Towards an integrated microbial observatory in the Arctic Ocean

Eddie Fadeev (efadeev@awi.de)
HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Alfred-Wegener-Institute Helmholtz-Centre for Polar and Marine Research and Max-Planck-Institute for Marine Microbiology
Global climate change causes remarkable changes in the Arctic region. These changes potentially affect the entire food web and the biogeochemical cycles in the Arctic Ocean.

Fig. 1: Sea ice extent change. (Image: GlobalChange.gov)
• Global climate change causes remarkable changes in the Arctic region

• These changes potentially affect the entire food web and the biogeochemical cycles in the Arctic Ocean

Declining Sea Ice Extent

Fig. 2: Arctic marine food web (Image: Woods Hole Oceanographic Institution)
The majority of the primary production in the Arctic is conducted by marine microorganisms.

- Form the basis of the marine food chain
- Have a major importance in the turnover of nutrients

Fig. 3: Carbon cycle in the marine environment. (Image: Chisholm, S.W. et al 2000)
The majority of the primary production in the Arctic is conducted by marine microorganisms.

Form the basis of the marine food chain.

Have a major importance in the turnover of nutrients.

Fig. 3: Carbon cycle in the marine environment. (Image: Chisholm, S.W. et al 2000)
Why microbes?

- The majority of the primary production in the Arctic is conducted by marine microorganisms
- Form the basis of the marine food chain
- Have a major importance in the turnover of nutrients

Fig. 3: Carbon cycle in the marine environment. (Image: Chisholm, S.W. et al 2000)
• Polar water characteristics change towards North Atlantic ones

• To understand the impact on the marine ecosystem, the research focused in the “Fram Strait”

Fig. 4: Fram Strait is wedged between Greenland and the Norwegian archipelago of Svalbard (Image: NOAA)
• Polar water characteristics change towards North Atlantic ones

• To understand the impact on the marine ecosystem, the research focused in the “Fram Strait”

Fig. 4: Fram Strait is wedged between Greenland and the Norwegian archipelago of Svalbard(Image: NOAA)
The main Atlantic-Arctic interaction zone

- Exchanges water masses between north Atlantic and the Arctic oceans
- The only gateway of deep waters in the Arctic ocean

Fig. 5: Transformation of warm subtropical waters into colder subpolar and polar waters in the northern North Atlantic. (Image: Cherkasheva, A. et al 2014)
• The main Atlantic-Arctic interaction zone

• Exchanges water masses between north Atlantic and the Arctic oceans

• The only gateway of deep waters in the Arctic ocean

Fig. 5: Transformation of warm subtropical waters into colder subpolar and polar waters in the northern North Atlantic. (Image: Cherkasheva, A. et al 2014)
• The main Atlantic-Arctic interaction zone

• Exchanges water masses between north Atlantic and the Arctic oceans

• The only gateway of deep waters in the Arctic ocean

Fig. 5: Transformation of warm subtropical waters into colder subpolar and polar waters in the northern North Atlantic. (Image: Cherkasheva, A. et al 2014)
• East Greenland current (EGC) transports Polar water and sea-ice southwards

• West Spitzbergen current (WSC) transports Atlantic water northwards

Fig. 6: Major current systems in Fram Strait. (Map: Google Earth)
To understand the ongoing changes in the ecosystem of Fram Strait, time-series studies are required.

Long-Term Ecological Research (LTER) observatory HAUSGARTEN was established in 1999.
- Covering all parts of the open-ocean ecosystem
- The sampling is conducted in annual summer expeditions
- Provides infrastructure for interdisciplinary marine research

Fig. 7: LTER observatory HAUSGARTEN sampling sites. (Image: Soltwedel, T. et al 2015)
• Covering all parts of the open-ocean ecosystem

• The sampling is conducted in annual summer expeditions

• Provides infrastructure for interdisciplinary marine research

Fig. 8: Technology equipment used for LTER sampling. (Images: Alfred-Wegener-Institute)
• Covering all parts of the open-ocean ecosystem

• The sampling is conducted in annual summer expeditions

• Provides infrastructure for interdisciplinary marine research

Fig. 8: Technology equipment used for LTER sampling. (Images: Alfred-Wegener-Institute)
• Microbial research in the water column has focused mainly on eukaryotes

Fig. 9: Composition of unicellular planktonic protists (>3 μm) in the chlorophyll a maximum of the water column at the central HAUSGARTEN site for eight years from 1998 to 2011. (Image: Soltwedel, T. et al 2015)
• Microbial research in the water column has focused mainly on eukaryotes

• During cruise of summer 2016, a first complete top-bottom survey on pelagic Bacteria and Archaea was conducted.

Fig. 10: RV “Polarstern” and PS99 expedition logo.
Water samples were collected from 4 depths:

I. Deep chlorophyll maximum (~25 m)
II. Pycnocline depth (100 m)
III. Mesopelagic zone (1000 m)
IV. Bottom depth (<5500 m)
• Water samples were collected from 4 depths:
 I. Deep chlorophyll maximum (~25 m)
 II. Pycnocline depth (100 m)
 III. Mesopelagic zone (1000 m)
 IV. Bottom depth (<5500 m)

• The samples were sequentially filtered through 5 and 0.22 μm membranes
Water column physical characteristics were acquired using CTD (salinity, temperature, depth)
• Water column physical characteristics were acquired using CTD (salinity, temperature, depth)

• Nutrient analyses were conducted on board
• **EGC** consists of low temperature, low salinity, Arctic water in upper layers

• **WSC** consists of relatively high temperature Atlantic water

Fig. 13: Water column physical characteristics (A,B) along the East-West transect stations (C).
Physical characteristics

- **EGC** consists of low temperature, low salinity, Arctic water in upper layers
- **WSC** consists of relatively high temperature Atlantic water

Fig. 14: Top 1000m water column physical characteristics (A,B) along the East-West transect stations (C).
Fig. 15: Inorganic nitrogen measurements along the East-West transect stations.
Conclusions

• Using the physical characteristics we were able to differ between the EGC and WSC systems

• Inorganic nitrogen budget showed strong difference between the Arctic and Atlantic waters

• The samples collected for the survey represent the main current systems in the strait
• Using the physical characteristics we were able to differ between the EGC and WSC systems

• Inorganic nitrogen budget showed strong difference between the Arctic and Atlantic waters

• The samples collected for the survey represent the main current systems in the strait
• Using the physical characteristics we were able to differ between the EGC and WSC systems

• Inorganic nitrogen budget showed strong difference between the Arctic and Atlantic waters

• The samples collected for the survey represent the main current systems in the strait
• Characterization of the microbial communities in the different water masses

• Special attention will be paid to nitrogen cycle related organisms

• Monitor annual changes in the microbial communities of all three domains of life
Further work plan

• Characterization of the microbial communities in the different water masses

• Special attention will be payed to nitrogen cycle related organisms

• Monitor annual changes in the microbial communities of all three domains of life
• Characterization of the microbial communities in the different water masses

• Special attention will be paid to nitrogen cycle related organisms

• Monitor annual changes in the microbial communities of all three domains of life
DSET bridge group:
Prof. Dr. Antje Boetius
Dr. Ian Salter
Dr. Christina Bienhold
Dr. Marianne Jacob
Dr. Pierre Offre
Josephine Rapp

Phytochange group:
Laura Wischnewski
Thank you!