Contribution to the Supplement: ‘Lobsters in a Changing Climate’

Original Article

Phyllosomata associated with large gelatinous zooplankton:
hitching rides and stealing bites

Richard O’Rorke1*, Shane D. Lavery1,2, Miao Wang2, Ramón Gallego1, Anya M. Waite3,4, Lynnath E. Beckley5, Peter A. Thompson6, and Andrew G. Jeffs2

1 School of Biological Sciences, University of Auckland, Auckland, New Zealand
2 Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Warkworth, New Zealand
3 School of Environmental Systems Engineering and the Oceans Institute, University of Western Australia, Crawley, WA, Australia
4 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
5 School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
6 Australian Commonwealth Scientific Industrial and Research Organisation, Hobart, TAS, Australia

*Corresponding author: e-mail: roro002@aucklanduni.ac.nz

Received 25 June 2014; revised 24 August 2014; accepted 27 August 2014; advance access publication 3 October 2014.

During a zooplankton survey 350 km off the coast of Western Australia, we captured a large and robust zooid of a salp (Thetys vagina), to which six late stage larvae (phyllosomata) of the western rock lobster (Panulirus cygnus) were attached. High-throughput sequencing analyses of DNA extracts from midgut glands of the larvae confirmed that each phyllosoma had consumed mainly salp tissue (\(\bar{x} = 64.5\% \pm 15.9\) of DNA reads).

These results resolve long-standing conjecture whether spiny lobster phyllosomata attach to large gelatinous hosts to feed on them.

Keywords: food web, Indian Ocean, PCR, phyllosoma, plankton, pyrosequencing, salp, spiny lobster, Thetys, trophic level.

Introduction

For many years, there has been conjecture that spiny lobster (Family Palinuridae) phyllosoma larvae might attach themselves to large gelatinous zooplankton for assistance with locomotion and possibly to feed upon them (Jeffs, 2007). This hypothesis was partly extrapolated from in situ observations of phyllosomata of slipper lobsters (Family Scyllaridae; a family related to spiny lobsters) attached to, and most probably consuming, large cnidian medusae (Shoji, 1963; Thomas, 1963; Herrkind et al., 1976; Ates et al., 2007) as well as captive feeding trials where the phyllosomata were capable of clinging to, and consuming the entirety of a wide variety of jellyfish medusae (Wakabayashi et al., 2012). Spiny lobster phyllosomata have never been directly observed in the wild due to their small size, transparent morphology, and far offshore habitat (extending to over 1500 km offshore, Phillips et al., 1979), which makes direct observations of the nature of any association with large gelatinous zooplankton unlikely. Phyllosomata can grip and manipulate other animals by the use of dactyls at the end of their limbs (Wakabayashi et al., 2012), and on Panulirus cygnus the dactyl of the second pereiopod is particularly large and suited to this purpose (Braine et al., 1979: refer video in supplementary files). However, their grip on their hosts is unlikely to survive sampling, because large gelatinous pelagic organisms, such as colonial radiolaria and siphonophores, often disintegrate when sampled in zooplankton net tows. This means that even if phyllosomata do adhere to them, it will be unlikely to observe them doing so in net hauls.

In this study, we report the capture by net tow of a large and robust zooid of a salp (Thetys vagina), to which six late stage larvae (phyllosomata) of the western rock lobster (Panulirus cygnus) were attached. High-throughput sequencing analyses of DNA extracts from midgut glands of the larvae confirmed that each phyllosoma had consumed mainly salp tissue (\(\bar{x} = 64.5\% \pm 15.9\) of DNA reads). These results resolve long-standing conjecture whether spiny lobster phyllosomata attach to large gelatinous hosts to feed on them.

Keywords: food web, Indian Ocean, PCR, phyllosoma, plankton, pyrosequencing, salp, spiny lobster, Thetys, trophic level.

© International Council for the Exploration of the Sea 2014. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
A zooplankton net tow of surface water taken on 29 August 2011 between 02:00 and 02:05 AWST at 31.09° S, 111.43° E ~350 km off the Western Australian coast following the methods of Wang et al. (2014) recovered a salp zoid to which six late stage P. cygnus phyllosomata were attached (Table 1). The phyllosomata were all in a typical clinging posture adopted by phyllosoma while feeding with the ventral surface on the cephalic shield, which contains the mouthparts, pressed against the outer surface of the salp zooid. The salp was 115 × 55 mm at its longest and widest dimensions and was identified by Dr Lisa-ann Gershwin (CSIRO-Marine & Atmospheric Research, Australia) to be *Thetys vagina*, based on its unique morphology. DNA was Chelex™ (Bio-Rad) extracted from tissue of the salp, and a short 18S rDNA region was PCR-amplified and sequenced using the Uni1304F and Uni1670R primers and protocol from Larsen et al. (2005). The sequenced *Thetys vagina* (Genbank accession KM360161) locally aligns to *Thetys vagina* sequences on the NCBI database. However, it does not have a perfect match on the database and was only a 91.2% match to that of the only other 18S sequence of this species previously reported on Genbank (from the NW Atlantic; Govindarajan et al., 2011). From examination of the outer surface of the salp upon landing on the research vessel, it was not possible to determine whether loss of salp tissue was associated directly with predation from individual phyllosoma due to the irregularity in the surface of the salp. Therefore, a DNA approach was adopted to determine if the phyllosomata had consumed salp material. DNA was extracted from the midguts of the phyllosomata using 31 gauge syringes (O’Rorke et al., 2013a) and also extracted from the codend of the net from which the salp was recovered, as well as from PCR-grade water-only negative control taken from water drained from the codend. PCR amplifications of the v7 and v9 regions of the 18S rDNA were performed according to O’Rorke et al., 2012a,b and sequenced at Macrogen (Korea) on the 454 GS platform using Titanium chemistry.

Sequenced DNA reads were processed in MOTHUR (Schloss et al., 2009) using methods outlined in O’Rorke et al. (2013b) and it was found that DNA was successfully amplified from four of these six phyllosomata and each of these phyllosomata contained a majority of DNA fragment sequence reads that were identified as belonging to salp (Thaliacea) (x ± SE = 64.5% ± 15.9) (Figure 1). DNA failing to amplify in approximately one-third of phyllosomata is not unusual and could be due to these two phyllosomata only recently attaching to their host, perhaps after capture in the net (O’Rorke et al., 2012). However, it is very unusual to have the same OTU detected in such abundance in every phyllosoma sampled from a single site (Suzuki et al., 2008; Chow et al., 2010; O’Rorke et al., 2012a, b; 2013b). The difference between this study and previous studies is that the phyllosomata were not randomly distributed throughout the plankton, but were all adhering to a single animal. Two loci of the 18S rRNA gene were amplified and sequenced, which both showed the same distribution of DNA sequence reads (Figure 1), which indicates that the dominance of thaliaceous reads was not an artefact of primer bias. In addition to the gut contents of the phyllosomata being sequenced, a sample of cod-end water was also collected to control for the remote possibility that we were detecting DNA that had been passively ingested by the phyllosoma. For this, 5 mL of mixed codend water was passed through a 0.5-µm syringe filter (Millipore) into 10 mL of pre-chilled EtOH and stored at −20°C. A 0.5-µm filter was used because this is the exclusion size of the filter press of late stage phyllosomata (Smith et al., 2009; Simon et al., 2012). Perhaps surprisingly, this control contained no salp DNA, but was dominated by DNA from colonial radiolarians. Colonial radiolarians are a significant component of the zooplankton assemblage in the East Indian Ocean, although they do disintegrate when sampled by nets (Stemmman et al., 2008), and it is therefore not surprising that their DNA was detected in the codend sample.

After salp DNA, the second most abundant organisms in each phyllosoma were not identical between samples, with phyllosomata 2 and 4 containing ~25% of DNA from an anthozoan (Cerianthia) and a bony fish, respectively. This suggests that each phyllosoma was either feeding on a different prey item before encountering the salp or that they were also feeding on other food sources while attached to the salp. Captive phyllosomata have been observed to feed on a range of gelatinous zooplankton such as fish larvae, chaetognaths, ctenophores, and cnidarians (Mitchell, 1971; Kititaka, 1997), which are all a significant part of the plankton assemblage of the East Indian Ocean (Sawström et al., 2014). In a previous experiment, it has been determined that *P. cygnus* phyllosomata are preferential feeders that consume arrow worms over either salps or krill in a prey-choice experimental design (Saunders et al., 2012). This, along with the present study, indicates that *P. cygnus* phyllosomata are opportunistic predators, attaching themselves and feeding on large prey items, such as salps when they are available. This is consistent with the fact that salps are relatively poor in lipids, protein, and available energy (Wang and Jeffs, 2013; Wang et al., 2013), but they are large and represent a high level of readily digestible biomass that is a guaranteed meal in the absence of better prey options. *P. cygnus* larvae may not consume the entirety of their hosts, unlike some slipper lobster larvae (Wakabayashi et al., 2012), because it is not clear that this is a good strategy for larvae in oceanic waters with low productivity. However, *T. vagina* zooids are emptied into “barrels” to become the homes of Phronimids (a Hyperiid amphipod), that the salp tissue continues to disintegrate when sampled by nets (Stemmman et al., 2008; Chow et al., 2010; Nakamura and Yount, 1958) and they can rapidly increase in numbers in response to bursts in productivity (Iguchi, 2006). Unfortunately, there are no data on the growth rates of Thetys, but they are the largest known salp (>300 mm length, Nakamura and Yount, 1958) and they can rapidly increase in numbers in response to bursts in productivity (Iguchi, 2006). Furthermore, phyllosomata that attach themselves to large animals that undergo vertical migration would be able to track the diurnal changes in prey density and therefore save considerable energy.

Table 1. Phyllosoma recovered from Thetys salp.

<table>
<thead>
<tr>
<th>Phyllosoma</th>
<th>Size (mm)</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27.25</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>16.75</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>19.5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>17.5</td>
<td>6</td>
</tr>
</tbody>
</table>

Length refers to the distance from the anterior margin of the cephalic shield (cephalothorax) from between the eyestalks to the posterior tip of the pleon. *DNA* from these phyllosomata did not amplify.
Conclusion

The unique discovery of spiny lobster phyllosomata attached and feeding on a large gelatinous zooplankter resolves conjecture that these animals share this behaviour of the larvae of their close relatives, the slipper lobsters. Sequencing of the gut contents of these spiny lobster phyllosomata confirms that they not only adhere to but also ingest the tissues of their gelatinous hosts. Locating and attaching themselves to large prey items could be an effective opportunistic feeding strategy that enables phyllosomata to survive in sparsely populated and oligotrophic oceanic waters. Importantly, by attaching to a large vertically migrating animal, the phyllosomata are able to conserve energy by not swimming, as well as having access to a meal of relatively magnificent size.

Acknowledgements

Dr Lisa-ann Gershwin (CSIRO-Marine & Atmospheric Research, Australia) for salp ID. The RV Southern Surveyor was provided by the Australian Marine National Facility under Grant SS05-2010. This project was funded by a grant from the Fisheries Research and Development Council of Australia under FRDC PROJECT NUMBER: 2010/047. The study was conducted with...
the financial support of the Australian Research Council’s Industrial Transformation Research Hub funding scheme (project number IH 120,100,032).

Supplementary data
Supplementary material is available at the ICESJMS online version of the manuscript.

References

Handling editor: Stéphane Plourde