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Abstract Multiscale sea ice algae observations are fundamentally important for projecting changes to
sea ice ecosystems, as the physical environment continues to change. In this study, we developed upon pre-
viously established methodologies for deriving sea ice-algal chlorophyll a concentrations (chl a) from spec-
tral radiation measurements, and applied these to larger-scale spectral surveys. We conducted four different
under-ice spectral measurements: irradiance, radiance, transmittance, and transflectance, and applied three
statistical approaches: Empirical Orthogonal Functions (EOF), Normalized Difference Indices (NDI), and
multi-NDI. We developed models based on ice core chl a and coincident spectral irradiance/transmittance
(N 5 49) and radiance/transflectance (N 5 50) measurements conducted during two cruises to the central
Arctic Ocean in 2011 and 2012. These reference models were ranked based on two criteria: mean robust-
ness R2 and true prediction error estimates. For estimating the biomass of a large-scale data set, the EOF
approach performed better than the NDI, due to its ability to account for the high variability of environmen-
tal properties experienced over large areas. Based on robustness and true prediction error, the three most
reliable models, EOF-transmittance, EOF-transflectance, and NDI-transmittance, were applied to two remote-
ly operated vehicle (ROV) and two Surface and Under-Ice Trawl (SUIT) spectral radiation surveys. In these
larger-scale chl a estimates, EOF-transmittance showed the best fit to ice core chl a. Application of our most
reliable model, EOF-transmittance, to an 85 m horizontal ROV transect revealed large differences compared
to published biomass estimates from the same site with important implications for projections of Arctic-
wide ice-algal biomass and primary production.

1. Introduction

Many of the most pronounced changes in the Arctic Ocean have been observed in the physical sea ice envi-
ronment, as these properties are easily monitored and up-scaled using satellites and air-borne sensors. Such
changes include: dramatic reductions in sea ice extent [Serreze et al., 2007; Stroeve et al., 2012] and thickness
[Haas et al., 2008; Kwok and Rothrock, 2009]; replacement of multiyear ice (MYI) by first-year ice (FYI)
[Maslanik et al., 2011]; increased light transmittance through the summer sea ice cover [Nicolaus et al.,
2012], decreased summer sea ice albedo [Riihel€a et al., 2013]; and increased melt-pond coverage [R€osel and
Kaleschke, 2012]. These changes to the Arctic sea ice cover are likely to continue unabated into the future,
having profound ecological consequences [Arctic Monitoring and Assessment Programme (AMAP), 2011;
Intergovernmental Panel on Climate Change (IPCC), 2013].

Satellite observations have already indicated increased pelagic production within the Arctic Ocean due to
decreased ice cover and a longer open water season [Arrigo et al., 2008; Arrigo and van Dijken, 2011]. A
recent study in the Central Arctic Ocean also suggested that sea ice-related primary production has
increased and will continue to increase in the Central Arctic due to more light penetrating through the ice
[Fern�andez-M�endez et al., 2015]. However, many other variables are likely to have an equal or greater influ-
ence on primary production than light alone, such as: nutrient supply, temperature and CO2 intake by the
Arctic Ocean [Tremblay et al., 2015]. Increased CO2 intake by the Ocean due to less sea ice may increase PP
but this could also be counteracted by higher temperatures and increased runoff [Tremblay et al., 2015]. Fur-
thermore, increased freshwater input may result in lower primary production due to less available nutrients
[Yun et al., 2016].
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Changes to ice-associated production, however, are even more difficult to evaluate due to a lack of studies
in the Central Arctic [Wassmann et al., 2011]. Monitoring sea ice ecosystems remains a challenge due to
logistical constraints and the difficulty of remotely sensing biological processes in and under the ice cover
[Wassmann et al., 2011]. As sea ice algae are a major source of energy for many key marine organisms in the
Arctic [Budge et al., 2008; Kohlbach et al., 2016; Søreide et al., 2013; Wang et al., 2015], sea ice algae observa-
tions conducted at different spatial scales (i.e., a few meters, hundreds of meters, a few kilometers, and hun-
dreds of kilometers) are of particular interest in order to address potential changes to the sea ice ecosystem
as the physical environment continues to change.

There is growing interest in extending sea ice-algal observations by developing larger-scale observation sys-
tems and methodologies that can capture the spatial distribution of sea ice algae at multiple scales.
Although sea ice coring will remain an essential method for any ice-related research, point measurement
coring is time consuming, making it an unlikely candidate for large-scale ice-algal observation systems.
Other devices such as the slurp-gun [Gosselin et al., 1990] or underwater pulse-amplitude-modulated fluo-
rometer (Diving-PAM) [Rysgaard et al., 2001] have shown promise, however, they require the deployment
by divers, which is logistically demanding, time intensive and often not possible due to security reasons.

New developments of Autonomous Underwater and Remotely Operated Vehicles (AUV/ROV) give promis-
ing new opportunities to study the underside of ice [Wadhams, 2012]. Currently these platforms have main-
ly been used to observe physical [e.g., Katlein et al., 2015; Nicolaus and Katlein, 2013; Nicolaus et al., 2012;
Wadhams, 2012] and biological [e.g., Ambrose et al., 2005; Katlein et al., 2014a] processes within and under
the ice at scales of 10–500 m, and with relatively minimal logistical requirements, in terms of spatial cover-
age compared to other methods (e.g., 8 h for 100–500 m transects). ROVs deployed with mounted digital
imagery systems have been used to document the distribution of subice-algal aggregates [e.g., Ambrose
et al., 2005; Gutt, 1995; Katlein et al., 2014a]. Digital imagery is limited to two-dimensional space and there-
fore abundance estimates may have high uncertainty. Using image analysis, Katlein et al. [2014a] showed
that ice-algal aggregate distribution is mainly controlled by under-ice topography with the accumulation of
aggregates along the edges of ridges and in dome-shaped ice features.

Under-ice spectral radiation measurements can be used to derive chlorophyll a concentrations in sea ice
using bio-optical models. Until now, however, these models have not been applied to larger scale under-ice
ROV spectral radiation measurements. ROVs have recently been deployed, with mounted spectral radio-
meters, to measure under-ice spectral irradiance [e.g., Katlein et al., 2015; Katlein et al., 2014b; Nicolaus and
Katlein, 2013; Nicolaus et al., 2012]. Spectral radiometers have also been mounted on Surface and Under-Ice
Trawls (SUIT) [van Franeker et al., 2009], a potential horizontal profiling platform for monitoring ice-algal
concentration in combination with the abundance of under-ice grazers over profiles up to 3 km in length
[e.g., David et al., 2015]. The development of under-ice horizontal profiling platforms for observing spectral
properties of sea ice, among other properties, has resulted in and will continue to result in larger amounts
of under-ice spectra. These spectral observations, both from the past and future, could be used to estimate
the temporal evolution and spatial variability of ice-algal chl a. However, this requires the development of
robust and reliable methodologies that can be applied to data sets with variable temporal and spatial cover-
age, and with a large range of environmental conditions.

Sea ice-algal chl a concentrations derived from under-ice spectral radiation have been estimated using a
normalized difference index method (NDI), introduced by Mundy et al. [2007] and applied in other field
studies [e.g., Campbell et al., 2014]. This method has proved useful during springtime to detect under-ice
spectral variations near the 440 nm chl a absorption peak in order to estimate bottom ice chl a concentra-
tions. Their NDI-derived chl a concentrations agreed well with chl a estimates from ice core samples. The
second chl a absorption peek at �670 nm, however, did not provide an accurate bio-optical model due to
the stronger influence of snow in the same wavelength range [Mundy et al., 2007].

Alternatively, Empirical Orthogonal Function (EOF) analysis has been used to identify variations within
underwater spectral radiation measurements and estimate water column concentrations of chl a [Craig
et al., 2012] and phycoerythrin [Taylor et al., 2013]. Melbourne-Thomas et al. [2015] compared several statisti-
cal approaches, including: NDI, EOF, ratios of spectral irradiance, and scaled band area, to estimate ice-algal
biomass from under-ice spectra measured during winter and spring expeditions in the ice-covered South-
ern Ocean. Their results indicated that the NDI method was most robust for their data set, but the EOF also
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provided reliable model results. In these previous studies, they only used point measurements to test the
reliability of the models.

Previous work on deriving concentrations of chl a and pigments from spectral radiation measurements have
demonstrated essential methodological advancements and applications [Campbell et al., 2014, 2015; Craig
et al., 2012; McDonald et al., 2015; Melbourne-Thomas et al., 2015; Mundy et al., 2007; Taylor et al., 2013]. The
application of ice-algal chl a estimates derived from under-ice spectral radiation, however, remains limited to
local point measurements, with limited spatial coverage, and limited to a time period when the snow cover
dominates the influence of light attenuation. This period is also when ice algae have highest biomass levels
for these corresponding low-latitude (�<808N) regions characterized by seasonal sea ice [Leu et al., 2015]. At
higher latitudes of the central Arctic Ocean, however, ice-algal biomass peaks have been reported during later
stages of summer when snow is absent [Melnikov, 1997; Melnikov et al., 2002]. Furthermore, during spring the
transmittance of light through sea ice is largely influenced by snow depth [Hamre et al., 2004; J€arvinen and
Lepp€aranta, 2011; Maykut and Grenfell, 1975; Thomas, 1963] and to a lesser extent sea ice thickness [Grenfell
and Maykut, 1977; Light et al., 2008; Nicolaus et al., 2010a; Thomas, 1963]. Therefore, the initial spring growth
of sea ice-algal communities is typically controlled by snow depth due to its larger influence on light transmit-
tance [Campbell et al., 2015; Gosselin et al., 1986; Mundy et al., 2007]. During summer when snow is absent,
light transmittance through sea ice is greater and is largely controlled by variability of the sea ice properties
[e.g., melt ponds versus bar ice; Light et al., 2008; Nicolaus et al., 2012; Perovich, 1996]. In the absence of snow
and the onset of melt, algal communities shift to a nutrient limited system and are expelled from the ice dur-
ing advanced and rapid melt [Cota and Smith, 1991; Gosselin et al., 1990; Lavoie et al., 2005].

Previous work deriving ice-algal chla estimates from under-ice spectral radiation has focused on under-ice
irradiance, which does not account for variations of the incoming solar radiation. Variability of incoming
radiation and more importantly variations of the solar elevation angle not only produce variations in magni-
tude but also variations in spectral shape, which may introduce variability (i.e., artificial chl a absorption sig-
nals) within spectral regions of maximum chl a absorption. Furthermore, the observed snow and sea ice
albedos, and subsequently the attenuation of light within the snow and sea ice can be drastically different
for the same snow and ice depending on the incident solar radiation conditions (e.g., clear skies versus
cloud cover) [Grenfell and Maykut, 1977; Perovich, 1996].

The main motivation for this work is to find a reliable bio-optical model for estimating the variability of ice-
algal chl a under highly heterogeneous environmental conditions that can be applied to larger scale spec-
tral measurements using under-ice horizontal profiling platforms (e.g., ROV and SUIT). We accomplished
this by developing upon previously established bio-optical methodologies and statistical approaches. We
determined the best ranked bio-optical model for estimating ice-algal biomass by comparing: (i) different
statistical approaches: NDI and EOF, including a newly introduced multi-NDI method that takes advantage
of both chl a absorption peaks; and (ii) different spectral measurements, including: under-ice irradiance,
under-ice radiance, under-ice transmittance and under-ice transflectance. We applied a selected most reli-
able set of models to larger scale spectral surveys for additional model assessment and comparison. In addi-
tion, we provided a preliminary analysis of the spatial distribution of ice algae based on a short transect
extracted from a selected ROV survey.

2. Materials and Methods

2.1. Study Area
Field observations and sampling for this study were conducted during two summer research cruises to the Cen-
tral Arctic Ocean onboard the German icebreaker R/V Polarstern: (i) TransArc (PS78.3, hereafter referred to as
PS78) conducted from 4 August to 7 October 2011 (Figure 1); and (ii) IceArc (PS80.3, hereafter referred to as
PS80) conducted from 4 August to 8 October 2012 (Figure 1). Measurements and ice core samples were
acquired from a total of six ice stations during the PS78 cruise, and from nine ice stations, one helicopter ice
landing and two Surface and Under-Ice Trawl profiles (SUIT; with mounted sensor array) during the PS80 cruise.

2.2. Spectral Measurements
Spectral radiance and irradiance measurements were acquired using Ramses spectral radiometers (Trios
GmbH, Rastede, Germany) with a wavelength range from 350 to 920 nm and a resolution of 3.3 nm, which
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were subsequently interpolated to a 1 nm grid following Nicolaus et al. [2010b]. Incident solar radiation (ES)
and under-ice irradiance (ET) were measured using an irradiance sensor (RAMSES-ACC) containing a cosine
receptor with a1808 field-of-view (FOV. Under-ice radiance (IT) measurements were acquired using a radi-
ance sensor (RAMSES-ARC) with a 98 FOV. According to Nicolaus et al. [2010b] and Katlein et al. [2014b], the
effective measurement footprint diameter for the irradiance sensor, fi, was calculated as:

fi52d (1)

where d is the distance to the ice bottom, and the footprint diameter for the radiance sensor, fr, was calcu-
lated as:

fr52d tan 4:5� (2)

All spectral measurements are presented for the photosynthetically active radiation range (PAR) between
400 and 700 nm, unless stated otherwise. Additional details about the sensors and spectral data processing
were described by Nicolaus et al. [2010b]. Spectral transmittance (TE) is defined as the ratio of under-ice irra-
diance (ET) to incident solar radiation (ES), as described by Nicolaus et al. [2010b]:

TE kð Þ5 ET kð Þ
Es kð Þ (3)

with wavelength k within the PAR range (400:700 nm). Spectral transflectance (TI), introduced by Nicolaus
and Katlein [2013], is defined as the ratio of under-ice radiance (IT) to incident solar radiation (ES):

Figure 1. Map of the study region with ice stations conducted during expeditions PS78 and PS80, and the two selected SUIT sampling sites. Sea ice concentration data acquired from
www.meereisportal.de according to algorithms in Spreen et al. [2008]. Sea ice extent corresponds to monthly means during September for both cruise years [extent data acquired from
NSIDC; Fetterer et al., 2002, udpated 2011].
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TI kð Þ5 IT kð Þ
Es kð Þ (4)

Transmittance and transflectance are dimensionless, however, following the SI-system to use steradian for
solid angles, we use sr21 as the unit for transflectance following Nicolaus and Katlein [2013].

Under-ice spectral radiation measurements were conducted using: (i) an under-ice L-arm sensor system; (ii)
a remotely operated vehicle (ROV), V8Sii-ROV (Ocean Modules, Åtvidaberg, Sweden), with mounted sensor
array; and (iii) a Surface and Under Ice Trawl (SUIT) [van Franeker et al., 2009] with mounted sensor array, as
described by David et al. [2015]. Simplified diagrams and images showing the deployment of all under-ice
profiling platforms are presented in Figure 2. The under-ice L-arm sensor system (Figures 2a and 2e), previ-
ously described in Melbourne-Thomas et al. [2015] and Mundy et al. [2007], was deployed below the ice
through a �14 cm diameter vertical hole drilled using a Kovacs Mark II 9 cm internal diameter corer (Kovacs
Enterprise, Roseburg, USA). Once the L-arm was below the ice, the lower �1.2 m of the aluminum bar setup,
with mounted radiometer (e.g., irradiance or radiance sensor), was extended horizontally, and then slowly
raised so the sensor was �10 cm from the ice bottom. To minimize shading by the system equipment and
operator, the sensor was positioned directly south of the L-arm hole at �1.2 m distance. Coincident incom-
ing irradiance measurements were conducted above the ice for all under-ice L-arm measurements. The
snow/ice surface directly south of the L-arm hole was kept undisturbed during spectral measurements. Ice
cores were then sampled after the spectral measurements at the same locations (see section 2.3; and Fig-
ures 2a and 2b).

A detailed description of the ROV (Figures 2c and 2f) spectral measurements, calibration and calculations,
and ROV operation during PS78 was provided by Nicolaus and Katlein [2013]. The V8ii ROV was equipped
with an altimeter (DST Micron Echosounder, Tritech, UK), a sonar (Micron DST MK2, Tritech, UK), one
zoom-camera (Typhoon, Tritech, UK), and one fixed focal length camera (Ospray, Tritech, UK). In addition,
the ROV system had a built-in set of internal sensors such as: magnetic and three-axes gyro compass,
three-axes accelerometer, and a pressure sensor. Some minor modifications to the ROV system were
made for the PS80 cruise and are described in Katlein et al. [2014a]. ROV spectral measurements, calibra-
tion, and calculations during PS80 were consistent to those used during PS78 and conducted as described
in Nicolaus and Katlein [2013]. Under-ice ROV spectral surveys (Figure 2a) were performed over perpendic-
ular x-y transects with x and y transect lengths between 50 and 150 m. Incident solar radiation (ES) meas-
urements, for the calculation of spectral transmittance and transflectance, were performed using an
irradiance sensor mounted on a tripod positioned on the sea ice nearby the ROV operation tent (Figure
2a). Stationary spectral measurements were conducted directly (�0–10 cm) under the ice at 10 m inter-
vals along the x-y transects. When the ROV spectral surveys were complete, ice cores were extracted at
predetermined locations along the ROV transects at the same location of selected spectral measurements
(Figure 2a).

The Surface and Under Ice Trawl (SUIT) [van Franeker et al., 2009] is a net used to sample sea ice fauna, zoo-
plankton and micronekton in the upper 2 m of the water column under the ice (Figures 2d, 2g, and 2h). A
detailed description of the SUIT is provided as supporting information in Flores et al. [2012]. During PS80
the sensor array was specifically enhanced with the aim to measure the variability of sea ice algae within
the sea ice along the SUIT hauls. The new sensor package included an Acoustic Doppler Current Profiler
(ADCP), a Conductivity Temperature Depth probe (CTD) with built-in fluorometer, an altimeter, one irradi-
ance sensor (RAMSES-ACC), one radiance sensor (RAMSES-ARC) and a forward-looking video camera (Figure
2h; previously described in David et al. [2015]). The sensor array provides measurements of under-ice spec-
tral radiation, and pitch, roll, depth, and distance to ice-bottom, which were used to calculate ice draft.

2.3. Spectral Quality Control of Under-Ice Profiling Platforms
SUIT and ROV covered different distances and were operated at various depths under the ice along the pro-
files. Therefore, the data needed to be filtered to get suitable spectra for the bio-optical prediction models.
Pitch and roll, and distance to ice bottom measurements were used to filter the spectra in order to minimize
the influence of light attenuation by water. The integration time of the spectral radiometers varied with the
strength of the received radiation, which was highly variable under sea ice. Therefore, ADCP measurements
(1 Hz) and distance to ice (10 Hz) were averaged over the integration time interval of each spectral mea-
surement. The footprint of each measurement was dependent on the distance to the ice bottom, the field-
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Figure 2. Diagrams and images showing under-ice horizontal spectral profiling platforms and sea ice sampling. (a) shows ice station work,
e.g., deployment of the L-arm and remotely operated vehicle (ROV), and ice core extraction; (b) shows ice coring; (c) the ROV; (d) the sur-
face and under-ice trawl (SUIT) floating in the water; (e) the L-arm deployed under the ice with a mounted radiance sensor; (f) the ROV
adjacent to the deployment hole and operation tent; (g) the SUIT being lifted back onto Polarstern, with sensor array on portside wing;
and (h) the SUIT, with mounted sensor array, being towed behind a ship. Note: (a) and (h) are not to scale.
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of-view (FOV) of the sensor (equations (1) and (2)), and the horizontal speed of the sensor platform. Highest
quality spectra were acquired when the ROV operated at a constant depth [Nicolaus and Katlein, 2013].
However, variations of distance to ice and orientation of the ROV are difficult to minimize and therefore the
measurement footprints during ROV surveys were highly variable. We minimized the influence of light
attenuation by water on the spectral signal and limited variability of the footprint size by selecting only
measurements that had a distance to the ice bottom of <1.5 m, and pitch and roll between 2108 and 1108

[Nicolaus and Katlein, 2013]. Due to the diffuse light field, tilt errors were considered not critical, particularly
when including a minimum distance threshold of 1.5 m. Similar to the ROV, SUIT haul measurements were
also filtered by a distance to ice bottom of <1.5 m, and pitch and roll between 2158 and 1158. Corrections
were not applied because they would have introduced errors of unknown size. Under-ice water chl a con-
centrations during our sampling period were low, 0.06–0.24 mg m23 [David et al., 2015]. Based on the maxi-
mum water chl a concentration of 0.24 mg m23 and the maximum distance to ice bottom of 1.5 m, this is
equivalent to 0.36 mg chl a m22. This value is slightly larger than some ice core chl a concentrations (Table
1), however, it does represent the maximum uncertainty and is overall much lower because the ROV opera-
tion distances to ice bottom were predominantly under 1 m and water column chl a were typically less
than 0.24 mg m23. Therefore, we assumed minimal influence on the spectral signal by the water chl a.
Because the ROV was operated at slow speeds (<0.2 m s21) the footprint size had minimal horizontal vari-
ability due to movement (e.g., across-track and along-track spatial footprint were equal). The faster horizon-
tal operation speeds of the SUIT (�1.5 m s21), however, resulted in an along-track spatial footprint
dependent on the integration time of the sensor. Footprint size variability was accounted for by using the
footprint as a weighting factor when conducting statistical analyses.

Table 1. Summary of Environmental Properties and Bio-Optical Cores for Each Ice Station

Cruise/
Station

Ice
Stationa

Date
(dd/mm/yy) Latitude Longitude

Ice
Type SICb

Modal Ice
Thicknessb ES (PAR)

c ET (PAR)
c TE (PAR)

d IT (PAR)
c TI (PAR)

d N
Core

Length (m)
Snow

(m)
Scatt.

(m)
mg chl
a m22

PS78/196 Ice-1 11 Aug 2011 83.84 60.50 FYI 53.9 2.8 0.05 1 0.90 0.00 0.05 0.17
PS78/203 Ice-2 14 Aug 2011 85.97 59.35 NEW 37.0 0.06 1 0.05 0.05
PS78/212 Ice-4 19 Aug 2011 88.02 59.45 FYI 1.2 35.5

6 5.8

14.0
6 6.3

0.29
6 0.2

3 0.93
6 0.20

0.57
6 0.27

PS78/227 Ice-7 29 Aug 2011 86.86 2155.05 FYI 1.1 18.6
6 4.4

1.7
6 1.8

0.10
6 0.11

1.1
6 0.8

0.07
6 0.05

3 1.92
6 1.43

0.00 0.02
6 0.02

0.18
6 0.18

PS78/239 Ice-10 06 Sep 2011 84.072 2164.19 MYI 0.8 42.8
6 11.9

1.4
6 0.9

0.03
6 0.02

0.6
6 0.6

0.01
6 0.01

3 1.64
6 0.79

0.40
6 0.27

PS78/245 Ice-11 08 Sep 2011 84.81 166.22 FYI 1.2 39.3
6 16.7

1.0
6 0.1

0.04
6 0.03

0.8
6 0.6

0.02
6 0.02

3 0.82
6 0.62

0.17
6 0.15

PS80/224 Ice-1 10 Aug 2012 84.00 30.00 FYI 80 1.0 50.7
6 2.1

2.4
6 2.2

0.04
6 0.04

8 1.33
6 0.41

0.00 0.09
6 0.17

0.38
6 0.22

PS80/237 Ice-2 15 Aug 2012 83.95 76.85 FYI 80 1.3 77.7
6 10.6

5.2
6 7.6

0.07
6 0.11

3.6
6 4.2

0.04
6 0.05

12 1.54
6 0.55

0.00 0.04
6 0.03

0.82
6 0.58

PS80/255 Ice-3 20 Aug 2012 82.86 109.86 FYI 70 0.9 35.0
6 1.4

4.7
6 0.5

0.13
6 0.01

2.4
6 0.5

0.06
6 0.01

4 0.76
6 0.17

0.00 0.03
6 0.02

1.03
6 0.66

PS80/277 Ice-4 26 Aug 2012 82.89 129.78 FYI 80 5 0.63
6 0.29

0.00 0.03
6 0.04

0.19
6 0.20

PS80/323 Ice-5 05 Sep 2012 82.88 130.76 FYI 60 0.8 91.4
6 9.1

2.9
6 0.6

0.04
6 0.02

1.6
6 0.5

0.02
6 0.02

6 0.73
6 0.58

0.04
6 0.02

0.00 0.16
6 0.13

PS80/335 Ice-6 08 Sep 2012 85.06 122.52 FYI 50 0.7 69.2
6 8.4

2.7
6 2.4

0.03
6 0.03

1.4
6 1.7

0.02
6 0.02

6 1.07
6 0.49

0.07
6 0.07

0.00 0.96
6 0.91

PS80/349 Ice-7 19 Sep 2012 87.93 60.95 MYI 100 1.6 14.4
6 1.3

1.0
6 1.0

0.09
6 0.09

0.8
6 0.8

0.05
6 0.06

7 0.89
6 0.56

0.01
6 0.01

0.00 1.62
6 2.09

PS80/360 Ice-8 22 Sep 2012 88.83 58.53 MYI 100 1.8 8.0
6 0.5

0.2
6 0.1

0.02
6 0.01

0.2
6 0.1

0.01
6 0.01

4 1.11
6 0.36

0.04
6 0.03

0.00 6.59
6 4.91

PS80/384 Ice-9 29 Sep 2012 84.35 17.73 FYI 100 1.2 9.9
6 0.5

0.2
6 0.1

0.02
6 0.02

0.1
6 0.0

0.01
6 0.01

4 1.07
6 0.65

0.04
6 0.02

0.00 0.40
6 0.49

PS80/HELI-64 27 Sep 2012 NEW 23.1
6 2.7

0.54
6 0.09

0.25
6 0.02

3 0.05
6 0.01

0.00
6 0.00

0.00 0.03
6 0.01

Latitude are in degrees North; negative longitude are degrees West and positive longitude are degrees East. NEW refers to newly formed sea ice. SIC is sea ice concentration. ES is
incident solar radiation; ET is under-ice irradiance; TE is spectral transmittance; IT is under-ice radiance; TI is spectral transflectance. Scatt. is the scattering surface layer depth.

aAdded for easy cross reference to other publications using this naming protocol [e.g., Boetius et al., 2013; Fern�andez-M�endez et al., 2015; Katlein et al., 2014a]
bData presented in Nicolaus and Katlein [2013] for PS78 and Katlein et al. [2014a] for PS80.
cES (PAR) incident solar radiation; ET (PAR) under-ice irradiance; and IT (PAR) under-ice radiance were integrated over PAR wavelengths 400–700 nm.
dTE (PAR) spectral transmittance; and TI (PAR) spectral transflectance are mean over PAR. ‘‘-’’represent no data.
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2.4. Ice Coring and Chlorophyll a Measurements
A total of 73 sea ice cores were extracted from 16 ice stations using a 9 cm inner diameter ice corer pow-
ered by an electric drill. At each core location, we measured snow depth or surface scattering layer depth,
ice thickness, core length, and freeboard. Here the scattering layer is defined as an unconsolidated surface
layer of large ice granules (�1–5 mm). Ice cores were placed in acid-cleaned barrels, and then immediately
transported to the ship and melted at 48C in the dark. During PS78, ice cores were cut in three parts (the
upper and lower 20 cm, and the remaining middle part of the core), placed in separate barrels and proc-
essed separately (i.e., three samples for each core). During PS80, each entire ice core was placed in one
acid-cleaned barrel for melting and processing (i.e., one sample for each core). Previous comparisons have
shown a minor influence on the determination of chl a concentrations without the addition of melted sea
water [Miller et al., 2015; Rintala et al., 2014]. When extracting cores from melt ponds, melt-pond water was
added to the sample with a volume approximately equal to a 9 cm diameter cylinder (e.g., core barrel) with
a height equal to the depth of the melt pond.

Subsamples from each melted sample were filtered onto 25 mm Whatmann GF/F filters, placed in liquid
nitrogen then stored in a 2808C freezer until analyses were conducted back at the laboratory in Bremerha-
ven, Germany. Chl a concentrations were measured on each filter using high-performance liquid chroma-
tography (HPLC) as described in Tran et al. [2013]. All chl a concentrations are reported as vertically
integrated units (mg chl a m22).

2.5. Statistical Methods and Approaches
All statistical analyses were conducted using R software Version 2.15.2 [R-Development-Core-Team, 2012]
with all relevant packages listed after the corresponding analysis description.
2.5.1. Empirical Orthogonal Function (EOF)
The large dimensionality of spectral data (i.e., 301 wavelengths) was reduced by applying Empirical
Orthogonal Function (EOF) analyses (also referred to as principal component analyses—PCA). Each spec-
trum was first standardized by subtracting the mean of the spectrum then dividing by the standard devia-
tion of the spectrum [Taylor et al., 2013]. Standardizing the spectra minimizes any variability due to
magnitude and allows for a more detailed examination of spectral shape [Craig et al., 2012; Taylor et al.,
2013]. The resulting standardized spectra formed an N 3 M matrix X consisting of N observations and M
wavelengths 5 301 (PAR: 400–700 nm, 1 nm resolution). Using the ‘‘R’’ function cov, a covariance matrix C
was calculated from X:

C5
1
N

XTX (5)

We then used the ‘‘R’’ function eigen, to conduct an eigen decomposition of the covariance matrix C:

C5SKST (6)

where S (N 3 N) eigenvectors, hereafter referred to as EOFs, contains the loadings for each sample (N) by
mode (N). K (diagonal matrix with dimensions N) contains the eigenvalues, which explain the variance of
each EOF mode. The first EOF mode, captures the largest proportion of variability within the spectra, with
each subsequent mode capturing progressively less of the variability. Each selected EOF mode can be repre-
sented as a mode of oscillation in the data (spectra) by calculating the EOF expansion coefficients Z. Z was
calculated by projecting the spectral matrix X onto S:

Z5XS (7)

where Z (M 3 N) contains the loadings for each wavelength (M) by mode (N).

To create predictor models for chl a concentrations in sea ice, we applied Generalized Linear Models (GLM)
[McCullagh and Nelder, 1989] expressing chlorophyll a concentrations as a linear function of combinations
of up to five predictor variables (i.e., EOF modes or the modes squared). A GLM includes a link function that
describes how the mean depends on the linear predictor and a variance function that describes how the
variance depends on the mean [McCullagh and Nelder, 1989]. For N � 9, we selected the first nine EOF
modes, and for N < 9, we selected the first N EOF modes as predictor variables for the GLM analyses. In
addition, each selected EOF mode was squared and included as predictor variables in the GLM analyses.
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Following Taylor et al. [2013], we assumed a Gaussian error distribution and applied a log-link function for
the prediction of chl a, i.e., E(chlaadj). In the GLM model selection cross-validation step, large negative num-
bers in log space due to the presence of near-zero chl a concentrations can result in nondefined error esti-
mates (i.e., infinite RMSE values). To avoid this, all raw chl a (chla) values were adjusted by a constant value
(0.98 mg m22) so that the minimum chl a (chlamin 5 0.02 mg m22) value was set to 1 mg chl a m22. The
adjusted chl a values (chlaadj) were used to fit the models. When the models were fitted with and without
the adjustment, differences in BIC were determined to be negligible between adjusted and nonadjusted
model fits, and thus did not influence the model selection criteria. In the final model application, the con-
stant (0.98 mg chl a m22) was subtracted before calculating chl a estimates of ROV and SUIT profiles.

The GLM models have the form:

ln E chlaadj
� �� �

5a1b1s11b2s2
21 � � �1bmsm1bns2

n (8)

where s1,2,. . .,n.m are the EOF modes or the EOF modes squared from S determined from the GLM model
selections, a is the intercept and b1,2,. . .,m,n are the regression coefficients.
2.5.2. Normalized Difference Index (NDI)
We constructed a spectral correlation surface matrix between chl a concentrations and all possible NDI
combinations of two wavelengths within the photosynthetically active radiation (PAR) wavelength range
between 400 and 700 nm, as described by Mundy et al. [2007]. Correlation surfaces were constructed for
each bio-optical model combination (all combinations of bio-optical models are described in section 2.5.4
and visualized in Figure 3). We applied a moving average to the correlation surfaces by taking the mean of
a 3 3 3 nm grid centered at each value to ensure maximum chl a-NDI correlations were not chosen at the
edge of regions of high correlation.

Two maximum chl a-NDI correlations were chosen from each correlation surface. The first maximum correla-
tion NDI wavelength combination, NDI440, corresponds to the wider �440 nm chl a absorption peak and
has at least one NDI wavelength within the range 400–480 nm. The second maximum correlation NDI wave-
length combination, NDI670, corresponds to the narrower �670 nm chl a absorption peak and has at least
one NDI wavelength between 655 and 685 nm. We then applied a GLM to the adjusted chl a concentrations
(chlaadj: response variable) and NDI (NDI: predictor variables) values in the form:

ln E chlaadj
� �� �

5a1b NDIð Þ (9)

where a is the intercept and b the regression coefficient (i.e., slope). NDI corresponds to either the maximum
chl a-NDI correlation NDI440 or NDI670. To maintain consistency between statistical approaches, which is
important for inter-comparison, we applied a log-link function for all statistical approach models, i.e., E(chlaadj).
2.5.3. Multi-NDI
In order to take advantage of both chl a absorption peaks we incorporated both NDIs (i.e., NDI440 and
NDI670) into one model. The two maximum NDI correlations for each bio-optical model combination (all
combinations described in section 2.5.4 and visualized in Figure 3) were used as predictor variables in GLMs
with adjusted chl a concentrations (chlaadj) as the response variable:

ln E chlaadj
� �� �

5a1b440 NDI440ð Þ1b670 NDI670ð Þ (10)

where a is the intercept and b440, 670 are the regression coefficients.
2.5.4. Selection Criteria of Bio-Optical Reference Models
To visualize the selection process from a large number of possible model combinations, we provided a flow-
chart illustrating the model selection and ranking process following the selection path of one model (Figure
3). Bio-optical models to estimate ice-algal chl a were constructed using GLMs based on four different statis-
tical approaches: (1) Empirical Orthogonal Function analysis (EOF); (2) NDI440; (3) NDI670; and (4) multi-NDI
(Figure 3a). These statistical approaches were applied to four different spectral measurements: (a) Under-ice
Irradiance (ET); (b) Under-ice Radiance (IT); (c) Transmittance (TE); and (d) Transflectance (TI; Figure 3a). These
16 ‘‘statistical approach to spectral measurement’’ combinations were applied to (1) the full data set (all); (2)
PS78 cruise (PS78); (3) PS80 cruise (PS80); (4) high-latitude MYI sites from PS80 (PS80-MYI); (5) low-chl a (low:
<2 mg m22); and (6) high-chl a (high: >2 mg m22; Figure 3a).This resulted in 96 ‘‘statistical approach to
spectral measurement to data subset’’ combinations, of which 72 were based on the NDI approaches, and
24 were based on the EOF approach.
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Figure 3. Flowcharts of: (a) reference model evaluation and selection process; (b) reference model ranking criterion 1 based on the mean
robustness R2; and (c) reference model ranking criterion 2 based on the normalized root mean squared error (NRMSE). (a) Performed first
and results in the selection of one bio-optical model for each of the 96 statistical approach-spectral measurement-data subset combina-
tions. (b and c) Occur independently in parallel and rank the reference models as a means of model inter-comparison. The most reliable
models were than ranked based on the average of Figures 3b and 3c. For simplicity, the flowchart only follows the pathway of the top
ranked model (M15, referred to in text as EOF-Transmittance).
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Within each of these 96 combinations there were multiple potential reference model possibilities of wave-
length combinations (NDI) or EOF mode combinations (EOF; Figure 3a). From the many possible NDI-based
GLMs, which have various potential combinations of wavelengths, the NDI-wavelength combination with
the highest spearman correlation coefficients (Figure 3) was selected as the NDI predictor variable (NDI440

or NDI670) or variables (multi-NDI) for fitting the reference model of each 72 corresponding NDI-based
approach-spectral measurement-data subset combinations.

For each of the 24 EOF-based spectral measurement-data subset combinations, there were a large number
of EOF mode combinations as potential predictor variables in the GLMs. With nine modes, nine squared-
modes, and up to five predictor variables, this resulted in over 500,000 different combinations of EOF
modes in the GLMs. We used the ‘‘R’’ package glmulti [Calcagno and de Mazancourt, 2010], to select the
‘‘best’’ 100 GLMs from all possible unique combinations of predictor variables based on a predefined model
evaluation criterion. The glmulti package has built-in functions using Akaike Information Criterion (AIC) or
Bayesian Information Criterion (BIC) for model selection [Calcagno and de Mazancourt, 2010]. Here we
selected BIC over AIC, because the AIC accounts for only the sample size, whereas the BIC accounts for both
the number of predictor variables included in the GLM and the number of samples used to fit the GLM
[Schwarz, 1978]. Hence, a smaller number of predictor variables will result in a better model BIC than a larger
number of predictor variables, and a larger sample size will result in a better model BIC than a smaller sam-
ple size. Out of these 100 ‘‘best’’ potential models (GLMs) for each of the 24 EOF-based spectral
measurement-data subset combinations, we selected one reference model, which had the lowest BIC and
in which all coefficients were significant (p� 0.05) (Figure 3a).
2.5.5. Comparing Reference Models and Identifying Predictive Models
The previous selection process identified the most reliable reference model for each of the 96 statistical
approach to spectral measurement to data subset combinations (Figure 3a). In order to assess the reliability
of these reference models to predict ice-algal chl a concentrations in larger spectral data sets, such as from
under-ice profiling platforms (e.g., ROV and SUIT), we ranked the 96 reference models based on two criteria
(Figures 3b and 3c). Based on the average of both rankings, we selected the top five models as the most
reliable set of potential ‘‘predictive models’’ for further comparison.

For the first ranking criterion (Figure 3b), we assessed model robustness, applying an adapted procedure
used by Melbourne-Thomas et al. [2015]. Each of the 96 reference models was applied to the 5 data subsets
not used to fit the respective reference model. For example, the EOF-Transmittance model fitted to the
PS80 data subset was applied to the other five data subsets (All, PS78, High-chla, low-chla, and High-lat) but
not applied to the PS80 subset because the model was fitted to this data (Figure 3b). We then calculated
the predicted chl a versus observed chl a coefficient of determination (R2) for each reference model applied
to each of the five data subsets, which we refer to as the robustness R2. We calculated the mean of the
robustness R2 values for each data subset. The mean robustness R2 provides an estimate of how well the
models perform when applied to ‘‘new’’ spectral data (e.g., larger-scale ROV or SUIT spectra) and may also
identify variability in how the models fit different cruises (PS80 versus PS78) or chl a concentrations (high
versus low). The mean robustness R2 values were ranked from highest to lowest and used as the first criteri-
on for selecting the top five potential predictive models. One limitation of this ranking criterion is that sub-
sets were preselected by nonrandom factors, which may introduce bias. This is why we included an
additional ranking criterion, which uses random data subsets to evaluate predictive power of the models.

Models are optimized for the data they are fitted to (i.e., training data); therefore the error of the model
applied to new data (true prediction error) is usually higher than when the model is applied to the training
data (training error). It is common to use training error estimates (e.g., trained model residuals) for the selec-
tion of models or to report confidence intervals for predicted data [e.g., Taylor et al., 2013]. This can result in
the selection of inferior models or an inaccurate estimate of the true prediction error. Taking these consider-
ations into account, we implemented a second model ranking criterion in order to select the predictive
models. The second ranking criterion is based on 10-Fold Cross-Validation (10FCV) to estimate the true pre-
diction error of each model. K-fold cross validation is a commonly used method to assess the performance
of predictive models by providing accurate estimates of the true prediction error [Mahmood and Khan,
2009]. In 10FCV, the data are first subset into 10-folds (i.e., data subsets). Model fitting and error estimation
are repeated 10 times. Each time a different set of ninefolds are combined to train/fit the model. Each mod-
el is then applied to the 10th fold of ‘‘new’’ spectral data (i.e., holdout data). The root mean square error
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(RMSE) is calculated for the ‘‘new’’ predicted chl a data, which provides an estimate of the true prediction error.
The 10 error estimates (RMSE) are averaged to provide a more robust RMSE estimate for each 10FCV run. Since
the data are subset randomly, the 10FCV process is repeated 100 times to ensure more representative sub-
sampling of the data and a more representative estimate of the true prediction error (RMSE). The 10FCV proce-
dure results in one estimate of the true prediction error for each model, which we term the cross-validation
RMSE (RMSECV). The RMSECV is used as an indicator for the quality of the model, with lower RMSECV values corre-
sponding to models with a higher predictive performance. The RMSECV is also used to provide model uncertain-
ty estimates when models are applied to new spectral data (e.g., ROV and SUIT spectral radiation profiles).

In order to compare between models with different sample sizes and range of values we normalized the
RMSECV by the range (minimum and maximum) of observed chl a values (chlaobs,min and chlaobs,max) used to
train the model. NRMSECV was calculated as:

NRMSECV 5
RMSECV

chlaobs;max2 chlaobs;min
(11)

NRMSECV values were ranked from lowest to highest and used as the second criterion for selecting the top
five potential predictive models. The rankings of the mean robustness R2 (first criterion) and NRMSECV (sec-
ond criterion) were then averaged and ranked to arrive at the top five ranked potential predictive models.
Robustness of statistical assumptions in these five predictive GLMs were visually assessed based on valida-
tion plots. Because we have limited data points in the high-chl a range, particular attention was given to
the leverage of each point and identification of potential model fit outliers. Following procedures described
in Aguinis et al. [2013], we first identified potential model fit outliers using a Cook’s D cutoff value equal to
the F statistic (�0.92). Second, we fitted the models with removal of the identified potential outliers and
assessed the change in model fit statistics: R2, BIC, and model significance [Aguinis et al., 2013]. Model fit
outliers were only reported if statistically significant changes in model fit were observed. Model significance
was assessed with an analysis of variance (ANOVA) using the F test.

Further quality assessments were conducted on the top five predictive models in order to ensure these models
were acceptable for application to larger scale spectral data. This included: (i) investigating any potential relation-
ships between environmental properties and chl a, which may influence model performance; (ii) evaluating the
biases of the model, and the model applied to high-chl and low-chl a, e.g., if the model over-estimates (positive bias)
or under-estimates (negative bias) the predicted data; (iii) applying the potential predictive models (excluding any
models identified as unreliable from the previous two steps) to larger-scale spectral profiles and comparing general
performance between predictive models for all profiles; and iv) assess predictive performance of each potential pre-
dictive model along a short 85 m ROV transect and compare to ice core chl a observations along the same transect.
2.5.6. Predicting Ice-Algal chl a
We applied the selected most reliable predictive models to independent spectral measurements from two
SUIT stations and two ROV stations conducted during the PS80 cruise. These included high-latitude stations
PS80/358 (SUIT) and PS80/360 (ROV ice station), and lower-latitude stations PS80/285 (SUIT) and PS80/323
(ROV ice station; Figure 1). These stations were selected in order to compare the predictive models applied
to independent data from different regions and different environmental conditions.

The application of NDI models to independent spectral measurements required first to calculate the NDIk1:k2

using the wavelength combinations (e.g., k1 and k2) from NDI-based predictive models. The NDI values
were then incorporated into equation (9) (NDI model) or equation (10) (multi-NDI model) along with a and
b values predetermined by the predictive models to derive the corresponding chl a concentrations.

Predictions of chl a concentrations on new spectral data using the EOF method were conducted as
described in Taylor et al. [2013]. The independent spectral measurements were first standardized, as
described previously. The independent standardized spectral data Y, a J 3 M matrix with J the number of
independent spectral measurements and M the number of wavelengths, was then projected onto the EOF
expansion coefficients Z in the form:

F5 Z21Y
� �T

(12)

where F, the EOFs, is a J 3 J matrix providing the loadings by mode (J) for each sample (J), as with S. Pre-
dicted ice-algal chl a values were calculated using the EOF-based predictive models’ GLM formula and the
new EOFs, F, in the form:
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ln E chlapred
� �� �

5a1b1f11b2f 2
2 1 � � �1bnfn1bmf 2

m (13)

where f1,2,. . .,n.m are the EOF modes or modes squared from F, which correspond to the selected modes
from S (e.g., s1,2,. . .,n,m) used as response variables in equation (8), a is the intercept and b1,2,. . .,n,m the regres-
sion coefficients from equation (8).

The chlapred values were readjusted by subtracting 0.98 mg chl a m22 to account for the premodel adjust-
ment of the chl a values. Due to the range of observed chl a values (�0–12 mg chl a m22), the predicted
chl a were limited to a range of 0–20 mg chl a m22 by excluding all other values. We set these limits
because predicting values significantly outside the range of data they were trained on only increases uncer-
tainty in the predicted data. Ice algae biomass values of up to 22 mg chl a m22 [Melnikov 1997] and 14 mg
chl a m22 [Gosselin et al. 1997] have been reported within the same study region and season in the Arctic
Ocean. Therefore, setting an upper limit to 20 mg chl a m22 was deemed acceptable in order to limit two
different potential sources of error. First, it limits potential negative biases (i.e., underestimation) of the over-
all observations by not accounting for high biomass regions if we had imposed too strict of an upper limit.
Second, it limits the potentially higher prediction uncertainty for high biomass values outside the range of
values the model was trained on.

3. Results and Discussion

3.1. Environmental Properties
Both expeditions covered large geographical regions and were conducted during the transition from late-
melt to the onset of freeze-up, and thus encountered a large range of sea ice conditions. Sea ice conditions
during all ice stations were summarized in Table 1. Information about individual ice core samples was sum-
marized in supporting information Table S1. During PS78, sea ice stations were conducted from the Eurasian
shelf edge to the Canadian Basin and back again. This sampling effort captured the transition from ice-edge
through first-year ice and into the multiyear pack-ice. During ice stations PS78/198, PS78/203, and PS78/212
the surrounding sea ice was in an advanced state of melt with no snow cover and open melt ponds. Freeze-
up conditions were first observed on 22 August, characterized by the presence of a light snow cover and
surface freezing of melt ponds, and continued during the remaining ice stations PS78/227, PS78/238, and
PS78/245.

During PS80, the first two ice stations, PS80/224 and PS80/237, were situated in densely packed first-year
ice. Ice stations PS80/255, PS80/277, and PS80/323 were conducted in a region dominated by rotten sea ice
with modal ice thicknesses <1.0 m. A thin snow cover was first observed at station PS80/323 and was pre-
sent at the remaining stations, but did not exceed 0.1 m. Station PS80/335 was situated in an area of mixed
FYI and MYI with no obvious signs of advanced melt or freeze-up, indicating it was in transition from melt
to freeze-up conditions. Freeze-up conditions were first observed at station PS80/349, characterized by ice
forming on the surface of melt ponds, and continued for the remaining stations. Ice stations PS80/349 and
PS80/360 were conducted within the heavy pack-ice consisting of predominantly MYI with thicknesses
>1.5 m. The first ice station PS80/224 was revisited as station PS80/384 and was then characterized by fall
freeze-up and an ice thickness of �1 m. The range of modal ice thicknesses for the FYI stations (0.8–1.3 m)
were consistent with previous large-scale airborne and floe-scale ground-based electromagnetic ice thick-
ness surveys conducted for the same region and season [Haas and Eicken, 2001; Haas et al., 1997; Rabenstein
et al., 2010]. The two MYI sites with modal thicknesses of 1.6 and 1.8 m were characteristic of MYI and con-
sistent with modal ice thickness values for second-year sea ice from the same region and season [Haas and
Eicken, 2001]. Further details about the environmental properties encountered during these two cruises are
presented in other studies [e.g., Boetius et al., 2013; Fern�andez-M�endez et al., 2014; Katlein et al., 2014a;
Nicolaus and Katlein, 2013].

All observations were made in late summer at the end of the productive season. Thus, algal biomass was
relatively low during both cruises. Of the 14 bio-optical cores collected during PS78, none of the samples
exceeded 1.0 mg chl a m22 (Table 1). Of the 59 bio-optical cores collected during PS80, however, samples
exceeded 1.0 mg chl a m22 at 6 out of the 10 ice stations (PS80/237, PS80/255, PS80/335, PS80/349, PS80/
360, and PS80/384). Maximum chl a concentrations were observed at MYI station PS80/360, with three of
the four ice cores ranging between 6.4 and 11.8 mg chl a m22 (Table 1). Also noteworthy was MYI station
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PS80/349, which had the next highest chl a concentrations with two cores at 3.5 and 5.6 mg chl a m22

(Table 1). The high biomass we observed at the high latitude MYI stations is consistent with previous studies
from high latitude regions of the central Arctic Ocean with bottom-ice algae concentrations in the range of
3–14 mg chl a m22 [Gosselin et al., 1997] and up to 22 mg chl a m22 [Melnikov, 1997]. Gosselin et al. [1997]
also observed a shift from low to high bottom-ice biomass with a shift from low to high latitude, which is
consistent with our chl a biomass values.

3.2. Spectral Measurements
Daily mean incident solar radiation (ES) generally decreased during both cruises and also decreased with lati-
tude, which was evident by the negative correlations of ES with day of the year and latitude (Table 2). Incident
solar radiation (PAR) was typically over 35 W m22 except at stations PS78/227, PS80/349, PS80/360, and PS80/
384, which fell below 20 W m22 (Table 1). These values were expected for the sampling season and regions
[Gosselin et al., 1997]. ROV-derived spectral properties of the sea ice were presented and discussed in Nicolaus
and Katlein [2013] and Nicolaus et al. [2012] for PS78, and in Katlein et al. [2014b] for PS80. Of the 73 bio-
optical core locations, under-ice irradiance (ET) and transmittance (TE) spectra from 49 core locations, and
under-ice radiance (IT) and transflectance (TI) spectra from 50 core locations were deemed of high quality and
used for the development of bio-optical models (supporting information Table S1).

During summer, snow effects can generally be neglected due to a lack of snow [Nicolaus et al., 2012], which
is applicable to both cruises as the presence of snow never exceeded 0.1 m. Strong negative correlations
were observed for ice thickness with TE and TI (Table 2). The strong correlation of ice thickness with TE and
TI is a result of the large range of ice thicknesses sampled (e.g., 0.05–3.53 m) in combination with the strong
influence of ice on light transmittance. The observed highly variable ice conditions had a large influence on
light transmission, which showed horizontal variability of one to two orders of magnitude on the same ice
floe for both FYI and MYI [Nicolaus et al., 2012]. The observed horizontal variability on the same ice floe is
the result of the influence of melt ponds on light transmittance. The length scale of melt-pond variability
was closely related to the length scale of light transmittance [Katlein et al., 2015; Perovich et al., 1998; Petrich
et al., 2012] due to the higher transmittance of melt ponds [Nicolaus et al., 2012]. Overall, FYI showed higher
transmittance than MYI during PS78 [Nicolaus et al., 2012], which was also the case for PS80. The observed
difference between MYI and FYI is mainly influenced by melt-pond coverage since relatively similar trans-
mittance values were observed during PS78 when compared between white (not ponded) MYI (0.01) and
white FYI (0.04), and between ponded MYI (0.15) and ponded FYI (0.22) [Nicolaus et al., 2012]. This pattern is
consistent with literature values of transmittance for FYI and MYI in other regions of the Arctic Ocean during
summer [Light et al., 2008; Perovich et al., 1998]. Furthermore, FYI has a larger areal coverage of melt ponds
compared to MYI, which causes FYI to have nearly a threefold greater total (PAR) areally averaged transmit-
tance (0.11) compared to MYI (0.04) [Nicolaus et al., 2012].

Critical minimum under-ice irradiance, ET, levels for algal growth have been reported between 0.4 and 2.0
W m22 (2–9 mmol photons m22 s21) [e.g., Gosselin et al., 1986; Horner and Schrader, 1982; Lange et al., 2015].
Stations PS80/360 and PS80/384 had mean ET values below this critical range (<0.4 W m22); stations PS78/

Table 2. Pearson Correlation Coefficient Matrix for all Combinations of Bio-Optical Core Location Bio-Environmental Variables

Snow Scat. Ice Day Lat. ES ET TE IT TI

chla 0.05 20.07 0.08 0.27* 0.47* 20.28* 20.22 20.17 20.22 20.15
Snow 20.20 0.08 0.37* 0.10 0.05 20.30* 20.29* 20.31* 20.33*
Scat. 0.23 20.40* 20.18 0.14 20.16 20.22 20.08 20.14
Ice 20.26* 0.03 0.11 20.37* 20.47* 20.33* 20.51*
Day 0.46* 20.56* 20.20 0.09 20.25 0.13
Lat. 20.68* 20.12 0.19 20.32* 0.03
ES 0.14 20.21 0.29* 20.18
ET 0.82* 0.94* 0.78*
TE 0.65* 0.97*
IT 0.73*

*Indicates significant correlation at p� 0.05.
Bold values indicate strong correlations �0.4.
Chla is the chlorophyll a concentration; ice is the sea ice thickness; day is the day of the year starting from January 1. Lat. is latitude;

Scatt. is the scattering surface layer depth; ES is incident solar radiation; ET is under-ice irradiance; TE is spectral transmittance; IT is
under-ice radiance; TI is spectral transflectance.
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227, PS78/238, PS78/245, and PS80/349 had mean ET values within this critical range (0.4–2.0 W m22); and
all other stations were above this critical range (Table 1). Even though the high-latitude stations PS80/360
and PS80/349 had mean ET values below or within the critical range these stations still had the highest
mean ice core chl a concentrations compared to the other stations. Loss of algal biomass in summer is pri-
marily the result of losses due to ice melt [e.g., Grossi et al., 1987], and substantial loss of ice-algal biomass
had likely occurred prior to our sampling in 2012 [Boetius et al., 2013]. The higher latitude and dominance
of thicker MYI at stations PS80/360 and PS80/349 probably resulted in lower melt rates, due to less internal
energy absorption by MYI compared to FYI [Nicolaus et al., 2012], and subsequently less algal biomass loss
due to melt before our sampling.

3.3. Model Performance
3.3.1. Comparison of Statistical Approaches
The two highest-ranking predictive models were based on an EOF approach, and had considerably higher
R2 values (�0.9) and lower RMSE values (<0.8) than all other predictive models (Table 3). The two NDI-
based predictive models in our selection were based on the ‘‘high-chl a’’ data subset (N 5 15), using radi-
ance data (rank 3) and transmittance data (tied for rank 4), respectively. Only the EOF models ranked first
and fourth, however, combined large data subsets (N 5 38 and N 5 50, respectively), which suggests these
models are more reliable than the best ranked NDI models with smaller samples sizes. The most reliable
EOF models also incorporated spectral measurements that take into consideration the incoming solar radia-
tion, indicating a wide applicability under varying incoming light conditions (Table 3). Furthermore, the
inclusion of larger data sets by these EOF models indicates that these models can account for the large
range of environmental conditions (e.g., sea ice thickness, scattering layer depth, and melt ponds) experi-
enced during the cruises.

Based on the model biases, there appear to be no obvious trends between statistical approaches of the five
most reliable predictive models, with all values near zero (Table 3). However, the biases of the models
applied to the high-chl a and low-chl a data demonstrate that the NDI-based approaches underestimate
the high-chl a data while overestimating the low-chl a data. The EOF-based approaches demonstrated low
model biases and low biases when applied to both high-chl a and low-chl a data. The cause of the higher
biases for the NDI-based approaches was likely the result of the large range of environmental conditions
experienced during the cruise. This had a large influence on the variability of the spectral radiation meas-
urements, which was not sufficiently accounted for in the NDI models.

A complete list summarizing all 96 reference models for each combination of spectral measurement with a
statistical approach and a data subset was provided in supporting information Table S2. Based on the

Table 3. Summary of the Top Five Predictive Models

Model ID EOF-Transmittance EOF-Radiance NDI670-Irradiance EOF-Transflectance NDI670-Transmittance

N (sample size) 38 15 15 50 15
Equation: ln[E(chl aadj)] 5 0.7 2 3.0s2 1

1.1s4 1 2.4s6 26:5s2
713:9s2

9

2.0 1 2.7s4 – 1.7s5

– 1.0s6 22:3s2
2210:0s2

8

2.2
1 10.8NDI669:683

0.3 1 1.5s2

21.7s4 1 2.0s7

1 3.2s9 18:6s2
9

1.2 2 11.1NDI678:684

Model R2 0.90 0.95 0.73 0.74 0.70
RMSE 0.77 0.66 1.58 1.12 1.65
bias 20.02 20.08 0.02 20.12 0.06

Bias of model applied to subset: High-chla 20.01 20.08 0.02 20.01 0.06
Low-chla 0.00 0.00 2.09 0.00 1.96

R2 of model applied to subset: All 0.88 0.56 0.54 NA 0.63
PS78 20.11 NA 20.08 NA 0.01
PS80 NA 0.55 0.60 0.74 0.64
MYI 0.94 0.55 0.68 0.76 0.62

Low-chla 20.01 20.02 0.07 0.00 0.06
high-chla 0.93 NA NA 0.82 NA

meana 0.53 0.41 0.36 0.58 0.39
Cross validation RMSE 1.81 1.81 1.89 2.46 2.01

NRMSEb 0.15 0.17 0.18 0.21 0.19
Ranking R2 meana 4 9 13.5 2 11

NRMSEb 6 7 8 23 14
Mean 1 2 3 4.5 4.5

a,bDepict the matching model statistic and corresponding ranking criterion variable.
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model R2 values, the EOF-based models performed generally better than the three NDI-based approaches
(supporting information Table S2). Among the NDI-based approaches, multi-NDI and NDI670 performed
best. The good performance of the multi-NDI approach was probably driven by good relationships in the
NDI670 values because overall the NDI440 models demonstrated the lowest R2 values.

Similar studies have provided no model error estimate [e.g., Melbourne-Thomas et al., 2015] or provided the
model RMSE [e.g., Campbell et al., 2014; Taylor et al., 2013] as a measure of model uncertainty, which is
always an underestimate of the true prediction error. The true prediction error estimate is particularly
important to assess the uncertainty of predictions made using new (spectral) data. Here we provided an
assessment of the true prediction error for the models using RMSECV values (Table 3), which are often over
double the model RMSE values (Table 3). For our predictive models, these values appear to be in an accept-
able range considering the variability of environmental conditions. For comparison, all predictive models
true prediction error estimates, RMSECV (Table 3), were lower than the model RMSE provided by Campbell
et al. [2014].

All five selected predictive models demonstrated high variability in predicting low-chl a values of the low-
chl a subset and the PS78 data subset (i.e., <2 mg msupporting information2; Table 3). This is expected,
since with low-chl a concentrations there is less absorption of light by algal biomass, which enhances the
relative influence of other environmental properties on the transmitted spectra, such as ice thickness, scat-
tering layer and melt ponds. The two selected predictive models based on NDI670 had relatively large posi-
tive biases when applied to low-chl a (Table 3), suggesting that the NDI670 models applied to independent
data may also result in overestimation of low-chl a regions. This is not surprising since these two NDI-based
predictive models were fitted to high-chl a data. Even though the EOF models also had large errors associat-
ed with predicting the variability of low-chl a, these models had practically no directional bias when applied
to low-chl a and high-chl a (Table 3), suggesting that these EOF models can correctly differentiate between
low, medium, and high-chl a concentrations, and are less likely to result in over-estimations or under-
estimations when applied to independent spectral data.

An overall better performance of models using an EOF-based approach can be attributed to the fact that
the EOF method accounted for a larger range of spectral variability by including multiple regions of the
spectra, which were represented by the different EOF modes. Wavelength-dependent changes in the shape
of the radiance spectra due to, e.g., ice thickness or melt ponds, were captured by the dominant signal of
spectral variability, mode 1. The fact that mode 1 was not included in the most reliable model and because
the modes are orthogonal, implies that the EOF approach accounts for this wavelength-dependent variabili-
ty within mode 1 (i.e., it removes the influence from other modes). Therefore, other modes can show more
of the spectral variability caused by chl a absorption. In ocean color remote sensing, increasingly complex
algorithms have been developed to include more spectral bands in order to account for the many variables
that influence ocean optics other than phytoplankton chl a [e.g., Craig et al., 2012]. In the ocean, this is
mostly CDOM or particles, but for sea ice, the snow and ice matrix generally have a much larger influence
on light penetration compared to any single variable in the ocean. The variability of under-ice and incoming
spectra was particularly important during our study due to the large range of environmental properties
experienced in terms of latitude, ice thickness, state of melt, and melt-pond coverage. In comparison, previ-
ous studies were performed in more uniform ice properties over a smaller latitudinal range [e.g., Campbell
et al., 2014, 2015; Melbourne-Thomas et al., 2015; Mundy et al., 2007].

The modes of oscillation (Figure 4) show the signatures of change within the spectral measurements due to
different variables that influence the transmission of light through sea ice. Mode 1 alone explained most of
the spectral variability (�95%), but was not selected in any reference model. This is not surprising, since the
shape of the mode of oscillation closely resembles that of the spectral extinction coefficient curves for snow
and ice [Grenfell and Maykut, 1977]. Furthermore, mode 1 had a significant medium-to-strong correlation
with the presence of melt ponds, indicating that melt ponds had a large influence on spectral variability.
This is expected since melt ponds are known to transmit more light [e.g., Katlein et al., 2015; Light et al.,
2008; Nicolaus et al., 2012].

For each of the modes included in the EOF-transmittance model (modes 2, 4, 6, 7, and 9) there was at least
one local maximum or minimum corresponding to one of the maximum chl a absorption regions (Figure 4).
Accordingly, four out of five modes, for both EOF-based predictive models, have medium to strong
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significant correlations with chl a, and two of the five modes for the EOF-Transmittance model (s6 and s2
9)

and one of five modes used in the EOF-Transflectance model (s7) have strong significant correlations with
only chl a (Table 4). The modes that have strong correlations with only chl a also are associated with high
changes in BIC when the term is removed from the model.

The proportion of variance explained by the modes used in the selected most reliable EOF-based predictive
models was relatively low compared to those found in other studies [e.g., Craig et al., 2012; Melbourne-
Thomas et al., 2015]. Taylor et al. [2013] included modes 5–9 in their analyses and showed that even subor-
dinate modes which explained smaller proportions of the spectral variance still had an important influence
on the models based on change in the Akaike Information Criterion (AIC). Their study related spectral radi-
ance to phycoerythrin concentrations, which is an accessory pigment and therefore has a smaller influence
on light absorption compared to chl a. This could explain why the subordinate modes were important in
the model, since they captured the smaller variations caused by the spectrally less influential phycoerythrin
pigment [Taylor et al., 2013]. Similarly, during our study, ice-algal chl a concentrations had a smaller influ-
ence on spectral light transmission relative to, e.g., ice thickness, melt ponds, incoming light and solar incli-
nation. Because the physical properties of the snow and ice matrix dominate the influence of light
transmission, the variability of chl a concentrations in sea ice appears to be best represented by subordinate
modes explaining a smaller part of the EOF variability compared to approaches estimating chl a concentra-
tions in water.
3.3.2. Comparison of Spectral Measurements
Significant correlations of ice core chl a with latitude and ice core chl a with solar radiation (Table 3) suggest
that care is needed when interpreting models that do not account for the variability of incoming solar

Figure 4. EOF modes represented as modes of oscillation in the entire standardized spectral Transmittance data set. The modes of oscillation were calculated by projecting the spectral
matrix (X) onto the EOF matrix (S), showing the loadings for each wavelength by mode. Included is the proportion of variance explained by each corresponding mode. Gray shaded areas
represent the maximum chl a absorption regions centered at 440 and 670 nm.
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radiation (i.e., under-ice irradiance and radiance). Of the five selected predictive models, the lowest-ranking
NDI670 model uses under-ice irradiance for the high-chl a data subset. In this data subset there was a signifi-
cant negative correlation between chl a and incoming solar radiation (r 5 20.58, n 5 15, p 5 0.02), and a
trend between chl a and under-ice irradiance (r 5 20.46, n 5 15, p 5 0.08). No correlation was observed
between chl a and integrated transmittance for the high-chl a data subset. The fact that these variables
already showed a significant correlation implies that building a model with these two variables may influ-
ence the model in an unknown way. For example, the observed correlation between chl a biomass and the
strength of the incoming light field may produce artificially high predictive performance of these models,
which is not due to the chl a absorption of the light. In contrast, the fact that transmittance was not signifi-
cantly correlated with chl a biomass provides more reliability in models built from these spectral data.
Because we cannot be certain to what extent the performance of the irradiance-based and radiance-based
models were influenced by variations within the incoming solar irradiance, we excluded the two selected
predictive models using under-ice radiance and irradiance data (e.g., EOF-radiance and NDI670-irradiance)
from further analyses.

Previous studies presented reliable models for estimating ice-algal chl a concentrations using under-ice irra-
diance, which do not account for variations of incoming solar radiation. These studies covered small local
study regions during early spring [Mundy et al., 2007] and spring-summer transition [Campbell et al., 2014,
2015], and had a comparably lower latitudinal range during austral spring [Melbourne-Thomas et al., 2015],
and therefore had less variability in the magnitude of the incoming light field. These studies were also con-
ducted during a time when snow had a dominant influence on light transmittance. This together with the
generally better performance of transmittance and transflectance models suggests that incoming solar radi-
ation should always be measured and accounted for in bio-optical predictive models extending over a large
spatial and/or temporal range. The additional time and logistical requirements incurred by operating an
additional sensor is minimal making it all the more realistic to incorporate this important methodological
advancement in future field programs.

3.4. Bio-Optical Predictive Model Up-Scaling
The aim of model development and selection was to derive a predictive model that is best at estimating
ice-algal chl a concentrations from independent spectral data over large spatial scales collected by an ROV
and a SUIT. The EOF-Transmittance (PS80 data subset, N 5 38) model was chosen as the most reliable pre-
dictive model based on the ranking of the mean robustness R2 and the NRMSE (Table 3). We excluded the
EOF-radiance predictive model (ranked second) and NDI670-irradiance predictive model (ranked thrid; Table
3) due to correlations of chl a with incoming light and under-ice irradiance, which left the EOF-

Table 4. Correlation Matrix Between EOF Modes (s1–s9, s2
1–s2

9) and Bio-Environmental Properties for the Three Most Reliable EOF modelsa

Model Variable s1 s2 s3 s4 s5 s6 s7 s8 s9 s2
1 s2

2 s2
3 s2

4 s2
5 s2

6 s2
7 s2

8 s2
9

EOF-
Transmittance

Model Terms s2 s4 s6 s2
7 s2

9

Chl a 0.28 20.35* 20.08 0.33* 20.04 0.49* 0.18 20.04 20.36* 20.28 0.29 20.04 0.08 0.04 0.63* 0.21 0.06 0.59*
Melt pond 0.38* 20.32* 20.40* 20.10 20.25 20.15 20.20 0.14 20.12 20.38* 0.37* 0.36* 0.18 20.03 0.12 0.36* 0.32 20.10
snow 20.07 20.13 0.49* 0.08 0.55* 20.10 0.18 0.11 20.16 0.06 20.08 0.28 0.03 0.37* 20.07 0.02 20.14 0.06
Scatt. 20.15 0.33* 20.13 0.19 0.03 0.10 20.26 20.37* 0.25 0.16 20.16 20.16 20.07 20.26 20.25 20.22 20.10 20.04
ice 20.15 0.43* 20.10 0.53* 0.40* 20.06 20.06 20.18 0.03 0.15 20.16 20.01 20.15 20.13 20.15 20.22 20.17 0.17

EOF-
Transflectance

Model Terms s2 s4 s7 s9 s2
9

Chl a 0.25 0.31* 0.00 20.32* 20.10 0.01 0.36* 0.27 0.34* 20.24 0.24 20.07 0.16 0.18 0.20 0.41* 0.03 0.13
Melt pond 0.39* 0.28* 0.42* 20.10 20.27 0.17 20.21 20.03 20.04 20.40* 0.40* 20.02 0.16 20.06 0.45* 20.04 0.02 0.03
snow 20.07 0.19 20.53* 0.05 0.43* 20.15 0.18 0.03 0.32* 0.06 20.09 0.45* 0.00 0.33* 20.12 0.17 20.16 20.04
Scatt. 20.04 20.29* 0.04 20.14 20.07 20.06 20.01 20.32* 20.28 0.03 20.02 20.13 20.06 20.11 20.11 20.17 0.30* 0.03
ice 20.16 20.52* 20.24 20.47* 0.25 20.05 20.18 0.07 20.13 0.16 20.17 0.24 20.11 20.10 20.26 0.15 0.02 20.01

EOF-
Radiance

Model Terms s4 s5 s6 s2
2 s2

8

Chl a 0.19 0.15 20.04 0.63* 20.23 0.05 20.25 0.18 20.38 20.19 0.20 20.14 0.28 0.03 20.23 0.30 20.19 0.05
Melt pond 0.55* 20.53* 0.31 0.39 20.57* 20.10 20.03 20.26 0.10 20.53* 0.52* 0.32 0.15 0.56* 0.25 20.34 0.28 20.21
snow 0.17 20.32 20.61* 0.10 0.51 20.30 20.06 0.11 20.14 20.21 0.21 0.27 20.42 0.04 0.00 0.46 20.12 20.23
Scatt. 20.40 0.14 0.46 20.70* 0.16 0.06 20.17 20.16 0.20 0.42 20.42 20.26 0.33 20.28 20.37 20.50 20.23 0.44
Ice 20.13 0.24 0.00 20.10 0.89* 20.08 0.10 0.02 0.11 0.11 20.10 20.21 20.15 20.46 20.15 20.03 20.07 0.00

Refers to significant correlations at p� 0.05; Scatt. is the depth of the surface scattering layer. Snow is snow depth; ice is the ice core length; s1 to s9 are EOF modes 1 to 9; s2
1 to s2

9

are EOF modes 1–9 squared.
aModel terms show only the modes used as terms in the corresponding model.
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Transflectance (All data subset, N 5 50) predictive model and the NDI670-Transmittance (hereafter referred
to as NDI-Transmittance, N 5 15) predictive model for further analyses and comparison. These three predic-
tive models were applied to spectral data collected during two ROV stations (PS80/360 high-latitude site;
PS80/323 lower-latitude site) and two SUIT stations (PS80/358 high-latitude site; PS80/285 lower-latitude
site).

At the high-latitude ROV and SUIT stations (PS80/360 and 345), the NDI-Transmittance predicted values
were, in general, comparable with EOF-Transmittance and EOF-Transflectance predicted values in terms of
the location of the density distribution peaks (e.g., modes in Figures 5b and 6b), and median and range of
values (Table 5). However, the NDI-Transmittance predicted values had low variability within and between
all SUIT and ROV stations in comparison to the EOF-based predicted models and ice core chl a values (Table
5 and Figures 5b, 5d, 6b, 6d). At the low-latitude SUIT (PS80/285) and ROV (PS80/323) stations it was appar-
ent that the NDI-Transmittance predictive model over-estimated low-chl a values compared to the EOF-
based predictive models. This was particularly evident from the substantially higher values observed within
chl a density distributions for the NDI-Transmittance predicted values compared to EOF-based predicted
values (Figures 5d and 6d). Furthermore, there was a large difference between the low-latitude station sum-
maries of NDI-Transmittance predicted chl a values and ice core chl a concentrations (Table 5). Since the
over-estimation of low-chl a values and low variability appears to be a constant feature of the NDI-

Figure 5. (a and b) Sea ice-algal chl a estimates derived from Remotely Operate Vehicle (ROV) under-ice spectral radiation measurements
conducted at high-latitude station PS80/360; and (c and d) at low-latitude station PS80/323. (a and c) The spatial distribution of EOF-
Transmittance model chl a estimates with numerical values of the ice core chl a concentrations overlaid at corresponding grid locations.
Positions in Figures 5a and 5c are given in a floe fixed coordinate system relative to the ship’s GPS receiver. Transect-AB is depicted in
Figure 5a by a dashed line. (b and c) Weighted (based on point footprint size) density distributions of estimated chl a from the top three
predictive models EOF-Transmittance, EOF-Transflectance, and NDI-Transmittance.
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Transmittance predictive model, we suggest it was a less reliable predictive model compared to the EOF-
based predictive models when applied to larger-scale independent spectral data. Although uncertainty is
also high for low-chl a values for the EOF-Transmittance and EOF-Transflectance models, the biases are low
(almost zero) and therefore over larger-scales should result in minimal over-estimation/under-estimation
biases of ice-algal chl a. The EOF-based predictive models both showed comparable median and range of
chl a values at the same stations (Table 5). Hence, both EOF-based models showed similar regional differ-
ences in chl a concentrations with higher values at the higher latitude stations (Table 5), which is also in
agreement with the general trend of our ice core chl a concentrations. Overall, however, there was little cor-
relation between the EOF-Transmittance and EOF-Transflectance predictive models’ estimated chl a values.

Figure 6. (a and b) Surface and Under-Ice Trawl (SUIT) spectral radiation-derived sea ice-algal chl a estimates for high-latitude station
PS80/345; and (c and d) for low-latitude station PS80/285. (a and c) The horizontal profile of the EOF-Transmittance model chl a estimates
and sea ice draft over the trawled distance, values >0 correspond to chl a (mg m22) and values <0 correspond to draft (m). The horizontal
widths of the bars in Figure 6a and 6c depict relative along-track footprint size. Note the difference in trawled distance in Figures 6a and
6c. (b and c) Weighted (based on point footprint size) density distributions of estimated chl a from the top three predictive models EOF-
Transmittance, EOF-Transflectance, and NDI-Transmittance.

Table 5. Summary of Ice Core chl a and chl a Estimates Derived From Under-Ice Spectral Radiation at the Selected Under-Ice Horizontal
Profiling Platform Stationsa

Region
Platform-

Station

Distance,
Spacing

(m)b
Footprint

(m2)c
Core chl a
(mg m22)

EOF-Transmittance
Predicted chl a

(mg m22)

EOF-Transflectance
Predicted chl a

(mg m22)

NDI-Transmittance
Predicted chl a

(mg m22)

High-latitude ROV-PS80/360 180, 0.9 3.0/0.02 7.25
(4.86–8.99) [4]

3.7 (2.1–5.9) [821] 2.3 (1.6–3.3) [960] 2.6 (1.2–3.5) [927]

SUIT-PS80/345 625, 24 3.5/0.11 3.2 (0.0–5.0) [23] 2.1 (1.1–4.9) [26] 3.0 (2.6–3.3) [34]
Low-latitude ROV-PS80/323 180, 0.5 2.6/0.02 0.17

(0.06 – 0.23) [6]
0.8 (0.5–1.1) [1568] 0.01 (0.00–0.11) [1667] 2.7 (2.5–2.8) [1569]

SUIT-PS80/285 1500, 14 1.6/0.05 0.4 (0.0–1.5) [102] 1.6 (0.9–2.5) [110] 2.7 (2.5–3.0) [118]

aROV: Remotely Operated Vehicle; and SUIT: Surface and Uunder-Ice Trawl. Ice core and predicted chl a values represent the median
(50th percentile), interquartile range (25th–75th percentiles), and sample size [N].

bDistance refers to the distance covered by the profiling platform (e.g., maximum distance between any two points); spacing is the
mean spacing between all adjacent points.

cFootprint is the mean of all point footprints for Transmittance/Transflectance, respectively.

Journal of Geophysical Research: Oceans 10.1002/2016JC011991

LANGE ET AL. ICE-CHL a USING SPECTRAL PLATFORMS 20



This can be explained by their different mean footprint size, which was 1.5 m for the irradiance sensor, and
0.15 m for the radiance sensor.

In order to account for ROV position uncertainty and the variable footprint size of spectral measurements
when comparing independent spectral radiation-derived chl a to ice core chl a concentrations, we took the
weighted (based on footprint of each spectral measurement) mean of all bio-optical chl a estimates that
were within 1.5 m of each 1 m bin along an 85 m transect (transect-AB Figures 5a and 7). Points within two
adjacent overlapping bin areas were assigned to only the closest bin location. Transect-AB includes four ice
core sample locations, with the ice core chl a concentration values overlaid on the ROV measurement grids
(Figures 5a and 5c). The first three ice core chl a observations were within the range of values predicted by
the EOF-Transmittance model, for the 1.5 m region surrounding the core locations. The estimated chl a val-
ue at the end of the transect (�85 m), however, was lower than the corresponding ice core value, but still
within the model uncertainty (RMSECV of 1.8 mg chl a m22; Figure 7). The EOF-Transmittance model showed
a better fit to the ice core chl a observations compared to the EOF-Transflectance and NDI-Transmittance
predictive models, which further confirms that the EOF-Transmittance model performs best as a predictive
model also indicated by the final model ranking.

A tentative assessment of the spatial variability of ice-algal chl a concentrations indicates that large-scale
estimates of ice-algal biomass and primary production are sensitive to the choice and number of ice cores
analyzed compared to continuous spectral profiles, which capture the variability of ice-algal chl a concen-
trations over larger distances. Based on the up-scaled (SUIT and ROV) EOF-Transmittance predictive model
results (Figures 5a, 5c, 6a, and 6c) and the extracted 85 m transect-AB from the ROV station PS80/360 (Fig-
ure 7) it is apparent that ice algae biomass has a patchy distribution, which is well-known. Regardless of the
patchy distribution, Arctic-wide sea ice primary production estimates, which integrated standing stock chl a
biomass, used only one to three core samples per location [e.g., Fern�andez-M�endez et al., 2015; Gosselin
et al., 1997]. The four bio-optical cores sampled along transect AB had an average chl a concentration of
6.6 mg m22. The range of the four cores (�0 to 12 mg chl a m22), however, indicates that basing large-
scale estimates on a small number of ice cores carries large uncertainties in biomass and subsequent
derived primary production estimates. Based on one ice core sample with an ice-algal biomass of 8 mg chl
a m22, Fern�andez-M�endez et al. [2015] estimated that ice algae contributed up to 60% of the total primary
production at ice station PS80/360. Along transect AB chl a concentrations of sea ice estimated by our most
reliable bio-optical predictive model (EOF-Transmittance; Figure 7a) yielded a considerably lower weighted
median and interquartile range of 4.0 (2.8–6.4) mg chl a m22, which was also evident from the full ROV sur-
vey values for that site (Table 5). A potential difference of over 50% between ROV spectral radiation-derived
chl a concentration estimates compared to published chl a values based on ice core measurements at the

Figure 7. Sea ice-algal chl a concentrations along Transect-AB (depicted in Figure 6) extracted from ROV station PS80/360. Shown are ice
draft (m), ice core chl a values (points) at corresponding locations along the transect, and EOF-Transmittance predictive model chl a esti-
mates along the transect. Model predicted chl a values correspond to: exactly on the transect (on-transect), and weighted (based on foot-
print size) mean and range of values within 1.5 m of the transect. Y axis values> 0 correspond to chl a (mg m22) and values below zero
correspond to draft (m). Stippled horizontal line depicts draft of 21 m.
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same location emphasizes the importance of high-resolution measurements to capture the spatial variabili-
ty of ice-algal biomass for large-scale biomass and primary production estimates. In order to conduct
detailed spatial analyses of ice-algal biomass chl a, however, further geospatial processing of the data is
required and is beyond the scope of this study.

4. Conclusions

With this first large-scale bio-optical summer study in the Arctic Ocean, we demonstrated the suitability of
different combinations of statistical approaches with four spectral measurements for deriving ice-algal chl a
concentrations in sea ice, and their application to larger scale spectral measurements. For these late-
summer Arctic data, the EOF models performed better than the NDI models, particularly at differentiating
between low, medium, and high-chl a concentrations. We attributed this to the ability of the EOF models to
account for the high variability of environmental properties by incorporating variability from multiple
regions of the spectra. Compared to the more complex EOF-based approach, the NDI-based approach may
be more easily applied and often suitable, depending on the variability of light conditions, sea ice proper-
ties, and sea ice-algal chl a concentrations. Regardless of the statistical approach taken, accounting for
incoming solar radiation by calculating transmittance and transflectance resulted in superior models com-
pared to simply using under-ice irradiance or radiance. This is particularly important for studies covering
large (e.g., ocean basin) spatial and temporal scales, and therefore a wide range of incident light conditions.
Considerable discrepancy between mean chl a concentrations derived from our most reliable bio-optical
model applied to a 85 m spectral transect in comparison to published chl a values based on ice core meas-
urements at the same location highlights the need of high-resolution measurements to capture the true
variability of ice-algal biomass in the context of large-scale estimates and modeling studies. The increasing
use of ROVs and AUVs equipped with spectral sensors means that spectral data for making large-scale chl a
estimates will become more widespread with continued technological advancements. This study provides a
comprehensive analysis of the potentials and limits of predicting chl a concentrations in Arctic summer sea
ice from spectral data under variable environmental conditions. Furthermore, we presented a detailed
methodological approach for studies extending over large spatial and/or temporal scales, using, e.g., auton-
omous vehicles or moored sea ice observatories.
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