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ABSTRACT: The effects of spectral exposure correspondmg to normal and depleted stratospheric 
ozone concentrations on photosynthesis and mycosporine-Like amino a c ~ d s  ( W A S )  contents of differ- 
ent natural phytoplankton communities were studied in early austral summer 1995/1996 during the 
JGOFS ANT XIIY2 cruise in the Atlantic Sector of the Southern Ocean. The radiation conditions were 
simulated in a special solar simulator in which the same sample was incubated under 2 light regimes 
differing in UV-B doses In all phytoplankton samples the quantum yield of electron transport in pho- 
tosystem I1 (PSII) decreased after incubation under increased ultraviolet radiation (UVR) levels. Only 
samples outside of phytoplankton blooms showed a significant lowering of photosynthetic production 
rate due to enhanced UV-B. Phytoplankton cells within the blooms probably received protection from 
UV-absorbing MAAs, because only there cells, chains or colonies of phytoplankton communities were 
large enough to act in combination with MAAs as effective sunscreens. In addition, witkm the blooms, 
due to shallow upper mixed layers (UMLS) and stability within the water column, cells had probably 
enough light to maintain turnover rates of repair mechanisms at PSII and induce sufficient MAA syn- 
thesis; these processes were able to compensate for the negative effects of UVR. In contrast, the darn- 
aging effect on photosynthesis was much more severe on phytoplankton cells outside the blooms; most 
cells (70 to 90%) here were too small to receive protection from the MAAs present, and UMLs were 
deep and mixing rates high. 
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INTRODUCTION 

Serious concerns exist regarding depletion of atmos- 
pheric ozone (03) associated enhancement of ultravio- 
let-B radiation (UV-B), and its impact on marine pri- 
mary productivity (Smith et al. 1992). High-latitude 
oceans are considered most at  risk from negative ef- 
fects of increasing UV-B because the polar latitudes 
are experiencing the greatest changes in UV-B, and 
the endemic flora has evolved under conditions rela- 
tively low in UV-B (Frederick & Snell 1988, Vincent & 
Roy 1993). UV-B is known to have various deleterious 
effects on plants, including the microscopic algae that 

account for the bulk of the oceans primary production 
(Holm-Hansen et al. 1993, Vincent & Roy 1993): UV-B 
damages the reaction centre of photosystem I1 (PSII) 
and the carboxylating enzyme, ribulose biphosphate 
carboxylase/oxygenase (RUBISCO; Iwanzik et al. 1983, 
Greenberg et al. 1989, Strid et al. 1990, Tevini 1994, 
Wilson et al. 1995, Hanelt 1996). Other sites in the pho- 
tosynthetic apparatus may also be at risk (Nogues & 
Baker 1995), and diminished chlorophyll a concentra- 
tion (chl a) has been documented (Strid et al. 1990). 
Short-term exposure (< natural photoperiod) common- 
ly reduces photosynthetic rates in algae studied to date 
from temperate zones (Cullen & Lesser 1991, Ekelund 
1994, Lesser et al. 1994), and recent reports indicate 
similar effects on Antarctic marine microalgae (Neale 
et  al. 1994, Schofield et  al. 1995). 
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In addition to the fact that photosynthetic carbon in- 
corporation in waters around Antarctica and in temper- 
ate latitudes is significantly diminished by UV-B even at 
present levels (Helbling et al. 1992, Ryan 1992, Smith et 
al. 1992, Holm-Hansen et al. 1993, Neale et al. 1994), it 
has also been found that phytoplankton production is 
sensitive to spectral shifts in UV radiation (UVR) (Neale 
et al. 1992, Boucher & Prezelin 1996). The irradiance 
field within the water column of the Southern Ocean is 
not only very heterogeneous with respect to intensity 
due to season, time of the day, cloud and ice cover, but 
also with respect to quality due to change of spatial dis- 
tribution of the ozone hole (Roy et al. 1994) and the ab- 
sorbing components in the water (Bracher & Tilzer 2000). 

Until now studies looking at the effect of increased 
UV-B levels on phytoplankton photosynthesis from the 
Southern Ocean were performed using the following 
methods: phytoplankton were incubated either in situ 
or in outdoor enclosures under the full solar spectrum 
including UV and compared to solar spectra excluding 
different wavelengths of UVR (El-Sayed et al. 1990, 
Helbling et al. 1992, Neale et al. 1992, Smith et al. 
1992, Holm-Hansen et al. 1993, Boucher & Prezelin 1996, 
Helbling et al. 1996) or under artificial light (Cullen & 
Lesser 1991, Davidson & Marchant 1994, Davidson et 
al. 1996). In the latter case the intensity in the UVR 
range was far too high or unnatural wavelengths (e.g., 
c290 nm) were present in the spectra. In both methods, 
with respect to spectral quality and quantity, phyto- 
plankton were not exposed to the irradiance field en- 
countered in the water column corresponding to varia- 
tions in the solar spectrum due to various stratospheric 
ozone concentrations. Only Prezelin et al. (1994) com- 
pared effects of primary production for normal and 
depleted ozone concentrations, but different samples 
were compared with each other. Therefore, the objec- 
tive of this study was to study production rates and 
quantum yield of electron transport in PSI1 under the 
influence of an irradiance field almost corresponding 
to the natural irradiance conditions under normal and 
depleted ozone concentrations on the same natural 
phytoplankton samples. In order to simulate the radia- 
tion conditions under stratospheric ozone depletion, a 
newly constructed solar simulator was used. The dif- 
ferences in response of the samples to UVR were eval- 
uated by considering several biotic (photosynthetic 
compounds, species composition, size fraction) and 
abiotic (hydrography) conditions. In addition to that, 
UV-B absorbing compounds present prior to the exper- 
iment in these samples were identified and their 
potential to act in the various samples as effective UV- 
sunscreens was discussed. The results of this study wiIl 
contribute to the understanding of how increased UV- 
B radiation due to stratospheric ozone depletion affects 
carbon fluxes in the Southern Ocean. 

MATERIALS AND METHODS 

Our data were collected during the Southern Ocean 
JGOFS cruise ANT XIII/2 (December 1995 to January 
1996) in the area 49"-67"S, and 6"W-12"E in the 
Atlantic sector of the Southern Ocean with the RV 
'Polarstern' (Fig. 1). Samples were taken at 23 stations 
during the cruise. All stations were in the open ocean 
without any ice cover. In situ water samples were 
restricted to the upper 120 m of the water column. 

Light measurements and ozone concentration dur- 
ing the cruise. Vertical profiles of the downwelling 
spectral distribution of the underwater light field were 
measured to 120 m depth as described in detail in 
Bracher & Tilzer (2000) using a MER-2040 underwater 
spectroradiometer equipped with a cosine collector 
(Biospherical Instruments, San Diego, USA). Spectral 
light intensities were measured at wavelengths of 340, 
380, 412, 443, 465, 490, 510, 520, 550, 560, 615, 633, 
665 and 683 nm (10 nm bandwidth) at all sampled CTD 
stations and as a reference on deck with a second spec- 
troradiometer MER-204 1. 

Photosynthetically active radiation (PAR) (400-700 nrn) 
and UV-A (320-400 nm) and UV-B (280-320 nrn) radia- 
tion were continuously measured on deck throughout 

longitude 

0 SAPF 
0 ACC outside of frontal systems 

Fig. 1 .  Area in which Southern Ocean JGOFS crwse ANT XllU2 
(December 1995 to January 1996) data were collected for thls 
study. Stations were located in the Antarctic Polar Front (APF). 
south of the APF (SAPF), Antarctic Circumpolar Current outside 
of frontal systems (ACC) and the Marginal Ice Zone (MIZ) 

within Lhe Atlantic sector of the Southern Ocean 
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the cruise. PAR was measured with a Li-Cor sensor (Li- 
193SA) and the UV light with a bandpass radiometer 
(RM-21, Grobel, Karlsruhe, Germany) equipped with 
broadband UV-A and UV-B cosine sensors. The sensors 
were mounted on the top of the ship in a place where 
they were not shaded by the ship's superstructure. 
Every 10 min PAR (in pm01 photons m-' S-') means and 
UV-A and UV-B radiation means (in W m-2) were 
logged throughout the day to a Li-Cor LI-1000 Data 
Logger and a 486 Compaq computer, respectively. PAR 
values measured in air (EJPAR]) were converted into 
values at the subsurface (Eo[PAR]) by using the equa- 
tion Eo[PAR] = E,[PAR] . c. The conversion factor c was 
determined by comparison of the MER underwater PAR 
irradiance measurements with the on-line Li-Cor mea- 
surements and was equal to 0.75621 * 0.05149 (n = 20). 
Eo[PAR] at the CTD stations were determined by inte- 
grating irradiance fluxes in the 12 wavelengths mea- 
sured and assuming that they were valid for the entire 
waveband in whose mid-point irradiance was measured. 
PAR values at 5 m, E5[PAR], at the sampled station dur- 
ing the day of sampling were determined as follows: 

The specific vertical attenuation coefficients of PAR 
at 5 m depth, k,[PAR], were determined from the ex- 
pression in Smith & Baker (1978) for deriving kd at a 
specific wavelength: 

Because we were not able to measure UV-B in the 
water column at that time, we used the extraterrestrial 

E,[PAR]calc 
km01 photons m-2 S-'] 
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l 
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Fig. 2. Comparison of the maximum in situ underwater irra- 
diance of PAR at 5 m depth measured at the sampled stations at 
the day of sampling (E5[PAR]meas) and the approximate in situ 
underwater irradiance (E,[PARjcalc). Values of E5[PAR]calc 
were been calculated by the spectral-resolving-irradiance 
model of Tiig (2978) modified by Rieper (1996) und.er clear 
sky conditions based on the specific stratospheric ozone con- 
centration. Only values of sampled stations where clear sky 

conditions occurred were used for comparison 

solar radiation field as input for an atmospheric model 
together with attenuation coefficients for clear seawater 
to compute an approximate value for the in situ light field 
at 5 m depth, ESCa"[k]. The calculation is based on the 
solar spectrum, Jo, given by Labs & Neckel (1984) 
applied to the atmospheric model for clear sky conhtions 
used by Tiig (3.978) and modlfied by Rieper (1996) re- 
garding the actual airmass, m, with m = l/cosz, where z 
is the solar zenith angle. The ozone concentration at each 
time and location were taken from currently available 
data of the Tiros Operational Vertical Sounder (TOVS) 
aboard the NOAA satellite. Light loss in the water col- 
umn was calculated from the spectral attenuat~on coef- 
ficients k,[h] given by Smith & Baker (1981), not re- 
garding scattering and reflection. Light loss in the 
atmosphere is characterised by the 3 extinction coeffi- 
cients of Rayleigh scattering, kuy[h], aerosol absorption 
(and scattering), khER[h.], and ozone absorption, k3z(3N[h.] 
(see Eq. 3). Atmospheric absorption bands from oxygen 
and water vapour were neglected. 

~ ~ ' " ' ~ [ h . ]  = Jo . exp - ~ A E R  [h.] +  RAY [h] ( c[ (3) 

+ (ko,,, [?L] du/1000)] m}) exp[-(kw [l] S)] 

with kiXF I1[h] = 4-h*.0.9212 (Ao = characteristic aero- 
sol portion 10.251 and cr. = 0.81); kRAY[h] = 0.0094977 . 
(l/?L)4.{0.23465 + 10?.6/[146 - (l/h)'] + 0.93161/[41-(l/h)']} 
0.9212; kozoN[h] is given by Labs et al. (1987); and 

du = thickness of ozone layer in Dobson Units. 
The calculated light fields are approximating maxi- 

mum light conditions at the sampled stations. Therefore, 
in order to prove if these data were corresponding to the 
in situ irradiance conditions at the sampled stations, the 
maximum values of E,[PAR] at the sampled station and 
during the day of sampling, measured with the MER 
2040 instrument and converted as described above, was 
compared to the approximate in situ underwater irradi- 
ance of PAR. There was a good correspondence between 
the two during clear sky conditions at  the sampled sta- 
tion (Fig. 2, r = 0.92). Therefore the approximate in situ 
underwater irradiance at 5 m depths was comparable to 
the irradiance values used during incubations. 

Water sample analysis and experiments. The follow- 
ing measurements were carried out using water sam- 
pled from a Bio-Rosette at CTD stations and surface 
water samples taken with a bucket at other stations. At 
CTD stations (S6, S8, S9, S10, S13, S14, S16, S18, S19, 
S20, S21, S25, S29, S30, S31, S32; Fig. 1, Table 1) the 
measurements of chl a ,  mycosponne-like amino acids 
(MAAs) and quantum yield of electron transport in 
photosystem I1 (PSII) were carried out using water 
samples from 6 depths within the euphotic zone. At all 
other stations (F4, F6-Fll) only 1 sample for each 
measurement was taken from the surface water. 
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Table 1. List of sampled stations during ANT XIII/2 including 
position, date and time and ozone concentration (03) in Dob- 
son units (DU). S: stations where samples were taken from the 
vertical profile; F: stations where only surface samples were 

taken 

Stn Longitude Latitude Sampling date O3 (DU) 
(d.mo.yr) and time 

S6 05.31 -50.22 9.12.95 12:30 h 240-270 
S8 -03.13 -59.26 12.12.95 11:OO h 270-300 
S9 -00.06 -53.60 22.12.95 17:40 h 270-300 
S10 08.09 -50.29 25.12.95 21:45 h 270-300 
S13 11.32 -49.54 29.12.95 14:OO h 270-300 
S14 11.32 -50.18 30.12.95 03:00 h 270-300 
S16 10.17 -51.06 30.12.95 18:00 h 300-330 
S18 09.34 -50.42 5.1.95 08:00 h 300-330 
S19 09.34 -49.54 5.1.95 23:45 h 300-330 
S20 10.18 -49.30 6.1.95 06:30 h 300-330 
S21 10.18 -49.54 6.1.95 15:30 h 300-330 
S25 10.18 -50.18 7.1.95 05:30 h 270-300 
S29 10.18 -50.42 7.1.95 23:00 h 270-300 
S30 00.00 -63.40 16.1.95 10:OO h 300-330 
S31 05.50 -57.20 17.1.95 16:30 h 300-330 
S32 11.33 -49.54 20.1.95 06:00 h 270-300 
F4 -05.08 -66.55 20.12.95 05:00 h 300-330 
F6 -02.40 -61.46 21.12.95 05:OO h 300-330 
F7 06.00 -50.42 24.12.95 07:OO h 270-300 
F8 10.24 -49.38 27.12.95 19:00 h 270-300 
F9 11.20 -49.41 1.1.95 09:00 h 270-300 
F10 10.50 -50.47 2.1.95 11:OO h 270-300 
F11 10.17 -49.50 3.1.95 13:00 h 300-330 

Chlorophyll data from the cruise were obtained from 
Lucas et al. (1997) and Hense et al. (1998). Chlorophyll 
and phaeophytin concentrations were analysed using 
the method of Evans et al. (1987). Determinations were 
performed by filtering water samples onto 25 mm 
Whatman GF/F filters, extracting pigments retained on 
the filters in 9 ml 90:10 acetone:water for 2 to 3 h in a 
dark refrigerator and reading fluorescence, after grin- 
ding, on a Turner Designs scaling fluoronleter before 
and after acidification with 2 drops of 5 % 1 N HC1. 

Quantum yield of electron transport in PSII. Quantum 
yield of electron transport in PSII was determined by 
measuring variable fluorescence of PSII with a PAM-100 
device (WALZ, Effeltrich, Germany). Maximum quan- 
tum yield of electron transport in PSII (i.e., excitation 
capture by open PSII centres) was calculated as the ratio 
of variable to maximunl fluorescence (FvIFm) of the dark 
acclimated algae. The information given by the Fv/Fm 
value is a measure of quantum yield of electron transport 
in PSII and can be used as an index of the photosynthetic 
conversion efficiencies of phytoplankton (Schreiber et al. 
1995). About 1 m1 of sample was incubated in a ice-cold 
water cuvette. After application of a 5 s far-red pulse 
(30 pm01 photons m-' S-') to reoxodise the electron trans- 
port chain, the samples were kept in darkness for 5 min 
to extinguish energy-dependent fluorescence quench- 

ing (qE) and quenching by state transitions (qT) .  Then 
minimal fluorescence (Fo) was measured with a pulse 
measuring beam (approximately 0.3 pm01 photons 
m-' S-', 650 nm). Afterwards a short pulse of saturating 
white light (0.4 to 0.8 S, 1500 pm01 photons m-2 S-') was 
provided to determine F,. Each measurement was re- 
peated 3 times. 

Influence of enhanced UV-radiation on phytoplank- 
ton photosynthesis. Water samples from the surface 
were taken for determination of the effect of UV radia- 
tion on photosynthesis. In addition, at CTD stations 
photosynthetic rates were also determined in water 
samples from the 1 % light depth. To measure the pho- 
tosynthetic rate, 50 m1 of sample were spiked with 
10 pCi of 14C (triplex and dark sample). These samples 
and an unspiked sample for measuring Fv/F,,,, as de- 
scribed above were illuminated in quartz bottles in a 
laboratory incubator, called a solar simulator, to a radi- 
ation field simulating stratospheric ozone depletion 
(corresponding to 180 DU) in 5 m water depth at the 
sampled location. The samples were incubated over 4 h 
at in situ temperature with a constant photon fluence 
rate of PAR between 350 and 500 pm01 photons m-' S-'. 
All samples were exposed to irradiance conditions cor- 
responding to a saturated Light field (irradiance E > Ek), 
the light saturation parameter Ek was determined by 
photosynthesis-versus-irradiance curves in a PAR in- 
cubator during the cruise (Bracher et al. 1999). The so- 
lar sin~ulator has been previously described by Tiig 
(1996) and Abele-Oeschger et al. (1997) and the solar 
simulator's irradiance field is based on a spectrum cal- 
culated in accordance to the spectral-resolving-irradi- 
ance model of Tiig (1978) modified by Rieper (1996). 
Both samples (from the subsurface and the 1% light 
depth) were incubated under the same irradiance field 
in order to study differences in sensitivity to enhanced 
levels of W R .  We used the irradiance field corre- 
sponding to 5 m depth because of technical con- 
straints. The samples were illuminated with a 400 W 
Metallogen lamp (Phillips MSR 400 HR) containing a 
number of lanthanide rare earths, resulting in a solar- 
like continuum. The parallel light beam passed from 
above through a wire screen, which diminished the 
light intensity without changing the spectrum, 3 liquid 
filters with quartz windows, and a diffuser plate. The 
different liquids in these filters were aqueous solutions 
of K'CrO,, CuSO, and KN03. As the liquid filters were 
variable in thickness, using the different extinction co- 
efficients almost natural radiation conditions could be 
simulated. The samples were positioned in a double- 
walled glass jar covered by a quartz plate and kept at 
in situ temperatures with a thermostat. W R  was mea- 
sured under this plate by use of the RM-21 Groebel in- 
strument and PAR using a Biospherical Instrument 433 
probe (QSPZOO). The solar simulator was calibrated 
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prior to and after the cruise with an  UV spectrometer 
and no significant difference was found between the 2 
measurements (the lamp's lifetime predicted by the 
manufacturer is 700 h; we used the lamp for 185 h in 
total in our study). Prior to the incubation, Fx,/Fm was 
measured for an aliquot which was acclimated for 30 
min to darkness to derive a time-zero value (to). The 
rest of the water sample was kept in the dark at in situ 
temperature until it was prepared as above, but incu- 
bated under radiation conditions present under normal 
stratosphenc ozone concentration (corresponding to 
360 DU). The concentrated sample for measuring F,./F, 
was kept in the dark for 4.5 h after incubation. After 
half an hour and then every hour Fv/Fm was measured 
and compared to the to value. 14C spiked samples 
were filtered on Sartorius cellulose nitrate filters (0.45 
pm pore size) and put under acid fume in a desiccator 
for 15 min to release unassirnilated 14C02. Scintillation 
cocktail (Quickszint 361) was added to the filters prior 
to the radioactivity assay in a Packard 1900CA Tri- 
Carb Liquid Scintillation Counter. The uptake of 14C 
labelled bicarbonate into acid-stable organic material 
was converted to biomass-specific rates using mea- 
sured values of chl a and alkalinity (from Stoll et al. 
1997) as in Strickland & Parsons (1972). 

For all measurements of primary production rates 
and quantum yields of electron transport in PSI1 mean 
values and standard deviations were determined. 

UV-absorbing compounds. UV-absorbing MAAs 
were determined by filtering 1 or 2 l samples through 
25 mm Whatman GF/F filters. The filters were put in 
Eppendorf tubes and afterwards directly deep frozen in 
liquid nitrogen. They were then stored at -80°C for 
analysis 10 mo later. Filters were extracted for 4 h in 25 % 
aqueous methanol (v/v) at 45°C. Following extraction, 
samples were centrifuged at 14 000 X g for 5 min. 

Supernatants were used to measure total spectral 
absorption between 260 and 700 nm with an UV-visi- 
ble spectrophotometer (Varian Cary 3) within an inte- 
grating sphere. The spectral range allowed estimates 
of UV-absorbing compounds. Photosynthetic pigments 
were not extracted in 25% aqueous methanol (v/v). 
Values of 'unpacked absorption' were derived accord- 
ing to Sosik & Mitchell (1991): 

a(h)sol = 2.3 . OD . extracted volume/(pathlength 
of cuvette . filtered volume) (4) 

The value of maximum absorption in the UV range 
was determined (auvsol#) and corrected for the absorp- 
tion due to water-soluble cell matter (e.g., cell debris, 
as are macromolecules of carbohydrates, proteins, 
amino acids, etc.) in the extract that is not due to 
MAAs, as suggested by Garcia-Pichel & Castenholz 
(1993): 

awsol = awsol# - a(260)sol- (1.85 - 0.005h) (5) 

where auvsol is the corrected value of maximum ab- 
sorption in the UV range and a(260)sol is the absorp- 
tion of the extract at 260 nm, and h is the wavelength 
(in nm) of maximal absorbance. 

After the measurements in the spectrophotometer 
were made, supernatants were evaporated to dryness 
under vacuum (Speed Vac Concentrator SVC 100H). 
The dried samples were re-dissolved in 200 p1 of 100 % 
methanol and vortexed for 30 S. Then, samples were 
analysed by high pressure liquid chromatography 
(HPLC) using a Waters 600 MS HPLC set-up, including 
gradient module with system controller and a Model 
996 photodiodide array detector, according to the 
method of Nakamura et al. (1982) modified as follows: 
20 p1 of the sample were injected onto an HPLC col- 
umn by an autosampler 717 plus. Separations of MAAs 
were performed on a stainless-steel Knauer Spherisorb 
SC8-column (5 pm; 4 mm inner diameter [ id . ] )  pro- 
tected with a SC-8 guard cartridge (20 mm X 4 mm 
i.d.). The mobile phase was 30% aqueous methanol 
(v/v) plus 0.1 % acetic acid (v/v) and was run isocrati- 
cally at a flow rate of 0.5 m1 min-'. MAAs were 
detected at 310 and 330 nm. Absorption spectra were 
recorded each second between 280 and 400 nm 
directly on the HPLC-separated peaks. 

Identification was done using spectra and retention 
times compared to information from the literature 
(Dunlap & Chalker 1986, Caretto et al. 1990, Karentz et 
al. 1991, Shick et al. 1992) and with co-chromatogra- 
phy with standards extracted from marine red algae 
Caloglossa stipitata Post (shinorine and porphyra-334), 
Chondrus crispus (L.) Stackh. (shinorine/porphyra- 
334, palythine, palythinol, palythene), Porphyra sal- 
danhae Stegenga Bolton Anderson (porphyra-334) and 
the cyanobacterial lichen Peltula euploca (Ach.) Poel- 
tex PiSut (mycosporine-glycine), which were hndly pro- 
vided by Dr. U. Karsten, AWI, Bremerhaven, Germany. 
Quantification of MAAs was done according to the for- 
mula from the Measurements Protocols of JGOFS 
(JGOFS 1993): 

conc. (pg I-') = [A . F. 104/(En(l %) . I)] (6) 

with A = Area - min, F= flow velocity (m1 mm-'), E,,(l%) 
= ext~nction coefficient (1 %) from the literature (Table 2), 
and I=  injection volume (ml). 

RESULTS 

Sampling sites 

The geographical locations of the 3 different zones, 
the Antarctic Polar Front (APF), the Antarctic Clrcum- 
polar Current outside frontal systems and the Marginal 
Ice Zone (MIZ), within our cruise transect corre- 
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Table 2. Absorption maximum, molar extinction coeffient, e, and extinction coefficient (1 %), E,, (1  %), from the literature and our 
measurements for the mycosporine-like amino acids (MAAs) found in our study 

MAA Max, absorption e E, (1 %) Sources 
Literature Measured 

Mycosporine-glycine 310 309.6 28 100 1145.9 Ito & Hirata (1977), Dunlap et al. (1986). Gleason (1993) 
Porphyra-334 334 338.4 43300 1250.2 Takano et al. (1979), Stochaj e t  al. (1994) 
Shinorine 334 333.6 44 668 1344.1 Tsujino et al. (1980), Gleason (1993), Stochaj et al. (1994) 
Palythine 320 319.2 36200 1482.1 Takano et al. (1978a), Dunlap & Chalker (1986), Gleason (1993) 
Palythinol 332 333.6 43500 1438.8 Takano et al. (1978b), Dunlap & Chalker (1986) 
Palythene 360 352.8 36200 974.9 Takano et al. (1978b) 

sponded to various biological features, based on data 
of size-fractionated chl a and pigment composition 
determined by HPLC analyses (Bracher et al. 1999) 
characterising the biomass and the structure of the 
phytoplankton community: The APF biomass was high 
(chl a went up to 1.83 mg m-3), the >20 pm netplank- 
tonic fraction made up >60% and diatoms dominated 
the total biomass with 60 to 80 %. The highest biomass 
during this study was measured in the MIZ (up to 
2.43 mg chl a m-3) with prymnesiophytes, i.e., Phaeo- 
cystis sp. ( M .  Schiiltke pers. comm.), making up 50 to 
60 % and diatoms 30 to 40 % of the phytoplankton bio- 
mass. Here, the >20 pm netplanktonic fraction (> 60 '%) 
dominated the biomass. In contrast, in the Antarctic 
Circumpolar Current outside frontal systems maxima 
were below 0.80 mg cl11 a m-3 and the 2-20 pm fraction 
contributed 70 % and the <2 pm fraction 20 % to the 
biomass. Nine stations were within the Antarctic Cir- 
cumpolar Current outside frontal systems; 4 stations 
(F10, S6, S10, S14) were located just south of the APF 
(SAPF, between 50.2" and 51.1" S), and 5 stations (F4, 
F6, S8, S9, S31) were located further south in this zone 
(>53.5", referred to in the text as ACC). In the SAPF 
the diatom fraction of total biomass was only 25 to 
45 %, whereas dinoflagellate biomass made up 20 to 
50 %. Within the ACC, diatoms, dinoflagellates, prym- 
nesiophytes and chrysophytes all contributed to the 
biomass. One station (S30) was in the open water of the 
MIZ and 13 stations (F?-F9, F11, S13, S16, S18-S21, 
S25, S29 and S32) were in the APF (Fig. 1, Table 1). 

Stratospheric ozone concentrations and light 
conditions 

Ozone concentrations during our cruise varied from 
240 to 330 DU (Table 1). Daylengths ranged from 16 to 
24 h and daily maxima of total PAR for the surface 
water from 440 to 2200 pm01 photons m-2 S-'. The max- 
imum values of PAR were found in the ACC and MIZ; 
in the APF maximum values did not exceed 1500 pm01 
photons m-2 S-'. The euphotic depth Z,, ranged from 

30 to 70 m. Stations within the ACC showed maximum 
values and stations of the APF gave minimum values 
for Z,,. The station within the Phaeocystis sp. bloom 
(S30) also showed a low value for Z,,, with 40 m (Bra- 
cher & Tilzer 2000). At 5 m the daily maximum UV-A 
ranged from 18.18 to 23.55 W m-2, and the daily maxi- 
mum UV-B from 0.33 to 0.62 W m-2. Highest daily max- 
ima for UV-A and UV-B were found in the APF, while 
lowest daily maxima for both were found at the south- 
ern most station in the ACC (F4) (Fig. 3a,b). 

UVR values during experiments in the UV incuba- 
tor are also shown in Fig. 3a,b. Values for incubations 
under high UVR (comparable to conditions under de- 
pleted stratospheric ozone concentrations) and under 
low UVR (comparable to conditions under normal 
stratospheric ozone concentrations) are just above/be- 
low the real values measured at 5 m depth. Fig. 4 
shows an example of the lamp spectrum used in the 
incubator under depleted stratospheric ozone con- 
centrations in the APF compared to a 'theoretical' sun 
spectrum under the same conditions (according to the 
spectral model of Tiig 1978 modified by Rieper 1996). 

Quantum yield of electron transport in PSII and 
primary production rates 

The quantum yield of electron transport in PSII, as 
indicated by F,IF,, reached in all samples very similar 
values under conditions simulating normal ozone as 
compared to the to values. For the spectral simula- 
tion under depleted ozone it decreased significantly 
(t-test, p < 0.05), between 23 and 88 % compared to the 
to values (Fig. 5). FJF, remained low even when kept 
in the dark for 4 h after exposure (data not shown). 

The rates of photosynthesis of the incubations are 
shown in Fig. 6a,b. About half of the samples in- 
cubated under conditions simulating depleted ozone 
exhibited significantly lower production rates (30 to 
65 %) compared to the values derived under conditions 
simulating normal ozone concentrations. Samples 
within a bloom (such as samples from S18, S19, S21, 
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S30 F4 S8 S31 S10 S14 F10 S16 S13 S32 F8 F7 F9 S18 S19 S21 S25 S29 station 

MIZ I ACC I SAPF I APF 

Fig. 5. Quantum yield of electron transport in PSII, FJF,,,, in surface water samples after sampling (to) and after 4 h of incubation 
under a spectrum corresponding to an irradiance field encountered at  5 m depth under depleted (180 DU) and normal ozone con- 
centrations (360 DU). Stations are grouped to the areas within the Atlantic sector of the Southern Ocean in which they are 

located: MIZ, ACC, SAPF, APF 

S25, S29, F?, F9 from the diatom bloom and S30 from (Fig. 7c) indicate the same trend, with high values at 
the Phaeocystis sp. bloom) showed no significant dif- both phytoplankton blooms and low values outside the 
ference in production rates (except for S21 at 29 m) blooms, but variability among the stations within the 
between the 2 incubation conditions. The 3 stations APF differs in comparison to the MAA data. 
close to SAPF, indicated by lower surface temperatures 
but still high chl a values (S16, F8 and at S32 only the 
surface), and the stations from the SAPF (S14, S10 and DISCUSSION 
F10) showed significantly lower production rates 
under ozone hole conditions. Stations from further Evaluation of experimental design 
south in the ACC (F4, S8 and S31) showed the highest 
difference with a decrease above 50%. Significance In this study UV effects on natural phytoplankton 
level (t-test) was always p < 0.05, except for F10 and photosynthesis were tested by incubating the same 
S10 (0 m), with p < 0.1. sample under 2 simulated irradiance fields corre- 

sponding very closely to conditions under normal and 
depleted stratospheric ozone concentrations. A similar 

Quality and quantity of MAAs experiment was performed during ICECOLOR 1990 
(Prezelin et al. 1994). However, in that study different 

MAAs were found in nearly all samples, with the samples were incubated under the 2 conditions and 
exception of samples from very high water depths with therefore the effects of the 2 irradiance conditions 
very low chl a content (Fig. 7a). We identified 6 types were not exactly comparable. 
of MAAs: mycosporine-glycine, porphyra-334, shino- The irradiance spectra whch were used for incuba- 
rine, palythine, palythinol and palythene. Porphyra- tions simulating conditions of depleted ozone concen- 
334 made up 40 to 60% of the total concentration of trations (180 DU) correspond well to conditions in our 
MAAs. Palythme contributed around 20 to 30% and study area. TOVS data from the end of November 1995 
shinorine 10 to 20%. Very low values (c0.2 pg I-') of showed in our part of the Atlantic sector ozone concen- 
MAAs were found at the stations within the ACC (F4, trations still below 200 DU (data not shown). Since the 
F6, S8, S9, S31), while high values (z0.8 pg I-') were 'ozone hole' (defined as <200 DU) itself is continuously 
found within the Phaeocystis sp. bloom at the MIZ 'moving', at the same time, parts of Antarctica 
(S30) and within the diatom bloom at the APF (S13, encounter high W - B  radiation due to low ozone con- 
S21, 525). Values of a ~ o l  (Fig. 7b) and a(h)sol centrations (c 200 DUI, while others encounter low W- 
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primary production rates 
in surface water samples 
[rng C rng chl-a" h"] 

3.0 T 

S30 F4 S8 S31 S10 S14 F10 S16 S32 F8 R F9 S18 S19 S21 S25 S29 
MIZ I ACC I SAPF I APFedge I APF centre 

primary production rates 
in 1% light depth water samples 
[mg C mg chl-a ' h-'] 
2.5 T 

S30 S8 S31 S10 S14 S16 S32 S18 S19 S21 S25 S29 
MIZ I ACC I SAPF I APFedge I APF centre 

Fig. 6. Primary production rates after 4 h incubation under a spectrum corresponding to an irradiance field encountered at 5 m 
depth under depleted (180 DU)  and normal ozone concentrations (360 DU) (a) in surface water samples and (b) in 1 % light depth 
water samples. Grey bars: stations showing a significantly higher (p < 0.05) production rate under normal ozone concentration con- 
ditions as compared to depleted ozone concentration conditions (360 DU >> 180 DU); striped bars: p < 0.1; open bars: no significant 
difference between the two. Stations are grouped to the areas within the Atlantic sector of the Southern Ocean in which they are 
located: MIZ, ACC, SAPF, APF edge (within the APF, with high biornass but already low surface temperatures), APF centre 

B radiation d u e  to high levels of ozone concentrations During our cruise the  actual ozone concentrations 
( ~ 3 6 0  DU). Transitions into a n d  out of the  'ozone hole'  were  in  between the  extremes w e  used  for our incuba-  
occur  a t  t ime scales of several days  (Roy e t  al. 1994). t i o n ~ .  



136 Mar Ecol Prog Ser 196: 127-141, 2000 

MAA 

l1.19 1"l mycosporin-glycine 

Dll palythene 

palythine 

E3 shinorine 

porphyra-334 

S30 F4 F6 S8 S31 S9 S6 S10 F10 S14 S16 F9 S20 S18 F11 S19 S29 F7 F8 S25 S13 S21 

MlZ l ACC I SAPF I APF 

maximum UV-absorbance 

[m-'] 
0.08 T 

S30 F4 F6 S8 S31 S9 S6 S10 F10 S14 S16 F9 S20 S18 F11 S19 S29 F7 F8 S25 S13 S21 

MIZ I ACC I SAPF I APF 

- S30 (MIZ) 

-*-S9 (ACC) - S1 0 (SAPF) - S1 4 (SAPF) 

S18 (APF) 

A \  S 2 1  (APF) Fig. 7. (a) MAAs (mycosporine-glycine, porphyra-334, shino- 
rine, p a l m e ,  palythene) measured by HPLC analysis and 
(b) maximum UV-absorbance (amsol) measured by spec- 
trophotometry, both related to the filtered volunle, in all sur- 
face samples of the study. (c) Spectra of 'unpacked absorp- 
tion', a(h)sol, in the UV range for 6 representative stations. 
Stations are grouped to the ateas within the Atlantic sector of 
the Southern Ocean m which they are located: MIZ, ACC, 

SAPF, APF 
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Impact of increased UVR 

Studying the effects of naturally enhanced UVR due 
to stratospheric ozone depletion on both photosyn- 
thetic parameters, the relative quantum yield of elec- 
tron transport in PSII, Fv/F,,,, and primary production 
rates, helps to elucidate inhibitory and damaging pro- 
cesses on photosynthesis. Nilawati e t  al. (1997) also 
studied these 2 parameters in phytoplankton from. 
Alaska, but used fluence rates of UV-B which ac- 
counted only for 10% of typical midday, surface-inci- 
dent radiation measured during May. Under condi- 
tions corresponding to depleted stratospheric ozone 
concentrations, Fv/Fm decreased significantly for all 
samples from our study as compared to its value under 
conditions simulating normal ozone concentrations. 
Kroon et al. (1994) also measwed the UV-B-specific 
decrease in quantum yield in springtime ice algae from 
the Southern Ocean. Similar results have been 
obtained in pennate diatoms by Nilawati et al. (1997) 
and in macroalgae by Hanelt et al. (1997) and Bischof 
et al. (1998). 

Neale et al. (1993) pointed out that PSII electron 
transport is very susceptible to UV-B inhibition. De- 
pending on recovery time, lower F,IF, rates may 
either be a result of photoinhibition or photodamage 
(Osmond 1994); photoinhibition is defined as a protec- 
tive mechanism which causes an active down-regula- 
tion of photosynthesis as opposed to passively induced 
photodamage. Measurements of the kinetics of re- 
covery can reveal whether UV exposure causes fast 
reversible down-regulation of photosynthetic activity 
similar to the inhibition of PAR. Dynamic photoinhibi- 
tion amplifies the non-photochemical energy dissipa- 
tion so that excessively absorbed energy, which is 
not utilised in photochemistry, is converted into harm- 
less thermal radiation (Krause & Weis 1991, Hanelt 
1996). Chronic photoinhibition is related to the rate of 
damage of the D, protein, which exceeds its rate of 
repair, resulting in a breakdown (degradation) of the 
D, protein and a loss of photosynthetic activity (Mattoo 
et al. 1984, Ohad et al. 1984, Krause 1988, Andersson 
et  al. 1992). Fast recovery during the afternoon is 
indicative of photoprotection, whereas photodamage 
of proteins and pigmen.ts would require several days of 
repair (Hanelt et al. 1992). 

For all samples studied here FJF, remained low 
after keeping the incubated samples in the dark (over 
4 h). The control (to) and the low UV light-incubated 
samples had similar F,,/F,,, values. Greenberg et al. 
(1989) found that the repair system of PSII only works 
under either PAR or UV-A + PAR irradiance. There- 
fore, after high UV-light incubation F,,IF, of the phyto- 
plankton samples did not increase in the dark. Within 
the blooms, the decrease in F,,/Fm was probably caused 

by dynamic photoinhibition due to enhanced UVR; in 
contrast, in the areas outside the blooms, the produc- 
tion rates also decreased significantly. Here, besides a 
breakdown (degradation) of the D,  protein, RUBISCO 
was also probably down-regulated, resulting in at least 
chronic photoinhibition. If recovery did not occur 
within hours, UVR probably caused photodamage. 
Lesser et al. (1996) found that the 20% decrease in the 
RUBISCO pool in the cultures held in UV-transmitting 
enclosures was comparable to the 2 2 %  decrease in 
light-saturated rates of photosynthesis. They showed 
that solar UVR can induce decreases in RUBISCO, a 
phenomenon which had been only reported before for 
plants exposed to artificial UVR sources. It is still 
unknown if RUBISCO is a direct target of UV damage 
or if it is down-regulated as a result of chronic damage 
to other components. Except for 2 stations (S21, S32), 
surface samples and the sample at the 1 % light depth 
showed the same reaction to enhanced UVR. There- 
fore it can be concluded that surface samples were not 
inhibited prior to the incubation. 

It should be pointed out that interactive effects of 
UVR and iron limitation on phytoplankton photosyn- 
thesis have been found (Takeda & Kamatani 1989, 
Auclair 1995). However, iron concentrations were low 
( < l  nM) at all sites during our cruise (de Jong et al. 
1997) and were therefore unlikely to influence the dif- 
ferences in reactions to enhanced UVR. 

Role of W absorbing compounds 

We observed the highest concentrations of MAAs 
and auvsol values at a few sites within the APF and the 
MIZ and lowest concentrations in the ACC. The con- 
centration of UV-absorbing compounds does not alone 
determe the efficiency to screen UV radiation from 
vulnerable targets within the cell; the organismal size 
is also a major determinant (Karentz et al. 1991, Gar- 
cia-Pichel 1994, Riegger & Robinson 1997). Size frac- 
tionated data of chl a (Bracher et al. 1999) show that 
the algal class > 20 pm was dominant, with over 60 % at 
both bloom sites. At the SAPF and within the ACC, the 
c20 and >2 pm fractions increased up to 70 % and the 
> 20 pm fractions decreased to 10 %. Garcia-Pichel 
(1994) calculated in his bio-optical model that the small- 
est phytoplankters are the most sensitive to UV-B. The 
model predicts that sunscreens cannot be used as a 
photoprotective mechanism of any relevance by pico- 
plankters (cell diameter <2 pm). Conversely, the micro- 
plankters (cell diameter 20 to >200 pm) can use sun- 
screens with efficiencies comparable to well-studied 
damage-repair mechanisms. Among nanoplankters 
(cell diameter 2 to 20 pm), sunscreens can afford con- 
siderable benefits but only at the expense of relatively 
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heavy investments and with restricted efficiencies. 
Riegger & Robinson (1997) found an increased poten- 
tial for sunscreen protection with cell size among 
Antarctic diatoms in their study on photoinduction of 
UV-absorbing compounds. Garcia-Pichel(1994) claims 
that for any cell with a diameter of <20 pm efficient 
protection against enhanced W R  is only achieved 
with investment > l0  % of the dry biomass. Karentz et 
al. (1991) and Karsten et al. (1998) found in extensive 
surveys of marine organisms from field populations, 
mostly metazoans and macroalgae, specific contents of 
W-absorbing MAAs to be < 1 % of the dry weight in all 
cases. Investments of 10 % of dry biomass to respond to 
a single ecological factor (e.g., close to the investment 
in total cellular nucleic acids] would be highly ineffi- 
cient and should be considered physiologically 
implausible under conditions of balanced growth. 

Therefore, in our study, probably only within the 
phytoplankton blooms, where large cells (at the APF) 
or big colonies (at the MIZ) were dominating, were 
MAAs acting as efficient protectors against enhanced 
levels of W R .  Besides the lower sunscreen effect of 
MAAs in small cells, these phytoplankters are more 
vulnerable to UV exposure compared to large cells. 
The larger the cell, the longer the optical path 
through the cell and the more likely light will be 
absorbed before 'hitting' too many subcellular tar- 
gets. In addition, due to a much higher cell density in 
phytoplankton blooms compared to conditions outside 
of blooms, selfshading is hlgh. Therefore, relatively 
less irradiance, including UV-B, reaches the particu- 
lar cells. 

Vertical mixing 

Helbling et al. (1994) found that the physical charac- 
teristics of the upper water column play an important 
role in explaining the variability in Antarctic primary 
production attributable to UVR. Cullen & Lesser (1991) 
have demonstrated that for equal doses of UV-B, short 
exposures to high irradiance are more damaging than 
longer exposure to lower irradiance. Consequently, in 
a rapidly mixing water column, UVR damage to phy- 
toplankton that are approaching the surface may be 
particularly acute, especially in.light of the lag time 
observed for the induction of MAA accumulation 
(Riegger & Robinson 1997). Alternatively, the ratios of 
UV-A/UV-B and blue l i g h W - B  increase with depth 
(Smith et al. 1992). Riegger & Robinson (1997) have 
shown that the production of MAAs in Antarctic 
diatoms and Phaeocystis an tarctica is a light-controlled 
process that displays a wavelength-dependent res- 
ponse, but peak responses are at wavelengths some- 
what longer (345 to 460 nrn) than those inflicting the 

greatest damage (<330 nm). Therefore, for ascending 
phytoplankton exhibiting a MAA induction response 
in the UVA/blue portion of the spectrum, their data 
indicate that the accumulation of MAAs begins at 
depth before the cells rise near the surface, where 
the UV-B damage is greater. As said above, the repair 
system of PSI1 only works under either PAR or W- 
A + PAR irradiance (Greenberg et al. 1989). Mixing to 
depths below where W - B  reaches a significant 
amount (<20 m Prezelin et al. 1994), but still within the 
euphotic zone (in our study between 30 and 70 m), may 
implicate that turnover rates of recovery in phyto- 
plankton photosynthesis can be high enough to com- 
pensate for the UV damage. 

In our study upper mixed layers (UMLs) were shal- 
low within the phytoplankton blooms (within the MIZ 
10 to 15 m and within the APF 15 to 35 m), while in the 
SAPF they always extended to depths exceeding 35 m 
and in the ACC outside of frontal systems 50 m (Strass 
et al. 1997). In a stable and shallow UML phytoplank- 
ton apparently has the capability and time required to 
acclimate to other Light conditions (e.g., by induction 
of MAA synthesis and repair cycles) and to become 
fairly resistant to UVR. This might be another explana- 
tion why in our study only production rates outside the 
blooms decreased significantly. Helbling et al. (1994) 
found, in their broad study looking at UV effects on 
Antarctic phytoplankton, photosynthesis to be mar- 
kedly inhibited due to UVR when samples were 
collected from a water column where the density in- 
creased continuously with depth: about 80% en- 
hancement when UV-B was cut off and 350% when 
both UV-B and UV-A were removed. However, when a 
distinct and relatively shallow pycnocline was present, 
almost no inhibition was noticed when the samples 
came from the UML, but samples from below the UML 
showed inhibition due to UVR. 
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