcareous foraminifera from high-pressure aquarium 1 in 2009, viewed under normal light. B) Same sample viewed at 470 nm excitation and 490 nm emission. The image shows two
bright fluorescent specimens of Cassidulina teretis amongmany non-fluorescent tests. C) Fully fluorescent juvenile Cibicides wuellerstorfi. D) Fully fluorescent adult Cibicides wuellerstorfi.
E) FullyfluorescentMelonis zaandami. F) FullyfluorescentCassidulina teretis. G) Fully fluorescentCassidulina reniforme. H) Fullyfluorescent Epistominella exigua. I) Fully fluorescent Pullenia
bulloides. J) Fully fluorescent Stainforthia loeblichi. K) Fully fluorescent Bolivina pseudopunctata. L) Fully fluorescent Bulimina aculeata. M) Fully fluorescent Trifarina angulosa. N) Fully
fluorescent Seabrookia earlandi. O) FullyfluorescentBuccella tenerrima. G) Fullyfluorescent Lagena stelligera. Note that the intensity offluorescence varieswith shell thickness. Thin-shelled
rotaliids like E. exigua show the maximum fluorescence in the older shell parts with increased shell-thickness. Furthermore, light intensity increases exponentially with respect to
magnification, thus, brightness of fluorescence decreases when photos are taken at low magnification (e.g. D and L).
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provide themwith a likely different bacterial nutrition. (4) Cytoplas-
mic processes like the functioning of vacuoles and membranes differ
at different pressures (Michiels et al., 2008). Thus, even if
experimental results from deep-sea foraminifera cultured under at-
mospheric pressure are promising, there is a great chance that at a
site-alike pressure, the cultured foraminifera would have behaved
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differently or precipitated their shell with different geochemical or
isotopic ratios.

3.2. Influence of methane on δ13CDIC and δ13Ctest

With our experimental setup we were able to increase the “bottom
water”methane concentrations from approx. zero3 in the original com-
bined CTD cast (23 L) plus core site (2 L) volume, tomaximum~150 or a
mean of ~80 μmol/L (Tables 1–2, Fig. 4).

By sterile-filtering of the “bottomwater” bacteria and other particu-
late organic remainswere removed. Carbon isotope analyses carried out
on these sterile-filtered “bottom water” samples from our experiments
showed a progressive in- and decrease in δ13CDIC. Under the influence of
almost pure 13C-methane, “bottom water” samples from the aquaria 1
and 2 experiments showed a rapid increase in δ13CDIC over the initial
three weeks of the experiment. After three weeks δ13CDIC remained at
values that were constantly larger than 1000‰ (1055 to 1651‰, mean
1086‰) (Table 1; Fig. 4a). Within four weeks “bottom water” samples
from aquarium 3, under the influence of 12C-methane, dropped to a
δ13CDIC value of −1.2‰. The δ13CDIC values remained around that
value for approx. 2 1/2 months, then a final phase of decreasing
δ13CDIC lead to minimum values of −2 to −2.2‰ at the end of the ex-
periment (Table 2; Fig. 4b). Since methane can only be converted to
DIC by methanotrophs we can infer from these results that
methanotrophic bacteria stayed alive in our systems and converted
the methane to DIC with high and low δ13CDIC values for the 13C- and
12C-experiment, respectively.

The revealed extremely high δ13CDIC values of our sterile-filtered and
thus bacteria-free water samples from aquaria 1 and 2 were a pleasant
surprise. However, our routinely used mass spectrometers use VPDB
(for “Vienna PDB”) as a standard that is calibrated to the original but
yet exhausted Belemnitella americana standard (PDB). This cretaceous
belemnite had an anomalously high 13C:12C ratio of 0.0112372, and
was established as δ13C value of zero. The use of this standard gives
most natural material a negative δ13C. However, more problematic
than other factors is the mathematics behind the established carbon-
13 work. The delta notation δ13C is an isotopic signature, a measure of
the ratio of stable isotopes 13C: 12C, reported in parts per thousand
(per mil, ‰), δ13Csample = ((13Csample / 12Csample) / (13C PDB / 12C
PDB) − 1) × 1000. Therefore, the mean δ13CDIC value of 1086 in the 13C
methane experiment equals a contribution of 2% 13C to the total 12 &
13C DIC carbon pool during the experiment. This means that in the 13C
methane experimentswith 99% 13C in themethane source, themethane
source contributed presumably with up to 3% to the total DIC signal
(Fig. 4).

We had transferred up to 300 specimen of B. pseudopunctata in sin-
gle vials from the mass spectrometer. However, due to the species ex-
tremely thin and light weighted shell we lost most specimens during
the preparation and/or measurement. The low carbonate level led to
unreliable low intensities, thus values are not shown in thismanuscript.
The measured δ13Ctest values of the experimental offspring reflect the
used methane source (Table 4, Fig. 6). For the 13C methane experiment
the interspecies and species-specific δ13Ctest values are very variable.
The δ13Ctest values of deep infaunal living foraminifers (P. bulloides
δ13Ctest = 14.99‰ andM. zaandami δ13Ctest = 15.51‰) and shallow in-
faunal C. neoteretis (δ13Ctest = 2.38‰) were lower than the δ13Ctest

values of epizoic or epifaunal foraminifers (C. wuellerstorfi mean
δ13Ctest = 59.24‰, L. lobatula mean δ13Ctest = 30.23‰, E. exigua
δ13Ctest = 23.18‰) and shallow infaunal C. reniforme mean δ13Ctest =
401.17‰. M. zaandami and P. bulloides are seldom found at HMMV
sites (Wollenburg and Mackensen, 2010a,b) and could also not be re-
vealed in sediments of high-pressure aquarium 3. Carbon isotope
3 Zero methane concentrations in bottom waters at siboglinoid tubeworm sites are a
common phenomenon at the HMMV and result from a rapid dilution of methane in bot-
tom water flow above the HMMV (Damm and Budéus, 2003; Sauter et al., 2006).
analyses on fully fluorescent specimens from aquarium 3 revealed
mean δ13Ctest values of −1.44‰ for C. wuellerstorfi, −1.85‰ for
C. reniforme, and−2.24‰ for C. neoteretis. Hereby, themean carbon iso-
tope values of these species approximate valuesmeasured on Rose Ben-
gal stained specimen from the coring site (Mackensen et al., 2006;
Fig. 6).

Although the external calibration of artificially high 13C concentra-
tions against the low 13C standard may have led to inaccurate isotope
ratio values in the 13C methane experiment, carbon isotope analyses
on water samples collected during the experiments showed that the
methane source was partly converted to CO2 and contributed to a re-
spective DIC signal and that at least part of this signal is reflected in
the carbon isotope signature of the analyzed foraminiferal tests. The ob-
served high variability in δ13Ctest valuesmay be due to following reasons
(Fig. 6; Table 3): 1) High variability in foraminiferal proxies is also ob-
served when benthic foraminifera are cultured on artificial sediments
(Hintz et al., 2006; McCorkle et al., 2008; Dissard et al., 2010; Filipsson
et al., 2010) or as isolated specimens (Mewes et al., 2014). 2) Like for
the DIC measurements the measured δ13Ctest values of the 13C methane
experiment are far beyondnatural values andmay thus be afflictedwith
large errors. 3) The mathematical formula for the calculation of delta
notations is especially sensitive for artificially high 13C values. However,
despite the uncertainties regarding the precision of analyzed δ13C
values, the fact that the admixture of 13C-methane in “bottom water”
led to significantly enriched δ13C of both the DIC and calcite tests is an
undoubted proof that the carbon isotopic composition of benthic seep
foraminiferal shells is affected by methane seepage. At the beginning
of the experiments the retrieved sediments should have hosted the
same δ13C-depleted bacterial standing stock and sedimentary organic
matter inventory as the control experiment of aquarium 3 and the sed-
iments we retrieved from the area during various previous expeditions
(Mackensen et al., 2006). Solely the addition ofmethanewith a different
isotopic composition altered the stable carbon isotope ratios of epifau-
nal foraminiferal calcite in these cores to 13C-enriched values.

The conversion ofmethane toDIC bymethanotrophswas slow at the
beginning of the experiments, and experimental mean DIC values were
only reached within 3–4 weeks after the start of the experiments
(Fig. 4a). After this initial phase the measured δ13CDIC in aquaria 1 and
2 stayed at δ13CDIC N1000‰, those of aquarium 3 δ13CDIC b −1.2. Since
the water was continuously changed it is quite unlikely that δ13CDIC

values of the experimental “bottom water” between the days at which
samples were collected were much lower or higher.

Measurements from aquaria 1 and 2 showed a significant discrepan-
cy between the relatively stable high δ13CDIC and much lower δ13Ctest
(Fig. 6a). This may be due to following potential reasons:

1) It could be possible that most specimens died very early in the
experiment when the δ13CDIC values were still low. However, sea
spiders and gastropods were still crawling on the sediment surface
in aquarium 2, being a biological proof that the “bottom water”
was constantly well oxygenated. In the present experiments, we
achieved our mean experimental methane concentration four days
after starting the experiments; meanwhile the δ13CDIC was still low
(3.24‰). Within the next eleven days, the δ13CDIC increased to
N352‰, thus increasing quite steeply at the beginning of the exper-
iment (Fig. 4a). Assuming an absolute match between δ13CDIC and
δ13Ctest, the reproduction and chamber formation of the majority of
analyzed individuals of C. wuellerstorfi should have happened during
the first week. Regarding the low chamber formation rate of deep-
sea foraminifers of 1–3 chambers per 5 month at low temperatures
of 4 °C (no observation at 1 °C), this is a relatively unrealistic as-
sumption (Filipsson et al., 2010).

2) The general offset between δ13CDIC and δ13Ctest in aquaria 1 and 2
may reflect a different sensitivity of the mass spectrometers
to artificially high δ13C values. Sensitivity studies are requested to
evaluate if and at which artificially high 13C concentrations these



Table 4
Carbon and oxygen isotope ratios recorded in calcareous foraminiferal tests of experimental offspring and their standard deviation.

a) Foraminiferal offspring from aquaria 1 & 2

C. wuellerstorfi L. lobatula C. reniforme

δ13C δ13C Std.Dev. δ18O δ18O Std.Dev. δ13C δ13C Std.Dev. δ18O δ18O Std.Dev. δ13C δ13C Std.Dev. δ18O δ18O Std.Dev.

28.95 0.16 3.72 0.17 61.10 0.01 3.58 0.03 235.66 0.01 4.10 0.06
220.51 0.02 3.62 0.02 15.04 0.01 3.81 0.06 566.67 0.13 4.10 0.02
27.82 0.01 3.75 0.03 28.54 0.02 3.46 0.06
23.39 0.01 3.80 0.01 20.93 0.01 3.64 0.02
54.96 0.03 3.64 0.08 26.69 0.01 3.72 0.03
30.16 0.01 3.72 0.04 29.05 0.02 3.59 0.08
95.93 0.01 3.53 0.03
27.93 0.21 3.64 0.40
23.53 0.01 3.68 0.03
Mean 59.24 Mean 0.05 Mean 3.77 Mean 0.09 Mean 30.23 Mean 0.01 Mean 3.68 Mean 0.05 Mean 401.17 Mean 0.07 Mean 4.10 Mean 0.04

P. bulloides E. exigua C. teretis

δ13C δ13C Std.Dev. δ18O δ18O Std.Dev. δ13C δ13C Std.Dev. δ18O δ18O Std.Dev. δ13C δ13C Std.Dev. δ18O δ18O Std.Dev.

14.99 0.01 4.45 0.02 23.18 0.02 3.68 0.02 2.38 0.00 4.30 0.02

M. zaandami

δ13C δ13C Std.Dev. δ18O δ18O Std.Dev.

15.51 0.01 3.96 0.01

b) Foraminiferal offspring from aquarium 3

C. wuellerstorfi C. reniforme C. teretis

δ13C δ13C Std.Dev. δ18O δ18O Std.Dev. δ13C δ13C Std.Dev. δ18O δ18O Std.Dev. δ13C δ13C Std.Dev. δ18O δ18O Std.Dev.

−1.90 0.01 3.87 0.02 −1.15 0.03 3.92 0.02 −2.73 0.01 4.35 0.02
−1.88 0.01 3.80 0.01 −1.93 0.02 4.02 0.03 −2.58 0.02 4.31 0.02
−1.66 0.02 3.76 0.03 −2.47 0.01 4.03 0.02 −2.73 0.01 4.37 0.04
−0.52 0.01 3.90 0.01
Mean −1.44 Mean 0.01 Mean 3.83 Mean 0.02 Mean −1.85 Mean 0.02 Mean 3.99 Mean 0.02 Mean –2.24 Mean 0.01 Mean 4.345 Mean 0.02
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spectrometersmaymeasure reliable and comparable isotope values,
in a potential repetition of experiments carried out in this study.

3) Although each δ13Ctest analysis represents an average of 4 to 30 spec-
imens, the variability in 13Ctest from aquaria 1 and 2 was extremely
high (Fig. 6a). It has been shown that differences in the δ13Ctest

values can be attributed to different size classes of the analyzed spec-
imens,with higher δ13Ctest and δ18Ctestmeasured in larger specimens
(Schmiedl et al., 2004; McCorkle et al., 2008; Schumacher et al.,
2010). In this study, most analyzed C. wuellerstorfi and L. lobatula
specimens were small adults (N125 to 200 μm); only two measure-
mentswere carried out on larger specimens. Therefore, it is impossi-
ble that the large variability in δ13Ctest from aquaria 1 and 2 offspring
are due to a growth effect (Schumacher et al., 2010), which is con-
firmed by the fact that it is just observed in the δ13C, and not in the
δ18O values.

4) Specimens of Amphistegina lessoniiwere shown to grow in the same
experimental set-up at very variable speeds (Mewes et al., 2014).
Therefore, the variable δ13Ctest values could be attributed to variable
growth rates, thereby reflecting variable DIC records of the early
versus the late culturing period.

5) Furthermore, and potentially the most likely cause, the methane
source contributed with only a maximum of 3% to the whole
δ13CDIC signal and its contribution may be significantly less at the
water sediment interface, on pebbles in depressions, or even in the
sediment. This assumption is supported by the observation that
the δ13Ctest values of infaunal species (P. bulloides, M. zaandami,
C. neoteretis) are, with exception of C. reniforme, lower than those
of epifaunal species (C. wuellerstorfi, L. lobatula, E. exigua) (Fig. 6a).
During the experiment 13C-methane was added to the “bottom
water” only whereas, no pore water was exchanged. Therefore,
from the lower δ13Ctest values of endobenthic foraminifers it can be
inferred that the 13C-enriched “bottomwater” penetrated only little
into the sediments.
6) We did not feed our faunas, and the cultured sediments contained
abundant pre-experimental δ13C-depleted organic matter. There-
fore, the observed strong variability in δ13Ctest values of epifaunal
species, similar to the discrepancy between DIC and shell measure-
ments, may indicate a contribution of metabolically derived CO2 to
test calcification through a variable consumption rate of sedimenta-
ry bacteria that feed on these organic remains or an incorporation of
the organic matter itself (Hill et al., 2004; Mackensen et al., 2006).
The smallest magnitude of influence of 13C-enriched “bottom
water” on δ13CDIC and infaunal species is reflected in the δ13Ctest of
C. neoteretis. Since it has been suggested that this shallow-infaunal
species feeds on bacteria (Gooday and Lambshead, 1989), we as-
sume that either the species' presumed diet on significantly 13C-
depleted bacteria outweighs the small “bottom water” DIC influ-
ence, or that they secreted their tests at a deeper sediment level
where the “bottom water” DIC influence was close to zero. The
apparent match between δ13Ctest of experimental offspring in ex-
periment 3 and in-situ measurements from Mackensen et al.
(2006) corroborates these assumptions (Fig. 6b). Although we
continuously changed the “bottom water” at the sediment sur-
face, decaying 12C-depleted sedimentary organic matter may
have affected δ13Ctest of epi- and infaunal foraminifera with in-
creasing intensity.

The results of this study corroborate all field studies while at meth-
ane seepage sites the δ13Ctest value of living foraminifers is usually not
in equilibrium with the pore or bottom water δ13CDIC (Torres et al.,
2003; Herguera et al., 2004; Hill et al, 2003, 2004; Rathburn et al.,
2003; Martin et al., 2004; Mackensen et al., 2006; Lobegeier and Sen
Gupta, 2008; Bernhard et al., 2010; Herguera et al., 2014). However,
the δ13C-experiment also shows that not only bottom and pore water
δ13CDIC but also the foraminiferal diet contributes to the δ13Ctest signal
(Hill et al., 2004; Mackensen et al., 2006). Yet, this study first of all



Fig. 6.Carbon isotopic composition of epibenthic and endobenthic foraminifera from a) aquaria 1 and 2 (12C-enrichedmethane added), and b) aquarium 3 (13C-enrichedmethane added).
Numbers in a) denote the mean δ13C to emphasize increased values in this experiment. The blueish shaded areas represent the range of δ13CDIC measured throughout the experiment.
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shows that at least at somemethane seepage sites benthic foraminifers
are able to grow and reproduce, incorporating this mixed isotope signa-
ture (compare Torres et al, 2003; Bernhard et al., 2010; Herguera et al.,
2014).

It has been shown that Calcein does not affect the uptake ofMg or Sr
(Dissard et al., 2009). In our experiments the experimentally used
methane sources are reflected in the carbon isotopic composition of
the fluorescent offspring. Moreover, for the standard 12C methane ex-
periment the δ13Ctest values of C. wuellerstorfi match those from the
field study by Mackensen et al. (2006). Therefore, we deduce that
Calcein had no significant influence on the carbon isotopic composition
of analyzed foraminiferal shells.

Corrosion of empty foraminiferal shells in the first centimeter of sur-
face sediments has already been described from HMMV sediments
(Wollenburg andMackensen, 2009). Even in our experimental offspring
we could detect fully fluorescent tests that showed dull, thus slightly
corroded test portions suggesting that these specimens did not live
until the end of the experiments. If we assume that this very initial car-
bonate corrosion did not cause a significant preferential removal of the
light isotope 12C (Skidmore et al., 2004; Schulz and Zabel, 2006), the
higher δ13Ctest recorded in these tests (Fig. 6b, measurements marked
by crosses) may reflect early thus less depleted experimental δ13CDIC

in the aquarium 3 experiment. The mean bottom water δ13CDIC over
the last four months in this aquarium is −1.6‰, with values progres-
sively decreasing towards the endof the experiments (Fig. 4b). Analyses
of pristine and fully fluorescent C. wuellerstorfi offspring are in accor-
dance with the mean δ13CDIC and decreasing δ13CDIC trend (Fig. 6b).
Adjusted by a vital effect of ~ −0.9‰ (calculated according to
Andrews and Dunhill, 2004; Mackensen et al., 2006), this also applies
to C. neoteretis. However, since measurements of C. neoteretis offspring
are in accordance with the in-situ reference site values of Mackensen
et al. (2006) and the species δ13C values from the 13 C methane exper-
imentwere also only slightly increased, the species δ13Cmaymainly re-
flect their nutrition on sedimentary bacteria.

3.3. Future perspectives

Our study was challenging in many ways. We have developed and
constantly improved a novel time-consuming deep-water culturing
technology. At the same time, we have simulated seepage conditions
not knowing whether the methanotrophs would stay alive, which
methane concentrations our foraminifers would tolerate, or how the
supply of pure 13C-methane would be reflected in “bottom water” DIC
when the sedimentswere loadedwith significantly 13C-depleted organ-
icmatter. Hence, the results of this study show that benthic foraminifera
can live at oxic sites of methane seepage and methane seepage can be
reflected in the carbon isotopic composition of species living under
such conditions. However, this is just the beginning of future multiple
experiments involving aquatic microbiota, “bottom water” and meth-
ane supply to get an idea of how much methane might be reflected in
δ13CDIC and δ13Ctest values. Additional experiments could then be run
on foraminiferal isolates, a culturing approach that themajority ofmod-
ern studies follow (e.g. Hintz et al., 2004, 2006; McCorkle et al., 2008;
Allison and Austin, 2008; Allison et al., 2010; Dissard et al., 2009,
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2010) and DIC-preconditioned water could be used to constrain the ex-
perimental results. However, compared to the cultivation of whole sed-
iments (Hemleben and Kitazato, 1995) only a small number of species
reproduces once detached from the sediments (e.g. Hintz et al., 2004,
2006; McCorkle et al., 2008). Thus, we might determine that it simply
needs a combination of various faunal, geochemical and physical influ-
ences to both stimulate reproduction in many foraminiferal taxa and
to generate reliable δ13CDIC and δ13Ctest values in a geological sense.

4. Summary

We have developed facilities and techniques that enable culturing
deep-water sediment samples and faunas at ambient conditions. They
enable reliable culture experiments on pressure-sensible parameters
like seawater-gas concentrations or the composition of the seawater
and sedimentary microbiota. After the experiments we found fully
Calcein fluorescent specimens of all foraminiferal species known to
live at the respective core sites in our cultured sediments. Particularly
important, it was possible for the first time to successfully culture
C. wuellerstorfi, the species whose test composition is the most com-
monly used as recorder of paleo-deep water conditions. In our ex-
periments we verified the influence of methane-induced changes in
δ13CDIC on δ13Cforaminiferal test of benthic deep-sea foraminifera from
hydrocarbon seeps. For that, we injected 13C-enriched methane to the
experimental “bottom water”. During the experiment methanotrophs
obviously stayed active and converted the experimentally addedmeth-
ane source to δ13C-enriched DIC. Although it was not possible to keep
δ13CDIC constant over the 5-month duration, the used methane source
is reflected in δ13Ctest of experimental offspring, indicating thatmethane
emanation impacts the carbon isotopic composition of deep-sea benthic
foraminifera. Ongoing and future culture experiments under in-situ
pressure will enable us to test and verify the bundle of paleoproxies
linked to the isotopic and geochemical composition of calcareous tests
of benthic deep-sea foraminifera, including barophilic species such as
C. wuellerstorfi.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.marmicro.2015.04.003.
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