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Zusammenfassung 
 

Diese Arbeit befasst sich mit der Analyse und Interpretation von Eiskerndaten aus dem 

nördlichen Grönland, einem der am wenigsten untersuchten Gebiete der Arktis. Fokus der 

Arbeit ist dabei das Studium der δ18O-Werte an Schnee- und Eisproben, die als Proxy für die 

Lufttemperatur genutzt werden. 

Bei der Nordgrönland Traverse (NGT 93/95) zwischen den Jahren 1993 und 1995 wurden 13 

zwischen 100 und 175 m lange Eiskerne gebohrt. In dieser Arbeit wurden die Eiskerne datiert 

und die hochaufgelösten δ18O-Werte zu Jahresmittelwerten zusammengefasst, sowie mittlere 

Schneeakkumulationsraten abgeleitet. Die gewonnenen Zeitreihen umfassen die letzten 500 bis 

1000 Jahre. 

Als wesentliche Einflussgröße auf die räumliche Verteilung der langjährigen Mittelwerte in δ18O 

und Akkumulation bestätigte sich die Topographie des Eisschildes. Die vorherrschenden 

West/Südwestwinde bewirken, dass der Nordosten Grönlands im Niederschlagsschattengebiet 

der Haupteisscheide liegt, die das nördliche Grönland in einen östlichen und einen westlichen 

Bereich teilt. Die geringsten δ18O-Mittelwerte sind östlich der Haupteisscheide zu finden. 

Weiterhin zeichnen sich die östlich gelegenen Eiskerne durch geringere Variationen in den δ18O- 

und Akkumulationszeitreihen aus. Die Korrelation der Zeitreihen ist gering auf Grund der 

großen Distanz zwischen den Kernen und lokal unterschiedlich wirkenden Einflussfaktoren. 

Durch Mittelung der Zeitreihen aller Kerne konnte das Signal-Rausch-Verhältnis verbessert 

werden. So wurde eine Zeitreihe erstellt, die repräsentativ für eine große Fläche im nördlichen 

Grönland ist und Rückschlüsse auf das Klima der letzten tausend Jahre (endend 1994) zulässt. 

Global bekannte Ereignisse wie die mittelalterliche Klimaanomalie und die darauf folgende 

Kleine Eiszeit konnten in der gemittelten δ18O-Zeitreihe ausgemacht werden. Die Zeitreihe ist 

sensitiv für dekadische Schwankungen wie die Wärmeperiode zwischen 1920 und 1930, die 

bisher nicht in Klimamodellen abgebildet werden kann. Es wurde auch eine Warmphase um 

1420 A.D. deutlich, die bislang in keinem anderen Datensatz hervorgehoben wurde. Vermutet 

wird eine Veränderung der lokalen Klimadynamik im Zusammenhang mit Änderungen in der 

Meereisbedeckung im Arktischen Raum.  

Da sich kein deutlicher Trend in den δ18O-Daten der NGT 93/95 der letzten Jahre abzeichnete, 

wurden zwischen 2011 und 2012 weitere Firnkerne in Nordgrönland an vergleichbaren Positionen 

gebohrt, um die aus den Daten der NGT 93/95 gewonnenen Zeitreihe zu verlängern. Fünf circa 
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30 m lange Kerne wurden hierfür am Alfred-Wegener-Institut (AWI) in Bremerhaven bearbeitet. 

Die Kerne wurden in jährlicher Auflösung datiert. Die Einzelwerte von δ18O und 

Schneeakkumulationsraten wurden zu Jahresmittelwerten zusammengefasst. Ein Überlapp von 

circa 100 Jahren machte es möglich, die Zeitreihe zur Verlängerung der bestehenden NGT 93/95 

Zeitreihe zu verwenden. Erstmals war so eine Einschätzung der aktuellsten 

Temperaturänderungen in Grönland im Vergleich zu den letzten tausend Jahren an einer 

Zeitreihe aus nur einem Temperaturproxy möglich. Ab 1980 setzt ein anhaltender 

Erwärmungstrend ein. Der Gradient dieser Erwärmung ist nicht außergewöhnlich, verglichen 

mit den anderen Werten der letzten tausend Jahre, jedoch die erreichten Absolutwerte.  
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Abstract 
 

This thesis deals with the analysis and interpretation of ice core data from northern Greenland, 

one of the least studied areas in the Arctic. The focus of the thesis is the study of δ18O values 

which can be used as a proxy for temperature. 

The 13 ice cores from the North Greenland Traverse (NGT 93/95) are between 100 and 175 m long 

and were cored between 1993 and 1995. These cores were dated in this thesis and the high-

resolution values of δ18O and accumulation rate averaged to annual mean values. The time series 

spans the last 500 – 1000 years. 

The topography of the ice sheet is confirmed as the main influencing factor on the long-term 

annual mean values of δ18O and snow accumulation rate. The predominant southwest/west 

winds ensure that the northeast of Greenland is located in the precipitation shadow area of the 

main ice divide, which divides northern Greenland into east and west regions. The lowest δ18O 

ratios are found east of the divide. In addition, the eastern ice cores are characterized by small 

variations in δ18O and thickness of accumulation horizons. The correlation between the time 

series is low due to the large distance between the ice cores and the influence of stratigraphic 

local noise. By stacking all individual records the signal-to-noise ratio was improved. The stack 

is representative for a large area in northern Greenland and allows for conclusions regarding the 

climate during the last thousand years (ending 1994). Globally-known results, such as the 

Medieval Climate Anomaly that was followed by the Little Ice Age, could be detected in the 

averaged δ18O time series. The time series is also sensitive to decadal variations such as the warm 

signal between 1920 and 1930, which cannot be broken down in climate models. Another warm 

period around 1420 A.D. was observed, which until now has not been seen in any other data set. 

It is suspected that changes in the local climate dynamic as a result of changed sea ice coverage 

in the Arctic Sea are possible reasons.  

Because there was no clear trend in the δ18O NGT 93/95 data in recent years, additional ice cores 

were drilled in 2011 and 2012 in northern Greenland at comparable positions, in order to extend 

the series into more recent times. Five cores, each about 30 m long, were analyzed at the AWI 

Bremerhaven for this purpose. The cores were yearly dated, and the high-resolution δ18O values 

were averaged for each year. An overlap of about 100 years made it possible to use the time series 

as an extension of the NGT 93/95 time series. For the first time, an estimation of the actual air 

temperatures in Greenland over the last thousand years was possible with only one proxy. Since 
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1980, there has been a constant warming trend. The gradient of the warming is not unusual when 

compared with other values from the last thousand years, but the level of the values is unusual 

high. 
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1 Introduction and Motivation 

1.1 Global and Arctic climate change 
The climate of the earth has always been subject to natural variations of different duration, 

intensity and spatial extent. The present warm phase, the Holocene Interglacial (11700 years 

before 2000 A.D. - modern time), stands out because of its exceptional stability. However, even 

the small temperature changes of 1-2 °C during the past 2000 years, such as the cold phase called 

the Little Ice Age (~1500 - 1850 A.D.) or the warmer Medieval Climate Anomaly (~800 - 1450 

A.D.), had a huge effect on the environment and social life, especially on the development of 

human settlements (Dansgaard et al., 1975). More recently, there has been an observable 

warming trend in the global mean temperature of about 0.85 °C from 1880 to 2012 (Fig. 1-1) (IPCC, 

2013).  

 

Fig. 1-1 Global annual mean surface temperature over land and ocean relative to the 1951 - 1980 

A.D. mean (thin: annual, thick: 11-years running mean; source of data: 

http://berkeleyearth.lbl.gov/auto/Global/Land_and_Ocean_summary.txt) 
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Whereas most studies attribute the observed warming to anthropogenic impact on the climate 

(e.g. emissions of greenhouse gases), skeptics argue that the warming is still within the range of 

natural climate variability. In the latest report of the Intergovernmental Panel on Climate Change, 

IPCC (2013), steeper linear trends in the global mean temperature were reported for the last 60 

and 30 years than for the last 15 years. This slowdown in the global warming is called a hiatus 

(IPCC, 2013). Different reasons for the global warming hiatus were discussed. The main 

arguments are a) the insufficient quality of some of the meteorological data used to generate the 

global mean temperature (Karl et al., 2015), b) the role of the deep ocean as a sink of heat, which 

may connect La-Niña conditions in the Pacific to a slowdown of the global temperature increase 

(Held, 2013; Meehl et al., 2011), or c) a lack of Arctic temperature data in the global mean (Cowtan 

and Way, 2014). FigureFig. 1-2 1-2 shows an example of the distribution of air-temperature 

records from land-weather stations used in the reconstruction of a global mean temperature 

record. The lack of direct data from e.g. the Arctic, which is the focus of this thesis, is obvious. 

Despite that only a few people live in the Arctic, changes in this region are relevant for all of 

mankind. 

 

 

Fig. 1-2 Map of meteorological stations used in the Global Historical Climatology Network 

(GHCN-M), where surface air temperature was measured on land and on islands. The colors 

correspond to the number of years of available data for each station (Lawrimore et al., 2011) 
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A massive temperature rise is expected and has already been observed for the Arctic due to polar 

amplification (Miller et al., 2010). Polar amplification describes the larger change in the mean air 

temperature in polar areas than in the global mean due to positive feedback mechanisms such 

as the snow albedo effect and the retreat of sea ice. Recent instrumental records show that 

during the past few decades, the surface air temperature throughout much of the Arctic has risen 

about twice as fast as the temperature in lower latitudes (Delworth and Knutson, 2000; Knutson 

et al., 2006). During the 20th century, air temperature over land in the Arctic rose by up to 5 °C 

(IPCC, 2007). An insufficient number of Arctic records included in the global mean temperature 

will therefore result in artificially low mean values and inaccurate future forecasts. This 

underlines the importance of climate science in the Arctic for a more representative global mean 

temperature, as well as to show those changes in that region which are of global relevance. 

Satellite observations show a great loss in mass for the Greenland Ice Sheet during recent years 

(Khan et al., 2014; Shepherd et al., 2012) due to rising temperatures. The mass loss can be 

attributed to increasing melting at the surface of the ice sheet as well as higher flow rates for 

most of the outlet glaciers. Since 2007, large-scale surface melting has been often observed on 

the Greenland Ice Sheet, also above the ablation areas. This happened to an extreme in July 2012 

(Hanna et al., 2014; Nghiem et al., 2012; Rignot et al., 2011; Tedesco et al., 2013). This melting, 

which in recent years has been observed earlier in the season (as in 2016) and also in the higher 

central regions (as happened in 2012), is a consequence of rising temperatures. Whereas the 

melting is relatively easy to observe and to understand, the reason for the rapid outflow remains 

largely unknown. The Greenland Ice Sheet accounts for about 83% of the total northern polar 

land-ice mass and therefore has a strong impact on the global sea level rise, which is hardly 

predictable due to a large number of unknowns. However, the present Greenland Ice Sheet 

contains enough water to raise sea level by 7.2 m, so that only a small fractional change in their 

volume would have a significant effect (IPCC, 2001).  

Climate change in the Arctic affects sea ice as well. The extent of sea ice cover at the end of 

summer and the thickness of sea ice are decreasing (Comiso et al., 2008; Serreze et al., 2007). 

This offers not only new possibilities to shipping and industry (e.g. exploitation of living and 

energy resources such as fish, gas and oil), but has also a great impact on the positive feedback 

mechanism of rising temperatures. Ice-free water is darker than the sea ice-covered surface; 

thus, the albedo of the Arctic Ocean is reduced. The decline in sea ice is one of the strongest 

climate signals worldwide and has consequences for the ocean and atmospheric circulation far 

beyond the Arctic. These consequences are of unknown extent until now. 
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Understanding the modern changes of the Arctic climate in the context of the natural climate 

variability is an important and necessary step to better assess the risks and possible 

consequences of climate change. 

  

1.2  Ice cores as a climate archive  
As there is only a small number of direct instrumental meteorological data available from the 

Arctic, proxy data from climate archives become necessary. Proxy data further opens the 

possibility of reconstructing longer time records. For instance, temperature was measured at few 

locations only within about the last 100 years which is not long enough to set the recent values 

in the context of climate history. However, polar ice sheets are a unique archive for paleo-climate 

science. Proxy records derived from ice cores offer the possibility to compare recent with paleo 

values. The idea that ice cores can be used as a climatic archive goes back to the “Deutsche 

Grönland-Expedition Alfred Wegener” in the 1930s when expedition members studied the 

annual layers of a 15 m deep snow pit in Greenland. Since that time, ice cores´ contribution to 

climate science has increased. 

Snowflakes accumulate in layers on top of the ice sheet (Fig. 1-3). The snow gradually compacts 

and sinters under its own weight. It first compacts to firn, then at greater depths to ice. The ice 

sheet consist of a variety of horizontal layers of different physical and chemical properties. These 

layers are formed by seasonally varying contents and discontinuities at the surface and survive 

to great depths. The layers preserve the information of the final deposition and allow the analysis 

of paleo climate from an ice core. The thickness of a layer is also not constant over time after the 

final deposition. The effect that layers become smaller with depth is called thinning. The rate of 

thinning depends on temperature and accumulation rate. Unfortunately, annual layers become 

harder to distinguish in greater depths of the ice sheet due to thinning. 

Especially in areas of lower precipitation, the so-called local noise (Fisher et al., 1985) is of great 

importance. Drift can destroy the seasonal layering in the snow. Wind easily erodes the surface 

snow, removing snow one year old or older. There is a mixing of snow of different types and ages 

during the snow drift, which may be deposited together at the final deposition. The formation 

of dunes can more than double the accumulation rate of a single year, while erosion and 

formation of sastrugis can reduce the accumulation rate at other sites. That is why the 

accumulation rate is not the same as precipitation. Accumulation is defined as the result of 

precipitation, drifting and evaporation (Ohmura and Reeh, 1991). The accumulation rate is an 

important part in mass balance calculations. Glaciers and ice sheets are fed by snow 
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accumulation rate and loose mass because of melting and glacier ice avalanches. The annual 

mass balance is defined as the difference of their accumulation rate and ablation. Therefore, 

accumulation rate is an important parameter to be determined from ice cores. 

a)                                                                                     b) 

 

 

Fig. 1-3 Snow from Greenland in a thin carbon fiber tube (10 cm diameter) as an example of the 

layering in snow; a) density record b) corresponding 2D-image from CT measurement. The gray 

values correspond to density. Darker values represent a denser medium. The refrozen melt 

layer of the 2012 event is visible at a depth of around 1.1 m. 

 

A critical parameter in the reconstruction of the paleo-climate from ice cores is the age of a 

certain layer. It is common to count layers with seasonal variations to date an ice core record 

(annual layer counting) (e.g. Andersen et al., 2006b; Vinther et al., 2006). Other dating methods 

include using ash layers or melt layers as tie points for absolute dating (e.g. Rasmussen et al., 

2008), or numerical flow models to account for thinning in the deep part of ice cores (e.g. 

Johnsen et al., 1997), where annual layers are too thin for layer counting.  
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Paleo-temperature and accumulation rate can be reconstructed from the ice matrix, while air 

trapped in the bubbles of the ice is directly linked to the paleo-atmospheric composition. In the 

1960s, the Dane Willy Dansgaard was the first to observe that the content of the stable water 

isotopes oxygen [16O/18O] and hydrogen [H/D] vary depending on the air temperature during 

precipitation (Dansgaard, 1953). The differences occur due to fractionation processes. 

Fractionation can be caused by differences in the distance to the coast or temperature. Gravity 

causes an earlier rain-out of the heavy isotopes compared to the lighter ones. Therefore, 

precipitation contains more heavy stable water isotopes in the source areas compared to the 

precipitation areas and in summer compared to winter. Craig (1961) described that the ratio of 

heavier to lighter hydrogen stable isotopes (δD) and oxygen stable isotopes (δ18O) of 

precipitation globally has a linear relationship (global meteoric water line). Dansgaard (1964) 

extended that finding by defining a new parameter, the deuterium excess d (d=δD-8*δ18O) that 

is assumed to provide information on the evaporation conditions. Some years later, Johnsen et 

al. (1989) found that there is also a linear relationship between the mean δ18O values of surface 

snow and the annual mean surface temperature, which is represented by the firn temperature 

at 10 to 20 m depth. They introduced an alpha-factor (α) for the translation of isotope ratios to 

temperatures. Since then, the method of using stable water isotope composition as a paleo-

thermometer has become better established in ice core studies (e.g. Petit et al., 1999). Johnsen et 

al. (1989) determined the coefficient to translate δ18O values in Greenland to annual mean air 

temperatures (α=0.67), which is still commonly used, by empirical studies along Greenland’s 

main ice divide. This coefficient is assumed to be only valid for the Holocene, and there are also 

several situations where the relationship is not applicable. One reason is changes in the 

seasonality of the precipitation. However, knowledge of the relationship between δ18O in the 

snow and temperature offers high potential for paleo-climate studies from ice cores. Even 

considering all the uncertainties it allows for a direct translation of δ18O to temperature. 
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1.3  Greenland  
Greenland is the largest island in the world. Greenland spans 2700 km from north to south and 

1100 km at its widest point (Funder, 1989). Greenland’s northern coast borders the Arctic Ocean; 

the northeast borders the Greenland Sea; the south borders the North Atlantic Ocean, and the 

west borders the Labrador Sea and Baffin Bay (Fig. 1-4). 

 

 

Fig. 1-4 Overview map of Greenland. Drill sites of ice cores (for the NGT cores, see Fig. 3-1) are 

marked with dots. Their colors indicate the number of years covered by the ice core. 

Meteorological stations with long temperature records (up to ~100 years) are marked with dark 

red stars. The names of the surrounding seas are given in blue (modified after Box et al., 2013). 
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Today, eighty percent of the island is covered by ice. The summit in central Greenland is the 

highest elevation on the ice sheet. Here, the ice reaches 3.2 km above sea level. In this study, the 

area north of the summit is named “northern Greenland” and the area to the south “southern 

Greenland.” A main ice divide separates northern Greenland into an eastern and a western part 

(Fig. 1-4 and Fig. 3-1). Cyclones control the weather (Chen et al., 1997). The main wind direction 

is south/south-west to east/north-east. Therefore, the north-eastern part of Greenland is located 

in the precipitation shadow of the main divide. Precipitation decreases from south to north from 

about 2500 mm/a in the southeastern coastal areas to less than 150 mm/a in entire north-east 

Greenland (Funder, 1989). The coldest place in Greenland is the ice sheet, where temperatures 

in winter can fall below -70 °C (Cappelen, 2015). Generally, the temperatures hardly rise about  

0 °C as a reason of altitude and high albedo effect (Cappelen, 2015). The monthly mean air 

temperatures in central Greenland show a clear seasonality (Barlow, 1994), which is important 

to ice core dating approaches. The monthly mean air temperature there ranges from -13 °C in 

summer to -45 °C in winter (studies at Eismitte 1930/31, Station Centrale 1949/51 and Cathy Site 

1987/89) (Barlow, 1994). Temperature measurements of automatic weather stations at Summit 

also detected about 30 °C difference between monthly mean summer and winter values in the 

years 1987 to 1999 (Shuman et. al. 2001). 

The Greenland Ice Sheet offers the possibility to study the last about 122 000 years. An increasing 

number of deep ice cores in central and southern Greenland have been drilled since the 

beginning of ice core studies. To study the paleo-climate variability, deep ice cores have been 

drilled into the Greenland Ice Sheet (e.g. Dye3, GRIP, GISP2, NGRIP and NEEM see Fig. 1-4). 

However, little is known about the climatic representativeness of such isolated studies due to 

local differences in layering. There can be large differences between the individual records. Even 

long-term, NGRIP shows different results than GRIP or GISP2 (NGRIP members, 2004), which 

were all drilled in central Greenland close to the summit. 

There are first studies on spatial representativeness of ice core data in south (e.g. Andersen et 

al., 2006a; Vinther et al., 2010) and central Greenland (e.g. White et al., 1997) but there is still 

little known about northern Greenland. 
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1.4 Why is so little known from ice core studies in northern 

Greenland?  
There are only few ice-core drilling activities in northern Greenland, and weather stations with 

direct temperature observations are mainly located in the southern coastal areas (Fig. 1-4). The 

area of northern Greenland is very remote, being far away from the coast, airports, and bigger 

settlements. This makes it a logistically difficult area to study. The weather is generally more 

hostile than in the southern and coastal areas. Temperatures are lower on average (-30 °C annual 

mean air temperature), and wind is a common occurrence. The mean precipitation in northern 

Greenland is much lower compared to the south, which hampers ice core studies. Annual layers 

are already thin at the surface of the ice sheet and get even thinner with increasing depth and 

age due to layer thinning. Small annual layers make exact dating difficult, and the small sample 

volume means that a high quality and accuracy of measurements is required. These effects are 

most important for areas of low mean accumulation rates such as northeast Greenland (~100 

mm/a).  

Since the beginning of ice core studies in the 1950s, techniques, equipment and logistics have 

improved and make it now possible to also core in remote places such as northern Greenland. 

The AWI North Greenland Traverse 1993/1995 (NGT 93/95) was the first expedition team who 

successfully drill several ice cores in northern Greenland, and covered a large area to study the 

spatial and temporal variability of δ18O and accumulation rate of the last 500 to 1000 years in this 

area of the Greenland Ice Sheet. With the todays laboratory techniques it becomes now, years 

later, possible to measure the samples with the necessary accuracy, offering new possibilities for 

reconstructing the paleo-climate.  
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1.5 Objective and structure of this study 
This study deals with the analysis of northern Greenland ice cores collected in the course of the 

NGT 93/95. It offers a promising dataset, closing a huge gap in paleo-climate information from 

the Arctic region. For the first time, the entire set of the NGT 93/95 δ18O records is made 

available, allowing for more representative mean values and opening the possibility to study the 

spatial distribution. The NGT 93/95 records are updated by the data of newly drilled firn cores. 

All records have been stacked to a mean record. This updated stacked record allows for study of 

the most recent climate trends in the context of climate history for the first time. All records are 

dated and annual mean values of δ18O and accumulation rates calculated. The results are 

interpreted in terms of spatial as well as temporal variability. Besides the climatic interpretation, 

the study also addresses the problems, limits and possibilities of ice core science in low-

accumulation rate areas.  

The main topics are: 

Topic A  

Due to its possible impact on global sea level, the mass balance of the Greenland Ice Sheet is 

subject of many studies. As the positive part of the mass balance, the accumulation rate is a 

crucial parameter, which has been obtained from many local pointwise measurements and 

interpolated over large areas (e.g. Ohmura and Reeh, 1991).  

In this study ground-truth data covering a large area in northern Greenland is provided. The 

spatial and temporal variability of accumulation rate and how it fits to previous accumulation 

rate maps is discussed. The presented data offer a crucial input for future mass balance studies.  

How can the spatial distribution of accumulation rate be characterized in northern 

Greenland? What about temporal changes of the accumulation rate over the last 

millennium? 
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Topic B  

The relationship between air temperature and δ18O in snow has been used for paleo-temperature 

reconstructions. However, this relationship is altered by different circumstances such as changes 

in the seasonality of the precipitation, differences in altitude or differences in the distance to the 

coast. Studying the spatial δ18O distribution of the NGT 93/95 data offers the possibility to extract 

the effect of altitude, accumulation rate and geographic coordinates on the temperature - δ18O 

relationship. With the presented data the spatial distribution of δ18O and the climatic and 

topographic reasons for that are studied. 

Furthermore, the discussion on recent temperature changes need to be based on the context of 

natural variability. The provided data sets offer the great possibility to study both, the local and 

the temporal aspects of natural variability of each of the drilling sites and, because of the amount 

of data, to separate local variability from climate variability. 

What was the spatial and temporal distribution of δ18O in northern Greenland over the last 

millennium? 

 

Topic C  

In the context of the discussion on recent global temperature increase, the observed slow-down 

of the warming gradient, missing data from the Arctic is cited as one possible reason for that. 

With this study not only very recent temperature-proxy data is provided by the NGT-updating 

firn cores from 2011/12, it also can be set into historical context by merging the NGT 93/95 and 

NGT-updating firn cores and therefore clearly explore the question:  

Is there a recent warming trend in northern Greenland?  
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The thesis is divided into an introduction (1) providing the motivation, background information 

(2), data (3) and used methods (4), data analysis (5), results (6), and a conclusion (7) chapter. 

The results are briefly summarized followed by the original research papers (Table 1-1), which 

were designed for publication in international peer-reviewed journals or books. Two papers are 

already published, while another two are presented here as a draft for publication.  

 

Table 1-1 Overview of publications presented within this thesis 

Chapters Publication 

First author 

4. 1 

Publication 1 

(Weißbach et 

al., 2015) 

Weißbach, S., Wegner, A., and Kipfstuhl, J.: Snow accumulation in North 

Greenland over the last millennium. In: Towards an interdisciplinary 

approach in earth system science, Lohmann, G., Meggers, H., Unnithan, V., 

Wolf-Gladrow, D., Notholt, J., and Bracher, A. (Eds.), Springer Earth System 

Science, London, 2015. 

4. 2 

Publication 2 

 

Weißbach, S., Wegner, A., Opel, T., Oerter, H., Vinther, B. M., and 

Kipfstuhl, S.: Spatial and temporal oxygen isotope variability in northern 

Greenland – implications for a new climate record over the past millennium, 

Clim. Past, 12, 171-188, 2016. 

4. 3  

Publication 3 

 

Weißbach, S., Kipfstuhl, S., Freitag, J., Hörhold, M., Lohmann, G., and 

Laepple, T.: The unusual recent warming trend in northern Greenland.            

In preparation for submission to Nature 

Co-author 

4. 4 

Publication 4 

 

Faber, A.-K., Vinther, B.M., Weißbach, S., Kipfstuhl, S., Ørum, N.O.:     

Using ice core and weather station observations to construct a spatial map 

of δ18O and temperature for present-day Greenland.                                             

In preparation for submission to JGR-Atmospheres 
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The author´s contribution to the individual publications 

Publication 1  

I developed the core chronology and calculated the annual mean values. I prepared the relevant 

literature, analyzed and interpreted the data, and wrote the manuscript. Anna Wegner and Sepp 

Kipfstuhl advised me during the whole process. 

Publication 2 

I completed the NGT 93/95 data set by digitalization of lab and field notes, calibrated raw data 

and also added new data. I prepared the samples for these new δ18O measurements in the cold 

laboratory. I did CFA measurements (of 70 m firn), which were used to date the cores. I 

developed the chronology of the cores, calculated the annual means, and stacked the records. I 

prepared the relevant literature, analyzed, interpreted the data and drafted the manuscript. All 

co-authors critically reviewed and discussed interpretations and earlier versions of the 

manuscript. Anna Wegner and Sepp Kipfstuhl advised me during the whole process. 

Publication 3 

I was involved in the measurements preparation, the analysis of the raw data, and monitoring of 

the δ18O measurements. I annual layer-counted the data and calculated the stacked record. I 

drafted the manuscript. Thomas Laepple counseled me in the statistical analysis and data 

interpretation. Sepp Kipfstuhl and Johannes Freitag advised me during the whole process. 

Publication 4  

I was involved in the data compilation (provide NGT 93/95 data) and writing the final 

manuscript.   
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2 Background 
 

This chapter gives an overview about the knowledge of spatial and temporal variability of δ18O 

and accumulation rate in northern Greenland without the in this thesis presented full data set 

of the NGT 93/95.  

 

2.1 Spatial Variability 
Few details are known about the distribution of accumulation rates and mean δ18O values in 

northern Greenland due to a lack of data. However, a better knowledge of their distribution is 

important to the mass balance studies of the ice sheet and δ18O to temperature translations to 

get more precise forecasts of sea-level rise contribution.  

2.1.1 Distribution of δ18O and accumulation rate- expectations from the ice 

sheet topography 

A difference between southern to northern Greenland, as well as a difference between the 

eastern to western parts of northern Greenland, is expected for both parameters from the 

topography of the Greenland Ice Sheet (Fig. 1-4).  

The summit in Central Greenland is the highest elevation. For this reason going northward in 

northern Greenland also means to go downward. At higher altitudes, when temperature drops 

and air mass lost moisture, lower δ18O ratios as well as lower accumulation rates are expected 

(Dansgaard, 1964). 

The direction of the main ice divide in Greenland is almost North-South. It is expected that the 

eastern part of northern Greenland is in the precipitation shadow due to the dominant 

westerlies, while there are higher accumulation rates on and west of the divide. As the heavier 

isotopes rain out first, it is further expected that there are lighter isotope ratios in the snow east 

of the divide. Therefore, additional to the south-north differences an east to west gradient is 

expected.  

2.1.2 Accumulation rate distribution- previous studies and methods 

There are different methods used to derive mean accumulation rates for glaciated areas; an 

important one is the use of ice cores and snow studies. However, there was only little drilling 

activity in northern Greenland before NGT 93/95. A few glaciological activities in the north were 
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performed by Wegener and Koch in 1913 (Koch and Wegener, 1930), by Benson in 1952-53 

(Benson, 1962) and by the British North Greenland Expedition in 1958 (Bull, 1958) to study 

accumulation rates in northern Greenland.  

Ohmura and Reeh (1991) derived an overview map of Greenland’s snow accumulation rates (Fig. 

2-1), using data from the 1930s. Most of this old, historical data is connected with high 

uncertainty as it is only one value of one single year and not a mean over several years. The 

spatial interpolation is also highly insecure and a higher resolution not possible due to the larger 

areas where no data is available, like in northern Greenland. The map generally shows lower 

accumulation rates in the north of Greenland compared to the southern and coastal areas, and 

an area of very low accumulation rate east of the main ice divide in northern Greenland is 

expected from the topography of the ice sheet.  

Several short cores were drilled along the 2000 m contour line in Greenland to assess 

accumulation rates during the NASA-Program for Arctic Regional Climate Assessment (PARCA) 

from 1995 to 1999 (Mosley-Thompson et al., 2001). During this program, there was also little 

activity north of the Summit. 

 

Fig. 2-1 Overview map of snow accumulation rate in kg m-2 a-1 over the Greenland Ice Sheet 
compiled by Ohmura and Reeh (1991) 
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Bales et al. (2001) extended the study of Ohmura and Reeh (1991) by adding data from NASA´s 

PARCA, coastal meteorological stations, as well as preliminary NGT 93/95 snow-accumulation 

rate data of shorter time periods (see table 2 in Bales et al. 2001). The map of Bales et al. (2001) 

shows a smaller area of very low accumulation rates (< 100 mm/a) but supports the general 

distribution in Greenland found by Ohmura and Reeh (1991). The inaccuracy is, however, still 

high due to the isolation of ice-core studies and large areas of missing data. Bales et al. (2001) 

give an error of about 24% (which is about 70 mm/a) for the mean accumulation rate over the 

ice sheet. Cogley (2004) noticed that the accuracy has to be doubled to achieve a ±1 mm/a 

accuracy in sea level rise (95% confidence interval). To achieve this accuracy more and reliable 

data is needed. 

Besides the spatial interpolation between the isolated ice core data, there are other methods 

being developed to derive accumulation rates for maps of possibly higher resolution. High 

resolution space and airborne radar surveys seem to be a promising avenue for accomplishing 

this in the nearer future (e.g. Kanagaratnam et al., 2001). Radar-scatterometer images are a 

powerful tool for investigating changes in accumulation rate over the past 2 decades. However, 

they still need in situ accumulation rate data from ice core studies to calibrate their depth-time-

resolution. Another method to derive accumulation rates is climate modeling. Global circulation 

models using reanalysis data (e.g. ERA 40) could be used to derive accumulation rates (e.g. 

Hanna et al., 2006). However, these models still underestimate the accumulation rates in 

northern Greenland compared to ice core results (Hanna et al., 2006).  

2.1.3 The δ18O distribution– previous studies 

In contrast to accumulation rate, there are no available maps of δ18O values of higher spatial 

resolution. A general map was produced by Dansgaard and Tauber (1969) (Fig. 2-2). They show 

that the values in central Greenland are more depleted compared to those at the coast. 

Additionally, there are maps of mean air temperature (e.g. Ohmura, 1987). These maps should 

be of comparable distribution features, as δ18O values in snow are a proxy for air temperature. 

Models (e.g. ECHAM5-wiso) using reanalysis data can give an overview of the distribution of 

δ18O values of lower spatial resolution but still need in situ measurements to be calibrated. The 

δ18O mean values derived from ice core studies are usually isolated values (e.g. NGRIP and 

NEEM). It was not possible to make distinct distribution statements before the NGT 93/95 data 

became available, as the drilling activity in northern Greenland was low. However, a detailed 

knowledge of the spatial distribution would allow for studying the influencing factors on δ18O 

besides temperature and result in a more definitely translation of the δ18O values to temperature 

in northern Greenland. 
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Fig. 2-2 General map of the distribution of δ18O values of annual precipitation and approximate 

δ -isolines over the Northern hemisphere (between 165°W and 45°E longitude) (modified after 

Dansgaard and Tauber (1969)).  

2.2 Temporal variability 
To understand the recent climate and maybe be able to make forecasts with the help of 

appropriate climate models it is necessary to study the paleo climate and its natural variability. 

Greenland is a key area in the discussions about global warming due to its impact on global sea 

level rise and polar amplification. However, there is only little known about the decadal 

temperature variability of the last millennium in northern Greenland. 

2.2.1 The temperature history of the last 1000 years 

The climate of the Holocene interglacial is characterized by fairly stable temperature conditions 

compared to that of the previous glacial period. However, temperature changes of about 1-2 °C 

during the Holocene are also reconstructed from different sources of archives (e.g. tree rings, 

lake sediments and ice cores). These changes could be pronounced with unequal strength in 

different areas. Some events are prominent and can be observed globally. We know from 

temperature proxy data of different sources and areas that periods of warmer and colder 

conditions occurred during the last 1000 years (e.g. Mann et al., 2009). There were slightly 

warmer conditions around the 10th to 14th century (Medieval Climate Anomaly, MCA) followed 

by a period of colder temperatures from the 15th to the mid-19th century (Little Ice Age, LIA). The 

LIA ended with a warming trend that is ongoing. Besides insolation, changes of solar radiation 

and volcanic activity are important external drivers of the overall Holocene climate (e.g. 

Mayewski et al., 2004; Sigl et al., 2013). Higher solar radiation causes warmer temperatures, while 
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higher volcanic activity with explosive eruptions and a higher emission of sulfur is mostly 

followed by cooler temperatures (e.g. Zielinski, 2000). 

2.3 Recent temperature evolution in a historical context 
Recently, rising global mean temperatures and changes in the Arctic environment have been 

observable. However, there are fewer possibilities to study the recent Arctic temperature 

changes in an historical context. Instrumental temperature data is too short and sparse, 

especially in northern Greenland. Therefore, proxy data has to be used to reconstruct the paleo-

temperature. However, available Arctic proxy data is mostly summer-biased (e.g. tree rings) or 

difficult to calibrate as a stack of different types of proxies (e.g. Consortium Pages2k, 2013). 

Records of δ18O in ice cores offer the possibility of longer one-proxy records and are directly 

correlated to temperature for an easier calibration.  

However, most of the ice core studies are performed in isolation from each other and therefore 

show a high level of local noise. The differences in the δ18O records of GRIP and NGRIP which 

were drilled only about 30 km apart, illustrate the evidence of regional variability in Greenland 

(NGRIP members, 2004). Especially in the low-accumulation area of northern Greenland, local 

noise is extremely important because annual layers are thin and often altered. The wider climate 

representativeness of single-spot studies becomes questionable. Derived from annual layer 

thickness and δ18O values the signal-to-noise-ratio in southern Greenland were calculated with 

about 4 while central Greenland has only 1-2, which means that to obtain  records representative 

for a larger area time series have to be smoothed by a low pass filter (Dansgaard et al., 1985). 

Vinther et al. (2010) present a study using a stacked record of twenty ice-core records from 

southern Greenland. They were able to study the prominent globally known climate events 

during the Holocene from the δ18O values of the stacked record. They make clear that stacking 

of multiple records becomes necessary to obtain data with a reasonable signal-to-noise ratio to 

study also decadal climate variability, especially in low-accumulation-rate areas. Information is 

needed from stacked δ18O data with that noise ratio to achieve a representative picture of the 

climatic evolution also in northern Greenland. 

The ice cores from the NGT 93/95 offer for the first time the possibility of a representative one-

proxy record over the necessary time interval (last millennium). First results from NGT 93/95 

with climatic interpretation were published by Fischer et al. (1998c). They found a distinct cold 

event during the 17th and first half of 19th century, which was attributed to the LIA in northern 

Greenland from a stacked δ18O record of four NGT 93/95 cores (B16, B18, B21, and B29). This was 

the first hint that by stacking northern Greenlandic δ18O data, a climatic interpretation of δ18O 
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becomes possible for this low-accumulation-rate area as well. However, the whole set of NGT 

93/95 δ18O data has to be stacked and interpreted for more precise and regionally-representative 

results. A stack of more records will be more accurate and more representative for a larger area.  

Since the NGT 93/95 cores were drilled during the 1990s, the stacked record does not cover the 

most recent years. That is why updated ice cores are necessary to unambiguously assess the 

modern Greenlandic temperature trends in the context of natural variability.  
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3 Data and Measurements 
 

The following chapter gives a brief historical overview of the projects, which provide the ice-

core records for this thesis and a summary of the available data. The measurements of the 

stable water isotopes are explained in detail. 

 

3.1 Northern Greenland ice core records - a brief history  
Central North Greenland was probably the least-investigated region of the northern hemisphere 

until about 25 years ago due to its relative inaccessibility. In 1992 and 1993, two deep drilling 

projects (GRIP and GISP2) successfully penetrated the ice sheet at the Summit. Both deep 

drilling projects created the logistical prerequisites for initiating following-up projects during 

the 1990s such as the NGT 93/95 or PARCA (Mosley-Thompson et al., 2001).  
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Fig. 3-1 Overview map of Greenland, including marked locations with temperature 

measurements (black dots) and ice-core drilling sites of the NGT 93/95 (black circles), and some 

prominent deep drill sites (black crosses). The drilling sites of the NGT-update cores are 

marked with circles filled in gray. The route of the N2E traverse is shown in violet. The names of 

bordering seas are shown in blue. The ice sheet topography is according to Bamber et al. (2013). 

The main ice divide is also indicated on the map (thin gray line).  
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3.1.1 North Greenland Traverse 1993/1995 (NGT 93/95) 

The Greenland Ice Core Project (GRIP) was terminated in 1992. As northern Greenland is one of 

the least studied regions in the high Arctic, the initial idea was to move the heavy vehicles and 

camp infrastructure by an overland traverse from the Greenland ice sheet through to Thule 

(Pituffik) Air Base (Fig. 3-1). The scientific goal of the traverse was to collect as much glaciological 

data as possible along the way to produce a comprehensive climatic data set, in particular of the 

stable isotopes of water, the best know temperature proxy, as well as impurities and 

accumulation rate for northern Greenland over the last 500 years. 

The traverse started in 1993 as the “Summit-Thule Traverse”. However, it became clear in 

autumn 1993, that the GRIP and GISP2 Eemian records (115 to 130 kaBP) disagreed and were 

disturbed by the ice flow (Greenland Ice-core Project, 1993; Taylor et al., 1993). The traverse was 

renamed to “NGT” in 1994, when it became clear that a new deep drilling project (NGRIP) would 

be launched to find and retrieve undistributed Eemian ice. Radar data shows a region 300-400 

km northwest of Summit on the ice divide to be a promising location. The results of the traverse 

together with the radar survey should be used to find a new location where the Eemian ice may 

not be disturbed. 

The route of the traverse ran straight northwards first, extending the E.G.I.G. line, passing the 

beginning of the Fahnestock (today NEGIS) ice stream. In 1994, the team changed direction and 

designated 80 °N (B21) as the northern most point of the traverse. The direction of the traverse 

changed again in the third year, following the main ice divide southwards, because of the 

planned drill of the deep ice core NGRIP. The traverse ended in 1995 with a total length of about 

1600 km. In May 1996, the NGT camp became basis for the NGRIP drill camp after being moved 

it only 15 km from its terminal position at NGT45 (B30).  

The 12 NGT shallow ice cores were drilled en route at 100-150 km spacing to depths of 100-175 m 

deep, except for one 70 m core (Table 3-1). These cores were supplemented by 33 firn cores of 10-

15 m length which were collected at about 50 km apart. In addition, snow pits were excavated 

(Fischer, 1997). 
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Table 3-1 Overview of NGT 93/95 ice core metadata 

Name of ice core Name of drill 

site 

Longitude [°N] Latitude [°W] Length [m] 

1993 

B16 NGT 03 73.940 37.630 102.4 

B17 NGT 06 75.250 37.625 100.8 

B18 NGT 14 76.617 36.403 150.2 

B19 NGT 19 78.001 36.398 150.4 

1994 

B20 NGT 23 78.833 36.500 150.4 

B21 NGT 27 79.999 41.137 100.6 

B22 NGT 30 79.341 45.912 150.2 

B23 NGT 33 78.000 44.000 150.4 

1995 

B26 NGT 37 77.253 49.217 119.7 

B27 NGT 39 76.658 46.482 175.0 

B28 NGT 39 76.658 46.482 70.7 

B29 NGT 42 76.000 43.500 110.5 

B30 NGT 45 75.000 42.000 160.8 

 

3.1.2 Northern Greenland 2008-2012 (NGT-update cores) 

Factors including the debate about the missing or delayed warming in Greenland, a camp on the 

inland ice (NEEM), and a ski-equipped plane at NEEM motivated the project to extend the old 

NGT records to the actual horizon (2011 and 2012, respectively). The distance from NEEM to B26 

is only 50 km and was completed by snowmobile already in 2011. The other mentioned sites were 

visited by plane. Scientists from the Centre for Ice and Climate (CIC, Copenhagen) drilled the 

30 m deep cores in only 2-3 hours on the ground. In 2011 and 2012 some of the old NGT drilling 

sites had been revisited. Firn cores 30 m long were obtained at the 5 northern Greenlandic sites 

(NGRIP12, B18_12, B21_12, B23_12 and B26_11). Only 6 m of core were drilled at B22_12 due to a 

power failure. At two sites in southern Greenland, 45 m long firn cores were drilled (Dye3_12, 

South dome_12 which are not part of this study) (Fig. 3-1, Table 3-2). In addition, there is the 

NEGIS short core (Vallelonga et al., 2014), which was drilled close to the B17 site and several 

other shallow drill cores (Masson-Delmotte et al., 2015) around the site of NEEM, which were 
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drilled for preliminary reconnaissance, but which were used also in this study to extend the 

northern Greenland ice core records to the recent years. 

 

Table 3-2 Overview of NGT-update firn core metadata 

Name of core Longitude 

[°N] 

Latitude 

[°W] 

Length 

[m] 

Distance to NGT 

93/95 drill site [km] 

                               2011  

B26_11 77.253 49.217 30 0 

                                 2012  

B18_12 76.62 36.41 30 0.380 

B21_12 80.00 41.14 30 0.125 

B22_12 79.32 45.91 5.6 2.340 

B23_12 78.00 44.00 30 0 

NGRIP12 75.1 42.32 17 0 

NEGIS  

(Vallelonga et al., 2014) 

75.63 35.95 67 - 

NEEM stacked  

(Masson-Delmotte et al., 2015) 

77.45 51.06 52.6-85.3 - 

 

3.1.3 NEEM to EGRIP Traverse 2015 (N2E) 

While the NEEM camp was being moved to the new drill site at EGRIP (Fig. 3-1), 44 “liners” of 1 

m length were collected (two at each position following in depth) (Schaller et al., 2016) to extend 

the climate records to the horizon of May 2015. 

Collection of liners is a newer method used in glaciology. The upper meters are not studied by 

snow pits or cores collected by standard drill as the snow is often loose and not possible to keep 

on shape by drilling. Liners are thin carbon fiber tubes of 1 m length, which can be pushed in the 

snow and used to collect samples of 1 m length. This method has a time advantage over digging 

snow pits and is an easy method to derive undisturbed cores of the porous upper meters of the 

snow. This method also allows an exact study of the snows´ structure. The liners can be cut for 

smaller samples either directly in the field or later in the lab.  
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3.2 Available data and prior NGT publications  
Plenty of data had been already available at the beginning of this thesis, since the first NGT 93/95 

cores were drilled in 1993 (almost 20 years before the start of this thesis).  

The following parameters were already available in different depth resolutions and by different 

measurement methods, in addition to the stable-water isotopes, which had been measured 

continuously over the last 20 years (see pp.- 26 -): 

Firn temperature at most of the NGT 93/95 sites 

Density (CT, Bulk, Gamma) 

Electrical conductivity (DEP, ECM) 

Impurities (CFA, IC) 

 

An overview of prior publications using NGT 93/95 data is presented below. 

Measurements of the electrical properties of the ice (ECM (Werner, 1995) and DEP (Wilhelms, 

1996)) give a first idea of the age of the cores by allowing identification of the volcanic marker 

horizons. Results are presented by Friedmann et al. (1995). The high-resolution NGT 93/95 

gamma density data was used to study the impurity impact to the densification of firn (Freitag 

et al., 2004; Hörhold et al., 2011). Preliminary δ18O results from some of the NGT 93/95 records  

are presented by Fischer (B16, B18, B21 e.g. Fischer et al., 1998c) and Schwager (B18, B21, B26 and 

B29 in Schwager, 2000). These authors describe the distinct occurrence of the LIA and the 

periodicity from wavelet analysis in the δ18O values. Preliminary results of the chemical 

composition from a continuous flow analysis (CFA) are presented by Sommer (1996) and Bigler 

et al. (2002). They measured parts of the cores of B21 and B29. Fischer et al. (1998a); (1998b) 

characterize deposition mechanisms for nitrate and sulfate and the impact of industrial 

emissions on northern Greenland precipitation (using B16-B18). More recently, measurements 

of sea salt tracers from the NGT 93/95 core B20 were used to investigate inter-annual to multi-

decadal modes in atmosphere and ocean dynamics in the North Atlantic over the last 1000 years 

(Fischer and Mieding, 2005). Rimbu et al. (2007) investigated the connection between frequency 

of atmospheric blocking circulation and the variability of NGT 93/95 accumulation rate records 

(B16, B18, B21, B26 and B29). A first presentation of the spatial distribution of the mean 

accumulation rates was conducted by Jung-Rothenhäusler (1998).  
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3.3 The stable-water isotope measurements 
The ratio of stable isotope content in a sample is given by δ-notation. The isotopic content of a 

sample is given as the relative difference in ‰ between the isotopic ratio of the sample (Rsample) 

compared to the ratio of a standard sample (Rstandard, e.g. Standard Mean Ocean Water, SMOW) 

(Dansgaard et al., 1973). For example for δ18O the equation is: 

δ18O = 1000 * ((Rsample/Rstandard) -1) [‰], with R sample= [H2
18O] / [H2

16O] 

The isotopic composition of the NGT 93/95 cores was analyzed using mass spectrometers. The 

NGT-update cores drilled in 2012 as well as the N2E samples were analyzed using Cavity-Ring-

Down Spectroscopy (CRDS) instruments. The absolute values of both instruments were 

calibrated to make it possible to stack and compare the records. The older mass spectrometers 

measured only one isotopic species (δ18O for NGT 93/95). The CRDS instruments provide δD in 

addition to δ18O and also allow determination of the d-excess. Mainly the δ18O species are 

considered for the climatic interpretation in this thesis.   

3.3.1 Mass spectrometer (used for NGT 93/95) 

The NGT 93/95 isotope data have been measured over the last 20 years (about 77.000 samples) 

at AWI Bremerhaven. The samples were cut in 1-5 cm thick pieces, and stored in small welded 

PE-bags. The molten samples were analyzed for δ18O using a mass spectrometer (Finnigan Delta 

E and Delta S).  

Each mass spectrometer consists of three main parts. Standard and sample gas can be entered 

in alternation through a dual inlet. At the Ion Source, the sample is ionized via collision 

ionization. In the Mass Analyzer, the ions are then sorted and separated according to their mass 

and charge. A combined electric and magnetic field forced the accelerated and directed ions into 

an orbit. The radii are proportional to their masses. At the Detector, the separated ions are 

measured and the results displayed on a chart. All three devices are stored in a vacuum system. 

Using mass spectrometry, it is possible to detect the number of heavy isotopes, here oxygen 

isotopes (18O), within the sample compared to the lighter ones (16O). 

Six out of the 13 records in this thesis were used in prior studies (see- 25 - “Prior NGT 

publications”). The other records were dated and analyzed for the first time in this thesis. 

However, the lab measurements had been finished before the beginning of the thesis.  

The accuracy for δ18O measured with the mass spectrometer at AWI Bremerhaven is better 

than 0.1 δ18O-‰.  
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3.3.2 Cavity-Ring-Down Spectroscopy (CRDS) (used for updated NGT records 

and N2E samples) 

The cores of the NGT-update and N2E cores were cut in 2 cm thick pieces and measured within 

the framework of this thesis. The modern system of Cavity-Ring-Down Spectroscopy (CRDS) has 

been used to measure δ18O and δD. At the AWI Bremerhaven, devices from PICARRO are used 

(L 1102-I and L 2120 and also first data with L 2130-I).  

 

Fig. 3-2 Schematic of a Cavity-Ring-Down Spectroscope 

(http://www.picarro.com/assets/images/content/cavity_figure.jpg) 

 

CRDSs uses laser systems (Fig. 3-2). The beam of a single-frequency laser diode (180 Hz) enters 

a cavity, which is defined by three highly reflective mirrors. When the laser is activated, the 

cavity quickly fills with circulating laser light. A photodetector senses the small amount of light 

leaking through one of the mirrors to produce a signal that is directly proportional to the 

intensity in the cavity. The laser is turned off if the signal from the photodetector reaches a 

certain threshold level. The remaining light in the cavity continues to bounce between the 

mirrors. The reflected light steadily leaks out since the mirrors do not have 100% reflectivity. 

This exponential decay is called the “ring-down” and is measured in real time by a photodetector. 

PICARRO-instruments measure the time difference between an empty cavity and the cavity 

filled with a gas as a second absorbing source until zero reflection is reached. Therefore, the ice 

samples are evaporated by high pressure (~47 mbar) and passed into the cavity.  

Four lab standards with known ratios are measured with ten iterations. After these standards, a 

blank is measured to lower the memory effect. Ten samples are then measured followed by 

standards once again. Each sample is measured 4 times. The measurement set up is performed 
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according to the strategy described in van Geldern and Barth (2012). In that way it was possible 

to assess and correct the data for the memory effect of two following samples as well as the 

instrumental drift during the whole auto sampling routine. 

The accuracy for δ18O at AWI Bremerhaven is better than 0.07 δ18O-‰ and better than 1 δD-‰ 

for δD. 
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4 Methods 
 

Different strategies are used to translate the depth scale of an ice core to an age scale depending 

on the available data. This translation is called dating and makes an interpretation of the data in 

terms of paleo-climate possible. The separation of the individual years allows for calculation of 

annual mean values from ice core records. The δ18O annual mean was calculated as a mean value 

over all samples between the start and end depth of the calendar year. Knowing the mean 

thickness and density of the annual layers in an ice core, the annual accumulation rates can be 

derived by multiplication of both parameters.  

In the following the two dating strategies used in this thesis are described. 

 

4.1 Annual layer counting (NGT-update cores, N2E cores and 

upper NGT 93/95 parts) 
The cores of the records that update the NGT 93/95 records, the upper meters of the NGT 93/95 

records as well as the N2E records were dated annually by layer counting using the seasonal 

cycles of δ18O, d-excess and if available Ca2+, electrical conductivity and density data. The local 

maxima or minima values were selected to mark a cycle of one calendar year (Fig. 4-1). Selected 

markers (e.g. volcanic events) were used as reference horizons of known age to calculate the 

maximum dating error (1-3 years).  

 

Fig. 4-1 Principal of the annual layer counting method to date an ice core. δ18O data of B26_11 is 

shown as an example. Vertical lines mark the end of a calendar year.  

 

Some of the NGT 93/95 records were dated by annual layer counting in prior studies (see 3.2). It 

was not possible to date all NGT 93/95 cores definitively by annual layer counting (Fig. 4-2) 
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down to their full length with the available data because of the low accumulation rates and thus 

small annual layer thickness in northern Greenland (northeast < 100 mm/a). Layer thinning with 

depth due to gravity and the smoothing of the amplitudes of stable-water isotopes by firn 

diffusion hamper the counting further. The back diffusion model of Johnsen et al. (2000) can 

help to reconstruct the initial isotope amplitudes for a more precise dating. However, there is 

nothing known about the uncertainty of the model results.  

 

 

Fig.  4-2 Example where annual layer counting method cannot be used to definitively date an ice 
core (δ18O data of B19_93/95). Vertical lines mark the end of a calendar year. 

 

4.2 Marker horizons (NGT 93/95) 
Marker horizons (melt layers and volcanic events) were selected by electrical conductivity and 

density records of all NGT 93/95 cores. A volcanic event with a specific age was assigned to the 

selected depth of observed events, based on the shape of the signal and the depth expected from 

the known mean accumulation rate at the site (Fig. 4-3). Volcanic events in Greenland are visible 

in ice core data 1-2 years after the eruption took place. This is due to the residence time, the time 

the aerosol needs to be transported from the place of eruption over the atmosphere to the place 

of precipitation on the ice sheet. 

A constant accumulation rate between two marker horizons was assumed and annual mean 

values of δ18O calculated by this strategy. The age between two markers is linear interpolated. 

This method results in annual δ18O means, but only in mean values of accumulation rates 

between two marker horizons.  
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Fig. 4-3 Principal of the method to use marker horizons to date an ice core record. B30 is shown 

as an example. Two events of high electrical conductivity are marked and associated to the 

volcanic events of 1816 A.D. (Tambora) and 1783 A.D. (Laki). 

 

Using this above strategy was possible because the last 1000 years were a volcanically active time 

(Sigl et al., 2013) and a lot of events were preserved in the Greenlandic ice core data. There were 

only about 100 years or less between any two events. 

The described dating strategy was used for all NGT 93/95 cores however, some had been 

annually layer counted before. It is now possible to better compare the NGT 93/95 δ18O records 

because they are all of the same dating quality, independent of their mean accumulation rate or 

available data.  

 

The data is archived and available for download from: 

 https://doi.pangaea.de/10.1594/PANGAEA.849161  

  

- 31 - 



 

 
 

5 Data analysis 
 

Stacking the northern δ18O records and to extend the stack to the recent by the NGT-update 

records discovered first results in the handling and representativity of the data. Furthermore, 

there are also limits recognized due to the low accumulation rates in northern Greenland, which 

are described in the following.  

 

5.1 Stacking 
Stacking the δ18O records is comparable to low-pass filtering. It means to lose the local, high-

frequency information but making the common supra-regional climate signal obvious. 

The δ18O records of the NGT 93/95 were stacked to construct a representative mean for at least 

northern Greenland and account for the strong impact of local noise, as the stack covers a large 

area (680 x 317 km). The annual anomalies relative to a common time window (e.g. 1961 - 1990 

A.D.) of the records are stacked. Absolute values were not stacked because of their records´ 

differences in standard deviation.  

It turned out that a stack of sufficient δ18O records from a representative chosen smaller area 

can result in the same mean record as a stack of records from a larger area (Fig. 5-1). For instance, 

four records were stacked to a site mean at NEEM (Masson-Delmotte et al., 2013). There is a 

strong correlation (r= 0.81, p< 0.05) of the 11-year running mean of the NEEM stack and a stack 

over the other 16 here presented northern Greenland records. That means that it is also possible 

to study the supra-regional climate signals (as in our stack over northern Greenland) from a 

stack at one position, if the stack includes enough records from a representative chosen position 

such as the NEEM site. The resulting strong correlation is supported by the findings of Masson-

Delmotte et al. (2015), which indicate a positive correlation (annual: r= 0.48, 11-year averages: r= 

0.71) between their NEEM stacked record and that of PC1 (which is comparable to the mean) of 

all Greenland annual δ18O records spanning 1761-1966 A.D. (Ortega et al., 2014). 
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Fig. 5-1 The 11-year running-mean records of stacks of δ18O anomalies at a single site (NEEM, red) 

and over a larger area (northern Greenland without NEEM, petrol). 

 

5.2 Update 
It was possible to extent the NGT 93/95 stack to the most recent years by stacking their 

overlapping records. The resulting stacked record is almost identical when stacking all 17 

individual records at once or when first stacking the records drilled at comparable sites, then 

adding the remaining records. 

The extension to the recent years became possible because of an overlap of several years (~ 100 

years) of the NGT 93/95 records and the records of those cores which were drilled to update 

them. It was not possible to extent the stacked record any further using the N2E records. Those 

22 records were collected only three years after the drills to update the NGT 93/95 were done, 

but they are just 2 m long. There is an overlap of only two years (2010 and 2011) at some of the 

lowest accumulation rate sites. Furthermore, only the old drill sites at NEEM and at NEGIS were 

visited again, which make it difficult to calculate the anomalies relative to the commonly used 

1961-1990 time interval. A perfect match is not possible. Two possible options were calculated. 

In a “positive scenario” the stacked N2E anomalies are fitted to the 2010 level and in the “negative 

scenario” they are fitted to the 2011 level of the updated-NGT stack (Fig. 5-2). Longer cores with 

a larger overlap interval have to be collected to further unambiguously extend the northern 

Greenland δ18O stack. Single years are affected by local noise. However, a mean over several years 

would make the level of offset, which is caused by a difference in their local means and the 

relative values to a not common time interval, clear. A definitely match would help to answer 

questions about the warming trend in Greenland. 
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The extension of the NGT 93/95 stack by the stack of the NGT-update records make it possible 

to assess the recent (ending 2011) years in the context of the last 1000 years. To also access the 

values of the coming year’s further updates of the stack will be necessary. 

 

Fig. 5-2 Extension of the northern Greenland stacked δ18O values (petrol) by the annual means 

of the stacked N2E liner records (red: “positive scenario”, blue: “negative scenario”) and their 

30-year running mean (petrol thick line, dotted for a mean of the scenarios). 

 

5.3 Local noise and how it hinders the comparison of NGT 93/95 

records with the NGT-update records 
The NGT-update records and the NGT 93/95 records can be compared in their overlapping 

intervals. A comparison of the layer thickness of the same years was performed to calculate an 

annual thinning rate (in firn better named densification rate). That became possible since the 

top annual layers of the NGT 93/95 records are now located deeper in the core profiles of their 

updated drill cores and were drilled about 20 years later (Fig. 5-3). It was expected that the layer 

at the top is thicker than the same layer deeper in the ice, resulting in a positive annual thinning 

rate. However, some of the calculated thinning rates are negative, meaning that the layer at the 

surface is thinner than those deeper in the ice. Negative thinning rates were calculated for all 

compared record pairs from NGT and cannot be attributed to uncertainties in dating. Dating is 

most reliable in the upper meters of the cores, as the δ18O signal is not smoothed by diffusion. 

In addition, a mean over 10 years could not compensate for the negative values. The negative 

thinning rates are likely caused by the impact of local noise due to the distance between the old 

and new drill site (2 km – less meters). The linear correlation of the annual means of the B27 and 

B28, which had been drilled at almost the same position in the same year, has r= 0.6 (p<0.05), 

much higher than those of the more distantly drilled cores. However, the correlation being 
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unequal to 1 underlines the strong impact of local effects even on a small spatial scale, causing a 

low signal-to-noise ratio. Another possible explanation is that layers are not static over time. 

That might be a hint that there are post depositional effects within the firn column causing a 

shift of the e.g. δ18O annual layers.  

 

 

Fig. 5-3 Scheme of annual layer thinning. 

 

Furthermore, it was not possible to derive new information on the quality of the back diffusional 

model by Johnsen et al. (2000). It was not possible to compare the undiffused signal at the top 

of the NGT 93/95 records with those in the NGT-update records due to the low correlation of 

their annual signals. The drill sites need to be spaced less than one meter apart in order to 

perform such comparative studies or more cores are needed. 
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6 Results 
 

Summary topic A:  

How can the spatial distribution of accumulation rate be characterized in northern 

Greenland? What about temporal changes of the accumulation rate? 

The derived mean snow-accumulation rates support the distribution presented by Ohmura and 

Reeh (1991) or Bales et al. (2001). Lowest accumulation rates are found in the northeast in the 

precipitation shadow of the main ice divide. The new data offers the possibility of more detailed 

studies. On the main divide, there are higher mean accumulation rates but also higher variability 

than east of it. Further, it became clear that the area of lower accumulation rates (100-150 mm/a) 

has to be larger than in the map of Ohmura and Reeh (1991).  

From the NGT 93/95 records (ending 1994) there are no significant changes observable in the 

accumulation rates over the last 400 years. 

Publication 1: 4.1. Snow accumulation in North Greenland over the last millennium 
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Summary topic B:  

What was the spatial and temporal distribution of δ18O in northern Greenland over the 

last millennium? 

The NGT 93/95 cores offered the possibility for a first detailed study of the stable-water isotope 

distribution in northern Greenland. A preliminary map of representative long-term mean values 

was made. The area of lowest mean values is east of the main ice divide, north of the summit. 

Higher values are found west of the main divide. The topography of the ice sheet is confirmed 

as a main influencing factor of the δ18O spatial distribution.  

The individual NGT 93/95 records are of low correlation. By stacking all the annually dated NGT 

93/95 δ18O records, it was possible to reduce the local noise in the low-accumulation area of 

northern Greenland. The stack can be interpreted as a temperature record and is representative 

for at least northern Greenland due to the large area covered for the first time. Global features 

(e.g. MCA, LIA and ETCW) as well as locally occurring events (warm period 1420 A.D.) are 

obvious in the stacked record. From the individual records it became clear that climate events 

(e.g. 1420 A.D. or ETCW) are differently strong pronounced in the different areas in northern 

Greenland. 

Publication 2: 4.2. Spatial and temporal oxygen isotope variability in northern Greenland – 

implications for a new climate record over the past millennium 

Publication 4: 4.4 Using ice core and weather station observations to construct a spatial map of 

δ18O and temperature for present-day Greenland. 

 

Summary topic C: 

 Is there a recent warming trend in northern Greenland?  

It was for the first time possible to set the recent northern Greenlandic δ18O values reliably in 

the context of history. The stacked and updated δ18O record is representative for a larger area, 

at least for northern Greenland and has a higher signal-to-noise ratio, which allows for climate 

interpretation. Since about 1980 A.D., there has been an increase in δ18O (and accumulation rate) 

in northern Greenland. The initiation of this warming is about 15 years later than observed from 

the global mean temperature but comparable with results from other Arctic records. The slope 

of the trend is not unusual during the last thousand years however, the reached absolute values 

are anomalous, and no comparable values can be found during the last millennium.  

Publication 3: 4.3. The unusual recent warming trend in northern Greenland  

- 37 - 



 

 
 

6.1 Snow accumulation in North Greenland over the last 

millennium 
 

S. Weißbach, A. Wegner and S. Kipfstuhl 

Springer Earth System Sciences, published 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 38 - 



Snow Accumulation in North Greenland
over the Last Millennium

Stefanie Weißbach, Anna Wegner and Sepp Kipfstuhl

Abstract Knowledge of snow accumulation rates of the large polar ice sheets and
their variability over time is crucial for mass budget studies and sea level predic-
tions. Here we present mean long-term snow accumulation rates of 12 shallow ice
cores drilled by the North Greenland traverse in the northern part of Greenland. The
ice core records cover the last 500–1000 years. We find a trend of decreasing
accumulation rate from the southwest (*180 mmWE/a) to northeast
(*95 mmWE/a). Ice divide sites show higher accumulation rates but also higher
variability (up to 20 %) than sites off the ice divides (less than 10 %). Unlike a
recent modeling study our results indicate no change in the accumulation in the
north of Greenland during the last 400 years.

Keywords Greenland � Accumulation rate � Polar ice sheet �Mass budget � North
Greenland � Ice divide

1 Introduction

Polar ice sheets are unique archives of present and past climatic and environmental
conditions. Ice cores drilled on the polar ice sheets provide not only extended
records of the Earth’s climate in the far past but give also insight into the most
recent development in remote parts of the globe where instrumental records are
sparse or not available at all. The polar ice sheets are not only unique paleo-archives
they are also an important active component of the climate system. Changes in the
accumulation rate affect the mass balance of the ice sheets but also reflect changes
in the hydrological cycle and atmospheric circulation.
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Accumulation rates in Greenland were compiled first by Ohmura and Reeh
(1991). Updated maps of the accumulation rate were then presented by Ohmura
et al. (1999) and Bales et al. (2001, 2009). More recently, maps of the accumulation
rate or estimates of the mass balance for varying periods are produced by modeling
the precipitation over Greenland using regional atmospheric circulation models
(e.g. Dethloff et al. 2002; Burgess et al. 2010; Hanna et al. 2011; Box et al. 2013).
Box et al. (2013) reconstructed the accumulation history over the last 400 years and
find for example that the Greenland ice sheet net snow accumulation rate increased
by 12 % from the end of the Little Ice Age (1840 AD).

Due to the huge dimensions of the polar ice sheets data coverage is not at all
evenly distributed (e.g. Ohmura and Reeh 1991; Box et al. 2013). Until the
beginning of the era of deep cores in Greenland (GRIP, GISP2, NGRIP and NEEM)
at about 1990 most work focused on the central and southern parts of Greenland
(e.g. NEEM community members 2013). North Greenland was only covered
sparsely, mainly by the PARCA activities (e.g. Mosley-Thompson 2001) and the
North Greenland Traverse (NGT). The NGT started at the Summit of the Greenland
ice sheet after the GRIP ice core was completed (in summer 1993) and ended at the
NGRIP drill site about 350 km northwest of Summit in summer 1996. A total of 13
deep ice cores 70–175 m long were drilled during the NGT (see Fig. 1).

In this contribution within the ESSReS-framework we present an overview of the
evolution of the accumulation inNorthGreenland over the last 500–800 years, thefirst
such overview for the data sparse North Greenland region. The accumulation histories
are derived by carefully aligning the time scale for the 13 NGT cores by volcanic
matching, and subsequently using measured density data to convert average annual
layer thickness between volcanic horizons to accumulation rate estimations.

2 Methods

The lengths of the investigated ice cores and the coordinates of the drill sites are
given in Table 1. An overview of their positions is given in Fig. 1.

The drill sites of cores B21–B30 (except B22) are lying on the main ice divide
leading from the Summit to the Northwest and then splitting north of site B29 into a
branch towards the Northeast (B23 and B21). Core B22 has been drilled in the
windward side and all other cores (B16–B20) in the lee-side of the ice divides.

The Di Electric Profiling (DEP)-records of the cores which reflect the impurity
content in the ice are used to date the cores. The basis of the dating is the well know
pattern of volcanic events present in DEP records (Fig. 2).

The accumulation rate, given here as equivalent height of a water column (mmWE/
a), is derived from the deposited snow mass per time in a core. During the field
campaign the length and weight of each single piece of core were measured. From
these results and the known diameter of the cores an average density for each single
piece was calculated. In the AWI cold room laboratories the density of the cores was
additionally measured in millimeter resolution by γ absorption (Wilhelms 1996) or X-

198 S. Weißbach et al.
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Fig. 1 Map of drill sites of the NGT cores (blue dots). The dashed line represents present ice
divides whereas solid lines mark the surface topography

Table 1 Site information about the NGT drill locations

Core Drill site Core length (m) Altitude (m) Latitude °N Longitude °W

B16 NGT 03 102.4 3,040 73.94 37.63

B17 NGT 06 100.8 2,820 75.25 37.63

B18 NGT 14 150.2 2,508 76.62 36.40

B19 NGT 19 150.4 2,234 78.00 36.40

B20 NGT 23 150.4 2,147 78.83 36.50

B21 NGT 27 100.6 2,185 80.00 41.14

B22 NGT 30 120.6 2,242 79.34 45.91

B23 NGT 33 150.8 2,543 78.00 44.00

B26 NGT 37 119.7 2,598 77.25 49.22

B27 NGT 39 175.0 2,733 76.66 46.82

B28 NGT 39 70.7 2,733 76.66 46.82

B29 NGT 42 110.5 2,874 76.00 43.50

B30 NGT 45 160.8 2,947 75.00 42.00

Snow Accumulation in North Greenland over the Last Millennium 199
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ray imaging (Freitag et al. 2013). To account for the increase of density in the top
100mof the ice sheet from about 300 kg/m3 for the uppermostfirn layers to the density
of ice (920 kg/m3) an exponential function was fit to the obtained density profiles.

3 Results

The mean accumulation rates at the 12 drill sites are presented in Table 2. They do
not exceed 200 mmWE/a and show a west-east as well as a south-north trend
(Fig. 3). The accumulation rates decrease northward from between 150 and
200 mm/a just north of the summit to less than 100 mm/a between 78°N and 79°N,
and they are strongly influenced by the ice sheet topography (Fig. 3). The highest
accumulation rates (180 and 176 mmWE/a) are found at the B27 and B26 drill sites
on the ice divide. The cores with the lowest accumulation rates are B19 and B20
(94 and 98 mmWE/a) with the largest distance to the ice divides in the far northeast.
This pattern in the accumulation results probably from a combination of factors.
Besides temperature and humidity of the air the shape of the coastline, the
topography and the inclination of the slopes west of the inland ice plateau play
some role for the clouds moving on to the inland ice (Benson 1962). The moisture-

Fig. 2 Dating example. Volcanic marker horizons (blue bars) in the DEP record (here core B20
on water equivalent depth scale) provide ice core ages

Table 2 Mean accumulation rates for North Greenland at the NGT drill sites

B16 B17 B18 B19 B20 B21

mm/a 141 114 103 94 98 109

Period 1993–
1640

1993–
1479

1993–934 1993–934 1994–
1179

1994–
1514

B22 B23 B26 B27 B29 B30

mm/a 145 121 176 180 149 166

Period 1994–
1479

1994–
1179

1995–
1601

1995–
1783

1995–
1479

1995–
1259

Given are mean values over the period from present (1993–1995) back to the time of the deepest
volcanic event identified in the core

200 S. Weißbach et al.
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bearing air masses come generally from the west or southwest originating in
cyclones forming in the Hudson or Baffin Bay (Chen et al. 1997). They loose most
moisture on the coast in front of and on the slopes to the inland ice plateau. East of
the ice divide in its wind shadow and at similar or even slightly descending altitude
the amount of precipitation is reduced.

Changes in the accumulation rates over the last 400–800 years are given in
Table 3 and displayed in Fig. 4. Except for the 33 years lasting period between the

Fig. 3 Accumulation rates at NGT sites versus. a Altitude, b latitude and c longitude
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Laki and Tambora eruptions (1783–1816) the accumulation rates do not show any
significant changes during the entire period of the last millennium. The changes are
mostly around 1 % but never exceed 5 % relative to the mean since the Tambora
eruption (1816–1993).

4 Discussion and Conclusion

The accumulation rates derived from 12 shallow ice cores in northern central
Greenland indicate only little variability over the past millennium. The changes are
generally less than 10 % for all sites. Except for the short period between the Laki
and Tambora eruptions (1783 and 1816, respectively) the accumulation rates do not
show clear trends, however, these changes may be caused by the shortness of this
time period.

Our mean accumulation rates agree well with the results of Benson (1962) and
Bales et al. (2009). Compared to our accumulation rates the values presented in the
map of Ohmura and Reeh (1991) seem to overestimate the accumulation in central
parts of North Greenland between 10 and up to more than 30 % (Fig. 5).

In future work the causes of these differences have to be investigated in more
detail. They may be explained by the different interpolation techniques or differ-
ences in accumulation rates on shorter distances.

A direct comparison to the accumulation rates obtained by Box et al. (2013) is
not possible as no details about regional distribution is given.

Fig. 4 Relative changes in the accumulation rates for periods between well dated volcanic
eruptions (Tambora 1816; Laki 1783; Huyanaputina 1601; Mt. St. Helens 1479; unknown 1259).
Reference for each core is the mean accumulation rates over the period between 1816 and present
(1993–1995)
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Abstract. We present for the first time all 12 δ18O records
obtained from ice cores drilled in the framework of the North
Greenland Traverse (NGT) between 1993 and 1995 in north-
ern Greenland. The cores cover an area of 680 km× 317 km,
10% of the Greenland ice sheet. Depending on core length
(100–175m) and accumulation rate (90–200 kgm−2 a−1) the
single records reflect an isotope–temperature history over the
last 500–1100 years.
Lowest δ18O mean values occur north of the summit and

east of the main divide as a consequence of Greenland’s to-
pography. In general, ice cores drilled on the main ice divide
show different results than those drilled east of the main ice
divide that might be influenced by secondary regional mois-
ture sources.
A stack of all NGT records and the NGRIP record is

presented with improved signal-to-noise ratio. Compared to
single records, this stack represents the mean δ18O signal
for northern Greenland that is interpreted as proxy for tem-
perature. Our northern Greenland δ18O stack indicates dis-
tinctly enriched δ18O values during medieval times, about
AD1420± 20 and from AD1870 onwards. The period be-
tween AD1420 and AD1850 has depleted δ18O values com-
pared to the average for the entire millennium and represents
the Little Ice Age. The δ18O values of the 20th century are
comparable to the medieval period but are lower than that
about AD1420.

1 Introduction

During the past decades the Arctic has experienced a pro-
nounced warming exceeding that of other regions (e.g.,
Masson-Delmotte et al., 2015). To place this warming in a
historical context, a profound understanding of natural vari-
ability in past Arctic climate is essential. To do so, study-
ing climate records is the first step. However, meteorological
measurements in the Arctic are only available for relatively
short time periods; only a few time series start as early as
in the 19th century. Hence, proxy data from climate archives
such as ice cores from the polar ice caps are essential.
Studying the climate of the past centuries allows us to

compare the instrumental data with proxy records and there-
fore to assess the quality of the proxies for climate recon-
structions.
Stable water isotopes (here δ18O) in ice cores are com-

monly used to derive paleotemperatures (e.g., Fischer et al.,
1998c; Johnsen et al., 2000; Steffensen et al., 2008). They
are largely controlled by equilibrium and kinetic fractiona-
tion processes during evaporation at the ocean surface, along
the poleward air-mass transport and condensation of precip-
itation, depending on temperature and moisture conditions
(Dansgaard et al., 1969; Jouzel and Merlivat, 1984; Merlivat
and Jouzel, 1979).
The isotope ratio is not only driven by local temperature

but also affected by several factors like moisture sources
and their proximity to the deposition site, the topography
of the ice sheet and the seasonality of precipitation (Fisher
et al., 1985). In addition the isotope signal is altered by
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post-depositional processes like wind-induced redistribution
of snow, temperature gradient metamorphism and diffusion
(Johnsen et al., 2000; Pinzer et al., 2012; Steen-Larsen et
al., 2014). Stacked records are used to compensate for ef-
fects due to local to regional differences and to improve the
signal-to-noise ratio (Fisher et al., 1985; Masson-Delmotte et
al., 2015; White et al., 1997).
To date, most ice core studies on the Greenland ice sheet

have been carried out point-wise (e.g., Dye 3, GRIP, GISP2,
NGRIP), which begs the question of how representative one
single long ice core record is for deriving a comprehensive
record of past climate. A study of ice cores from south-
ern Greenland revealed that winter season stable water iso-
topes are largely influenced by the North Atlantic Oscilla-
tion (NAO) and are strongly related to southwestern Green-
land air temperatures. On the other hand, summer season sta-
ble water isotope ratios show higher correlations with North
Atlantic sea surface temperature conditions (Vinther et al.,
2010). In particular, northern Greenland has been little inves-
tigated so far. The summit in Greenland’s center is the high-
est site and separates Greenland into a northern and southern
part. Northern Greenland differs significantly from the south
in terms of lower air temperatures and lower snow accumula-
tion rates (Fischer et al., 1998c). Thus, the results from south-
ern Greenland are not directly transferable to the northern
part.
Northern Greenland’s climate is influenced by different ef-

fects than the southern part. One example is the NAO effect,
which is present in the southern and western part of Green-
land and is discussed to be reduced in northern Greenland
(Appenzeller et al., 1998).
The cyclones causing the precipitation over northern

Greenland originate in the Baffin Bay and bring dry and
cold air masses from the central Arctic to northern Green-
land (Chen et al., 1997).
The dominant westerly winds are blocked by the ice di-

vide, while the northeastern part has very low accumulation
rates below 100 kgm−1 a−1.
The topographic situation in northern Greenland is special

for δ18O studies. In northern Greenland going northward also
means to go downward (lower altitudes).
For a correct estimate of mass balances as well as the re-

sponse to the ongoing climate change, knowledge of accu-
mulation rates and the spatial distribution of δ18O as a tem-
perature proxy is important for the entire Greenland ice sheet.
However, due to northern Greenland’s remoteness its recent
past climate has, up to now, been only scarcely investigated.
Even in the 1990s little was known about northern Green-

land. Only few studies had been performed before the Alfred
Wegener Institute’s (AWI) North Greenland Traverse (NGT)
started in 1993. There had been a traverse by Koch and We-
gener in 1913 (Koch and Wegener, 1930) and one by Ben-
son in 1952–1953 (Benson, 1962), and there was the British
North Greenland Expedition in 1958 (Bull, 1958), which
studied the accumulation rate in northern Greenland. How-

ever, there had been no stable water isotope studies in the
central part of northern Greenland. Fischer et al. (1998c) and
(Schwager, 2000) present the first results from δ18O values
of some of the NGT records.
Using the updated accumulation rates of the (compared to

Friedmann et al., 1995; Schwager, 2000) NGT, it was possi-
ble to show that the area of lower accumulation rates is much
larger than expected before, which has an influence on the
outlet glaciers (Weißbach et al., 2015).
The NGT ice cores offer, for the first time, the possibility

to study the spatial and temporal variability in stable oxy-
gen isotope records from northern Greenland. Furthermore,
they allow the analysis of the common spatial stable water
isotope signal in northern Greenland by stacking the individ-
ual records to significantly reduce the isotopic noise that is
present in a single record due to local peculiarities.
The main objectives of this study are (1) to investigate the

spatial variability in δ18O in northern Greenland using this
new set of δ18O data and to evaluate the influence of isotopic
noise on a single record, (2) to assess whether stable water
isotope records from sites with low accumulation rates can
be interpreted as climate signals, (3) to present a new robust
stacked δ18O record for northern Greenland covering the past
millennium, and (4) to interpret this record in terms of pale-
oclimate with respect to temporal variability and relation to
large-scale climate information from other proxy records.

2 Material and methods

The ice cores presented here were drilled during the NGT
from 1993 to 1995. In total, 13 ice cores (B16-B23, B26-
B30) from 12 different sites (Table 1, Fig. 1) were drilled
along the traverse route. The ice cores cover the last 500–
1000 years. The drillings were accompanied by extensive
surface snow studies (e.g., Schwager, 2000).
B21 and B23 as well as B26 to B30 are located on ice

divides (Fig. 1), while B16–B20 were drilled east of the
main ice divide. The NGRIP core (North Greenland Ice Core
Project Members, 2004) was drilled 14.5 km northwest of
B30 following the main ice divide and is therefore included
in this study.
Before analyzing the stable water isotopes, a density pro-

file of each core was measured. To do so, the single core seg-
ments (approximately 1m long) were weighed in the field.
Additional higher-depth-resolution density records were de-
termined using gamma-absorption measurements in the AWI
cold lab (Wilhelms, 1996). Finally, in 2012, density of the
first 70m of the three cores B19, B22 and B30 was analyzed
by X-ray computer tomography (X-CT; Freitag et al., 2013).
An exponential function fitted to the data taking into ac-

count all three types of density data with same respect was
used to calculate water equivalent (w.e.) accumulation rates
and to synchronize the cores.

Clim. Past, 12, 171–188, 2016 www.clim-past.net/12/171/2016/
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Table 1. Overview of all NGT drill sites.

Core Core length Elevation Geographic position

ID (m) (m a.s.l.) Latitude Longitude
(◦ N) (◦W)

B16 102.4 3040 73.94 37.63
B17 100.8 2820 75.25 37.63
B18 150.2 2508 76.62 36.40
B19 150.4 2234 78.00 36.40
B20 150.4 2147 78.83 36.50
B21 100.6 2185 80.00 41.14
B22 120.6 2242 79.34 45.91
B23 150.8 2543 78.00 44.00
B26 119.7 2598 77.25 49.22
B27 175.0 2733 76.66 46.82
B28 70.7 2733 76.66 46.82
B29 110.5 2874 76.00 43.50
B30 160.8 2947 75.00 42.00

Selected parts of B30 were also analyzed for electrolytic
conductivity using high-resolution continuous-flow analysis
(Kaufmann et al., 2008).
For the isotopic measurements the ice was cut into sam-

ples of 1–5 cm depth resolution, corresponding to 2–10 sam-
ples per year. Most of the ice was sampled with 2–2.5 cm
depth resolution. Only at the uppermost parts of the core
were samples cut with lower depth resolution (up to 5 cm).
For some meters of special interest a resolution of 1 cm was
used. After melting, δ18O was determined using Delta E and
S mass spectrometers from Finnigan MAT in the AWI labo-
ratory with uncertainties less than 0.1‰ as determined from
long-term measurements. Cores B27 and B28 were drilled
at the same site. Parts of core B27 (8.25–11.38mw.e.), cor-
responding to AD1926–1945) were lost, and these were re-
placed by the record from B28. For the other parts, the mean
of both dated cores was calculated to generate one isotope
record for this site.
Six of the NGT cores (B16, B18, B20, B21, B26 and B29)

were already dated up to a certain depth by annual layer
counting (using density, major ions or δ18O) in prior stud-
ies (e.g., Fischer and Mieding, 2005; Fischer et al., 1998a,
b; Schwager, 2000). Depending on the availability of data
and differences in snow accumulation rates the dating qual-
ity of these cores varies between 1- and 5-year accuracy. For
the other NGT cores annual layer counting was not possible
due to the very low accumulation rates (< 100 kgm−2 a−1).
To achieve the same dating quality for all NGT cores for
better comparison and to apply the dating on the whole
core length, we used a new dating procedure for all cores.
From density-corrected (w.e.) high-resolution electrical con-
ductivity profiles (Werner, 1995; Wilhelms, 1996) and SO2−4 -
concentration profiles for B16, B18, B21 (Fischer et al.,
1998a, b), B20 (Bigler et al., 2002) and an electrolytic con-
ductivity profile (B30), distinct volcanic horizons were iden-

Figure 1.Map of Greenland with NGT ice cores (B16–B23, B26–
B30 crosses), deep drilling sites (crosses) and towns (black dots).
The ice surface topography is according to Bamber et al. (2013),
(mapping: Polar Stereographic (WGS84), Standard Parallel 71, Lat-
itude of Projection Origin −39).

tified and used as match points to synchronize the cores (Ta-
ble 2). Some of the volcanic eruptions show a more pro-
nounced signal in the Greenlandic ice than others. Thus not
all eruptions could be identified in every record.
Between match points, the annual dating was assigned

assuming a constant snow accumulation rate. If a volcanic
match point could not be clearly identified in an ice core, the
next time marker was used to calculate the mean accumu-
lation rate. Below the deepest volcanic match point, the last
calculated accumulation rate was extrapolated until the end
of the core. As the cores were drilled only in the upper part
of the ice sheet (up to 100–175m depths), layer thinning was
not taken into account.

www.clim-past.net/12/171/2016/ Clim. Past, 12, 171–188, 2016

- 51 -



174 S. Weißbach et al.: Spatial and temporal oxygen isotope variability in northern Greenland

Table 2. Depth of volcanic horizons used for dating. The given year is the time of aerosol deposition on the Greenland ice sheet. All depths
are given in meter water equivalent. If a horizon could not be clearly identified a dash is shown in the table. A field is empty if the horizon is
deeper than the length of the ice core. The maximum difference is estimated from a comparison between cores dated by annual layer counting
(Mieding, 2005; Schwager, 2000) and the dating used for this study. Also given are the volcanic explosivity index (VEI; Newhall and Self,
1982) and the total Northern Hemisphere stratospheric sulfate aerosol injection (Gao et al., 2008) for each volcanic eruption used.

Year [AD] Event B16 B17 B18 B19 B20 B21 B22 B23 B26 B27 B28 B29 B30 VEI Sulfate

1912 Katmai∗ 11.60 9.31 8.48 7.38 7.86 8.62 11.56 9.49 14.27 13.69 14.44 11.41 13.12 6 11.0
1816 Tambora∗ 24.49 20.27 18.91 16.77 17.27 19.46 26.17 21.54 31.50 31.13 31.91 25.97 29.91 7 58.7
1783 Laki∗ 29.36 24.19 22.45 19.94 20.32 23.10 31.25 25.93 37.77 37.19 38.07 31.28 35.80 4 93.0
1739 Tarumai∗ 35.52 – 26.90 24.10 24.62 – – – – – – 43.07 5 0
1694 Hekla∗∗ – 34.47 31.84 28.54 29.16 32.87 44.06 – – – 44.22 50.45 4 0
1666 Unknown∗∗ 46.22 – 34.75 31.20 32.10 35.93 48.13 – – – 48.50 – 0
1640 Komagatake∗∗ 49.90 – 37.48 33.69 34.80 – – – – – 52.36 – 4 33.8
1601 Huaynaputina∗ 44.97 41.62 – 38.70 42.95 – 48.31 69.22 68.39 58.25 65.94 4 46.1
1479 Mt. St. Helens∗∗ 58.84 54.42 – 51.31 56.04 75.09 – 89.42 76.81 86.60 7.4
1259 Samalas∗ 76.60 68.03 72.86 89.35 126.10 122.10 145.8
1179 Katla∗ – – 80.04 98.60 0
934 Eldgjá∗ 109.20 99.20 0

Max. age of core [AD] 1470 1363 874 753 775 1372 1372 1023 1505 1195 1763 1471 1242
Max. difference [a] 7 3 8 6 4 3

∗ Sigl et al. (2013); ∗∗ Friedmann et al. (1995).

3 Results and discussion

3.1 Depth–age models and snow accumulation rates

The last millennium was a volcanically active time (Sigl et
al., 2013). The volcanic aerosols deposited on the Greenland
ice sheet can be used as time markers. The depths of peaks
in conductivity and sulfate concentration attributed to certain
volcanic horizons are given in Table 2 as used for our dating
approach.
During the last 500 years, the time period between two de-

tectable eruptions at NGT sites does not exceed 100 years
for any of the cores. This leads to a dating uncertainty for
each core of smaller than 10 years compared to the annually
counted timescales (Mieding, 2005; Schwager, 2000), which
is minimal at the matching points. The three youngest vol-
canic reference horizons (Katmai, Tambora and Laki) and the
eruptions from AD1257 (Samalas; Lavigne et al., 2013) and
AD934 (Eldgjá) were found in all cores, whereas the other
eruptions could not be clearly identified in every ice core.
We could not find a common pattern (e.g., distance, strength
of the eruption) regarding whether or not volcanic horizons
could be observed in all records.
This already indicates a high spatial variability within the

study region related to significant influences of local to re-
gional peculiarities (e.g., wind drift or sastrugi formation).
An overview of the resulting mean accumulation rates for
the entire core lengths for all NGT drilling sites, as well
as the respective ranges, is given in Table 3. According to
our dating, the cores reaching furthest back in time are B18,
B19 and B20, covering more than the last 1000 years. These
northeasterly cores have the lowest accumulation rates with
values below 100 kgm−2 a−1 (B19: 94 kgm−2 a−1; B20:
98 kgm−2 a−1), whereas the highest mean accumulation rate
is found for B27/28 in the southwest of our study region with

180 kgm−2 a−1. Generally, the accumulation rate decreases
from the sites located on the main ice divide in the southwest
of the study area to the northeast.
The observed range of accumulation at one single site is

highest for the southwestern cores (B30 and B29) ranging
between 137 and 161 kgm−2 a−1 (B29). Lowest values are
found for the cores east of the main ice divide (e.g., B17, B18
and B19) ranging between 113 and 119 kgm−2 a−1 (B17).
The length of the records varies depending on accumu-

lation rate and total length of the core. The longest records
are from B19 (back to AD753) and B20 (back to AD775).
The following comparisons of the individual records refer to
the longest common time frame (AD1505–1953). Although
diffusion is known to change isotopic values in the snow, in
this study the data were not corrected for diffusion effects.
While diffusion length is in the range of annual layer thick-
ness, diffusion might be affecting the absolute difference in
isotope content of neighboring years, but the mean over 11
or 30 years will not be affected.

3.2 Regional variability in δ18O in northern Greenland

Annual mean δ18O records of the NGT cores are displayed
in Fig. 2. Table 4 summarizes the main δ18O characteristics
of each core.
The lowest mean δ18O values (∼−37‰) in northern

Greenland (B16–B18) and possibly the lowest in Greenland
are found east of the main ice divide and north of the sum-
mit, but not at the summit as might be expected. Also, the
lowest firn temperatures were measured at B160–B18 (Ta-
ble 4). This is in contrast to the findings of Ohmura (1987),
who suggested temperatures similar to the summit for this
region.
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Figure 2. Annual δ18O records at the 12 NGT sites (this study) and NGRIP (Vinther et al., 2006b), GRIP (Vinther et al., 2010) and GISP2
(Grootes and Stuiver, 1997). Blue values are those below the mean over their common time frame (AD1505–1953) and red are the higher
ones. Dark-green vertical lines mark the volcanic eruptions (years given at top) used as time markers.
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Table 3. Resulting mean accumulation rates (from the surface to the deepest volcanic horizon and in brackets for their common time frame
(AD1505–1953)) for each NGT drill site, the lowest and highest rate within the whole core length, the time period from surface to the
deepest volcanic horizon, and the age at the bottom of the ice core calculated by extrapolation of the deepest calculated accumulation rate.

Core Mean accumulation rate Accumulation rate range Time period Age at bottom of core
[kgm−2 a−1] [kgm−2 a−1] [AD] [AD]

B16 141 [141] 134–148 1640–1993 1470
B17 114 [114] 113–119 1479–1993 1363
B18 103 [106] 100–110 934–1993 874
B19 94 [94] 90–99 934–1993 753
B20 98 [100] 90–105 1179–1994 775
B21 109 [109] 105–113 1479–1994 1372
B22 145 [145] 141–154 1479–1994 1372
B23 121 [122] 116–132 1179–1994 1023
B26 176 [176] 172–190 1601–1995 1505
B27/B28 180 [181] 165–187 1783–1995 1195
B29 149 [150] 137–161 1479–1995 1471
B30 166 [169] 158–178 1259–1995 1242

Table 4. The 15m firn temperature, mean annual δ18O values for each ice core, the range of the highest and lowest δ18O values and the year
they occurred as well as the standard deviation (SD) all given for their common time frame (AD1953–1505).

Core 15m firn Mean δ18O δ18O range Years [AD] of SD δ18O Time period [AD]
temperature [◦C] [‰] [‰] lowest/highest value [‰] (whole core length)

B16 −32.5∗∗∗ −37.07 −40.64 to −33.11 1839/1937 0.99 1470–1993
B17 −32.3∗∗∗ −37.13 −40.06 to −33.89 1835/1879 1.08 1363-1993
B18 −32.3∗∗∗ −36.53 −41.52 to −31.75 1761/1889 1.44 874–1993
B19 −30.9 (±0.5)∗∗ −35.49 −38.97 to −31.77 1575/1826 1.32 753–1953
B20 −30.4∗∗∗ −35.41 −39.34 to −30.69 1699/1929 1.42 775–1994
B21 −30.1∗∗∗ −34.53 −38.29 to −30.95 1814/1871 1.29 1372-1994
B22 −29.8∗∗∗ −34.54 −39.11 to −29.84 1921/1953 1.34 1372–1994
B23 −29.3 (±0.5)∗∗ −35.98 −42.11 to −32.23 1918/1928 1.28 1023–1994
B26 −30.3∗∗∗ −33.86 −37.22 to −29.42 1597/1893 1.25 1505–1995
B27/B28 −30.6 (±0.5)∗∗ −34.47 −38.26 to −30.58 1566/1892 1.25 1195–1995
B29 −31.6 (±0.5)∗∗ −35.65 −39.22 to −31.59 1834/1928 1.18 1471–1995
B30 −31.8 (±0.5)∗∗ −35.46 −38.53 to −31.52 1862/1928 1.09 1242–1988
NGRIP∗ −35.42 −40.12 to −30.81 1836/1928 1.24

∗ Vinther et al. (2006b); ∗∗ Schwager (2000); ∗∗∗ interpolated from Schwager (2000).

Generally, the cores located east of the main ice divide
show lower mean δ18O values than those located on the ice
divide (Fig. 3a). For instance, B29 and B30 are at similar
altitudes and latitudes to B16 and B17 but show significantly
higher values (Fig. 3a).
Figure 4 indicates that accumulation, latitude and altitude

may have a minor impact on the δ18O values here. One pos-
sible explanation would be additional moisture isotopically
depleted during the transport from directions farther north.
The cores more to the north (B19–B22) were drilled at

lower altitude and therefore record different climate signals
(i.e., from lower air masses) compared to the high-altitude ice
cores that, in turn, record a more smoothed signal of higher
atmospheric layers. Similar effects were observed, for exam-

ple, in Svalbard (Isaksson et al., 2005), even though at con-
siderably lower altitudes compared to Greenland.
The maximum difference in mean δ18O values of individ-

ual ice cores is 3.3‰ (highest mean δ18O in B26:−33.86‰;
lowest mean δ18O in B17: −37.13‰). The standard devi-
ation (SD) for the annual mean values within each core in
the common time frame (AD1505–1953) is lowest for B16
(0.99‰) and highest for B18 (1.44‰). We found no general
relation between accumulation rate and standard deviation
of the δ18O values for all individual cores, even though the
northern cores with generally lower accumulation rates show
higher standard deviations than the southern cores.
The correlation coefficients between the annual δ18O

records of individual ice cores are relatively small (r = 0.1
to 0.36, p < 0.05). This can be partly explained by the fact
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Figure 3. Spatial distribution of δ18O values in northern Greenland. (a) The mean δ18O values of the northern Greenland ice cores in their
common time frame (AD1505–1953) are shown with color-coded squares. Blue colors represent lower values and red colors higher values.
Mapped mean anomalies of δ18O compared to (a) for two different periods: (b) AD1410–1430 and (c) AD1920–1940. If a record does not
cover the required time period the square is filled in black.

that the 13 northern Greenland (NG) drilling sites (12 NGT
and NGRIP) are up to 680 km apart from each other. In other
studies where correlated cores are drilled closer together, at
one drill site, higher correlation coefficients were found (e.g.,
at GRIP r = 0.41–0.55 – White et al., 1997; or at NEEM
r ∼ 0.54 – Masson-Delmotte et al., 2015). The strongest cor-
relations are found for the cores from the southwest (B26–
B30) and the lowest for those from the northeast (B19, B20).
There is a significant linear relationship between the distance
between the core sites and their annual δ18O correlation co-
efficient (r =−0.44, p < 0.05). However, it is not always true
that the cores with smallest distance between them have the
highest correlations.
For smoothed values (11-year running mean) the correla-

tion coefficients between the δ18O records are only slightly
higher. Only 50% of the combinations have coefficients
higher than 0.3, and 14% are lower than 0.1. This indicates
an important influence of regional site-to-site differences.
Variability in δ18O is dependent on local (e.g., wind), re-
gional (e.g., position on the ice sheet) and large-scale (e.g.,
circulation patterns) processes. Even adjacent cores may dif-
fer considerably according to snow drift (Fisher et al., 1985).
One further reason for the rather low correlations may be at-
tributed to dating uncertainties.
From Fig. 2, we compare our individual NGT δ18O records

to other published central to northern Greenland (GRIP,
GISP2, NGRIP) δ18O time series. Prominent decadal-scale
maxima and minima occurred mostly isochronally. However,
specific events such as warm periods around AD1420 or
AD1920–1930 or a cold period in the 17th century are more
pronounced in the NGT cores compared to summit records.
In Fig. 2 is also obvious that some records show faster

changes between warmer and colder events (e.g., GRIP, B30

and B26), while others (e.g., B17–B21) remain longer at val-
ues higher or lower than their mean (Fig. 2). The longest
warm period (compared to the mean of whole core length)
is found in B19 (with 37 subsequent years warmer than the
mean), while B17 has the longest cold period (28 subsequent
years colder than mean). GRIP, B26, and B27/28 show a
higher frequency with a maximum of about 10 subsequent
warmer or colder years. A frequency analysis of 11-year run-
ning mean smoothed data supports these findings. B18–B21
and B29 show much longer main periods (117–248 a) than
B16–B17 and B22–B30 (besides B29, 81–39 a).
In general, the first half of the last millennium was char-

acterized by longer warm or cold anomalies than the second
half and records with more rapid fluctuations are from the
summit and the main ice divide, while those cores drilled
east of the divide have longer periods of positive or negative
anomalies. We conclude that, east of the divide, the climate
conditions are not as variable and therefore the annual δ18O
signal is of greater persistence.
The east-to-west difference is also expressed by the de-

pendency of δ18O values on longitude (Fig. 4). This is in
line with results from Box (2002), who found that there is
often an opposite trend in air temperatures in east and west
Greenland. The antiphase of temperature records from east
and west Greenland is possibly explained by the importance
of different weather regimes (e.g., Ortega et al., 2014).
The range in δ18O in the different cores is different, too.

Cores drilled in the northeast that are characterized by the
lowest accumulation rates have the highest standard devia-
tions (SD) in δ18O, which can be partly explained by the fact
that a smaller number of accumulation events scatter more
easily.
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Figure 4. Mean δ18O (AD1505–1953) as a function of (a) alti-
tude, (b) latitude, (c) longitude and (d) accumulation rate of north-
ern Greenland ice core drill sites. Cores with higher accumulation
rates (> 145 kgm−2 a−1) are given as black dots and lower rates
as black triangles, which is similar to the differentiation between
east of and on the main ice divide. For statistically significant cor-
relations the lines give the linear regression functions (black: mean;
green: higher accumulation rates; blue: lower accumulation rates).

We investigated the relationship between the altitude, lati-
tude and longitude of the drilling sites and the mean δ18O val-
ues (Fig. 4a, b, c), which are, when considering all records,
statistically significant (p < 0.05) only for longitude and lat-
itude. Regarding their snow accumulation rate we differen-
tiate between two groups: (i) cores with accumulation rates
lower than 145 kgm−2 a−1 mainly located east of the main
ice divide (B16–B21 and B23) and (ii) cores with higher
accumulation rates (B22, B26–B30 and NGRIP). We find
higher δ18O ratios for sites with higher accumulation rates
(Fig. 4d). The relationship is weak but becomes stronger for
higher accumulation rates. Buchardt et al. (2012) noted that
the relationship between accumulation rate and δ18O is not
distinct for Greenland. Furthermore, Buchardt et al. (2012)
found that the sensitivity of δ18O changes to accumulation
rate is smallest in northeastern Greenland (North Central and
North 1972), which is in agreement with our findings.
Among the factors influencing the mean isotopic compo-

sition, longitude has the strongest impact (R2 = 0.56), which
becomes clearest when looking only at the data of group I
(R2 = 0.93). Figure 4c shows the clear east-to-west gradient
in the mean δ18O values in northern Greenland.
If separating between group I (“East”) and group II (“Di-

vide”) there is a strong altitude effect (R2 = 0.93 and 0.78)
in the data, too.

These patterns may be explained by different atmospheric
circulation conditions allowing additional moisture from
other sources to reach the region east of the ice divide. This
is supported by the finding of Friedmann et al. (1995), who
suppose, based on data from B16 to B19, that northeastern
Greenland receives more moisture from local sources as the
Greenland Sea, Atlantic Ocean and the Canadian wetlands,
in particular during summer.
We found lower δ18O values in the southern and eastern

part of northern Greenland in contrast to the general ideas
of Dansgaard (1954), who expected lower values northward.
That we do not find the lowest values north is a consequence
of different factors in northern Greenland that balance each
other out. More to the north, where we would expect lower
δ18O values, the altitude in northern Greenland is decreasing,
which causes higher δ18O values (Fig. 1). A multiple linear
regression becomes necessary, as Johnsen et al. (1989) did
before.
Applying this approach to our data, we find

δ(δ18O)/(δ(latitude) =−0.30 (±0.40)‰degree−1 and
δ(δ18O)/δ(altitude) =−0.0035 (±0.0024)‰m−1. The
regression residuals are linearly related to longitude as well
as accumulation rate.
In general, we found correlations with altitude, latitude

and longitude, but the balancing-out effects because of the
special topography in northern Greenland have to be taken
into account.
To study the regional-scale patterns of common variability

in all annual δ18O records, we performed a principal compo-
nent analysis (PCA). All calculations are done for the largest
common time frame of all cores (AD1505–1953). Other time
periods were used as well, and they show similar results.
Only the first two principal components (PC1 and PC2) are

above the noise level. The first two eigenvectors of the iso-
topic time series explain 34.1% of the total variance (PC1:
21.8%; PC2: 12.3%). PC1 is similar to the mean of all
records (r = 0.97, p� 0.01). It was not possible to assign
PC2 to any climatic relevant signal. The other PCs are domi-
nant in one or two records but are not significant for the total
variance of the entire data set. The loading patterns show a
homogeneous pattern for EOF1 and a bipolar (west–east) re-
sult for EOF2.
To summarize, the spatial differences in mean δ18O val-

ues in northern Greenland can be largely explained by the
influence of the topography of the ice sheet on the regional
climate system. The main ice divide influences the pathways
of air masses, causing lower accumulation rates in the east.
We assume that the temporal variability in a stacked NG

δ18O record represents past temperature development.

3.3 The northern Greenland δ18O stack and its
paleoclimatic significance

Stable water isotope ratios in ice are widely used as a
proxy for air temperature (Dansgaard, 1964; Johnsen et al.,
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1995; Jouzel et al., 1997b). The comparison to direct air-
temperature observation data and proxy data allows for as-
sessment of the quality of the proxy in terms of paleoclima-
tological interpretation.
To reduce the noise in the single δ18O records, we calcu-

lated a stacked record by averaging the 13 annual NG δ18O
records in their overlapping time periods (NG stack, Fig. 5).
Before stacking, all records were centered and normalized
regarding their common time frame (AD1505–1953). The
SD of the NG stack (0.44 for AD1505–1953) is less than
half of the SD in annual δ18O records of the individual cores.
Vinther et al. (2010) also point out that stacking is important
to improve the signal-to-noise ratio in areas with low accu-
mulation rate. Local drift noise accounts for half of the total
variance in single-site annual series (Fisher et al., 1985). As
the NG stack before AD1000 is based on only four records
(< 25% of the total core numbers), we decided to focus in the
following only on the time period after AD1000.
As the NG stack is a result of 13 ice cores over a large

area, we assume it is regionally representative.
To investigate the relationship of the NG stack with air

temperature, we used monthly meteorological observations
from coastal southwestern Greenland sites and Stykkishól-
mur in northwestern Iceland available from the Danish Me-
teorological Institute (DMI; http://www.dmi.dk; AD1784–
1993) and the Icelandic Met Office (http://en.vedur.is/; back
to AD1830), respectively. We selected only the Greenlandic
temperature records longer than 200 years for our study even
though they are at a large distance to the NGT drill sites
(706–2206 km).
The correlation coefficients between the NG stack and

these air-temperature records are shown in Table 5. Dat-
ing uncertainties are taken into account by comparing 5-
year running means. The NG stack shows low but significant
(p < 0.001) correlations with the air temperatures at all sites
(Table 5).
The strongest correlation with annual mean temperature

was found for the merged station data at Greenland’s south-
east coast (r = 0.51), and the temperature reconstruction
for the North Atlantic Arctic boundary region of Wood et
al. (2010) (r = 0.55); the lowest was also found for Qaqortoq
(r = 0.39) in the south of Greenland (Table 5). For Stykk-
ishólmur the correlation is in the range of the Greenlandic
ones (r = 0.41). Slightly higher correlations are obtained by
comparing the NG stack to seasonal data. Except for Ilulis-
sat, winter months (DJF) show weaker correlations; spring
(MAM) and summer (JJA) months show stronger correla-
tions with the NG stack.
Comparably low correlations between annual δ18O means

and measured temperatures from coastal stations are also re-
ported for the NEEM record (Steen-Larsen et al., 2011).
However, the rather low correlation coefficients might un-

derestimate the real regional δ18O–temperature relations be-
cause of different reasons.

We expect that the most important reasons are the large
distances and the difference in altitude (i.e., more than
2000m) between drill sites and the meteorological stations,
which cause them to receive different atmospheric signals.
The stations are located at the coast and are in turn also likely
influenced by local factors such as the occurrence of sea ice.
One other aspect might be seasonality, as argued by Steen-

Larsen et al. (2011) for the NEEM site. The snowfall in
northern Greenland may be unevenly distributed seasonally.
However, it is not possible to generate sub-annual data for
northern Greenland ice cores due to low accumulation rates.
We find a tendency towards stronger correlation between the
annual δ18O and summer (JJA, r = 0.35–0.51) and spring
(MAM, r = 0.36–0.62) temperatures for most of the stations.
This points to a higher proportion of summer snow in the
annual accumulation in northern Greenland, too. SON has
slightly weaker correlation coefficients (r = 0.31–0.5), while
DJF is only significant for Ilulissat and the merged southern
station.
In addition, regional noise factors such as wind drift and

sastrugi formation as well as uncertainties in ice core dating
and the usage of very old observation data have to be taken
into account.
In summary, we consider the northern Greenland δ18O

stacked record as a reliable proxy for annual temperature
for northern Greenland. The regional representativeness of
the NG stack is supported by the general similarity to the
NEEM δ18O record (Masson-Delmotte et al., 2015) for the
period AD1724–1994. We found a strong correlation be-
tween both records (r = 0.83 for 30-year running mean).
Even single events such as the highest values in AD1928
and the AD1810–1830 cooling occur in both records.
Although the NG stack record shows some correlation

with temperature data from coastal Greenland sites, it re-
mains an open question as to how the NG stack δ18O vari-
ations can be converted into absolute temperature changes
within northeastern Greenland during the last millennium. In
the past, such conversion of isotopic time series of Green-
land ice cores was based on a modern analogue approach
taking the observed spatial isotope–temperature gradient of
0.67± 0.2‰ ◦C−1 (Dansgaard, 1964; Johnsen et al., 1989)
as a valid calibration for converting isotope records of Green-
land ice cores into temperature changes (e.g., Grootes et
al., 1993). The strong confidence of glaciologists in this ap-
proach came principally from two observations. (1) Over
both polar ice sheets, the spatial correlation between mod-
ern isotope and annual mean temperature is very high and
significant. (2) This empirical observation was theoretically
understood as a consequence of a Rayleigh rainout system
controlling the isotopic composition of meteoric water.
However, for the Greenland area this long-accepted ap-

proach has been challenged during the last decade. Two en-
tirely independent analytic techniques, one based on the nu-
merical interpretation of borehole temperatures (e.g., Dahl-
Jensen et al., 1998) and the other based on the occlusion pro-
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Figure 5. Top two panels: the number of cores used for the stack and the standard deviation (SD; gray: annual values; black: 30-year running
mean) of all times. Middle: annual stacked δ18O (gray) and smoothed record (30-year running mean). Values more enriched compared to
the mean (AD1953–1505) are shown in red, while values less enriched are shown in blue. Known climate anomalies are marked: Medieval
Climate Anomaly (MCA, AD950–1250; Mann et al., 2009), the Little Ice Age (LIA, AD1400–1900; Mann et al., 1998), and early twentieth
century warming (ETCW, 1920–1940; Semenov and Latif, 2012; Wood and Overland, 2010). Bottom two panels: 30-year running mean on
z levels (centered and normalized data) of stacked northern Greenland δ18O records over the last 1000 years. Stack “East”: B16, B17, B18,
B19, B20, B21 and B23. Stack “Divide”: B22, B26, B27, B29, B30 and NGRIP. Values in red are more enriched compared to the mean over
their last 1000 years, and those in blue are less enriched. Also given is the correlation coefficient of 30-year running means between the NG
stack and the sub-stacks (AD1505–1993). The coefficient for a similar correlation between the two sub-stacks is calculated with r = 0.71.

cess of gases into the ice (e.g., Buizert et al., 2014; Severing-
haus et al., 1998), allow for a direct temperature reconstruc-
tion at least for some periods of the past. In agreement with
this, both methods point to much lower temporal δ18OT−1
slopes ranging between 0.4 and 0.3‰ ◦C−1 (Jouzel et al.,
1997a). Consequently, they indicate a much higher tempera-
ture variability in Greenland during the last glacial period.
For the period of the last 9000 years the Greenland aver-
age Holocene isotope–temperature relationship has been es-
timated to be 0.44–0.53‰ ◦C−1, again substantially lower
compared to the modern spatial gradient (Vinther et al.,
2009). However, as all these studies cover much longer time
periods as compared to our NG stack records, no firm con-
clusion can be drawn from these studies about an appropriate
isotope–temperature relationship for the last millennium.
Along the NGT firn, temperature measurements at about

15m depth have been done (Table 4). However, due to their
small range of about 2K difference, it is difficult to reassess
the general Greenland isotope–temperature relationship from
Johnsen et al. (1989) from the NGT data alone. Schwa-
ger (2000) added data from Dansgaard et al. (1969) from
along the EGIG traverse, which was also used in Johnsen et

al. (1989), to expand the temperature range to derive a more
reliable isotope–temperature gradient. This calculated gradi-
ent of 0.7± 0.2‰ ◦C−1 is within the gradient uncertainty
range given by Johnsen et al. (1989). Using our updated NGT
data set we get the same results.
If we apply the spatial isotope–temperature gradient of

0.7‰ ◦C−1 from Schwager (2000) for the range of isotope
variations (−1.4 to 2.5‰) of the NG stack record, the iso-
tope data translate into temperature changes of−2.0 to 3.6◦C
(5.6K) within the last millennium. However, applying in-
stead a temporal gradient of 0.48‰ ◦C−1 as suggested by
Vinther et al. (2009) results in possible temperature changes
of −2.9 to 5.2 ◦C (8.1K) within the last 1000 years. Us-
ing the most recent temporal glacial–interglacial isotope–
temperature gradients reported by Buizert et al. (2014)
would result in comparable temperature changes. If using
the NEEM gradient of 1.1± 0.2‰ ◦C−1 (Masson-Delmotte
et al., 2015), which is valid for AD2007–1979 in the area
of NEEM, the resulting temperature range of the NG stack
is, at −1.3 to 2.3 ◦C (3.6K), a bit smaller than compared to
the Johnsen or Schwager gradient. Nevertheless, the result-
ing temperature ranges are larger than expected (e.g., Dahl-
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Table 5. Correlation coefficients (r) of the stacked δ18O record with annual and seasonal (DJF, MAM, JJA and SON) extended Greenland
temperature records ∗ (Vinther et al., 2006a), northwestern Iceland instrumental data∗∗ (Hanna et al., 2004; Jónsson, 1989), annual mean
Greenland ice sheet near-surface air temperatures from combined instrumental and model output ∗∗∗ (Box et al., 2009) and Arctic temperature
reconstruction ∗∗∗∗ (Wood et al., 2010). All correlations are done with 5-year running means and are significant at the 95% level (p < 0.05).

rannual rseasonal Years of overlap

Merged South (Greenland)∗ 0.51 DJF 0.47 1784–1994
MAM 0.62
JJA 0.51
SON 0.5

Ilulissat (Greenland)∗ 0.46 DJF 0.50 1784–1994
MAM 0.42
JJA 0.36
SON 0.45

Nuuk (Greenland)∗ 0.41 DJF – 1784–1994
MAM 0.55
JJA 0.47
SON 0.47

Qaqortoq (Greenland)∗ 0.39 DJF – 1784–1994
MAM 0.50
JJA 0.50
SON 0.36

Stykkishólmur (Iceland)∗∗ 0.41 DJF – 1830–1994
MAM 0.36
JJA 0.35
SON 0.31

Mean Greenland surface air temperature∗∗∗ 0.50 1840–1994
Extended instrumental temperature record∗∗∗∗ 0.55 1802–1994

Jensen et al., 1998), which is an additional argument for not
calculating absolute temperatures from the NG stack with the
given gradients.
We conclude that any conversion of the NG stack iso-

tope record into absolute temperature variations during the
last millennium is highly uncertain. Thus, for the follow-
ing part of the manuscript, we will refer to NG stack iso-
tope anomalies as relative temperature changes in terms of
“warmer” (i.e., isotopically enriched) and “colder” (isotopi-
cally depleted) only, but will refrain from converting our ice
core data into absolute temperature changes.
To assess regional differences within northern Greenland,

stacks of subsets of cores will be discussed in terms of in-
terpretation as a temperature proxy. As illustrated in Fig. 4,
we differentiate between two different types of cores: cores
drilled on the ice divide and cores drilled east of the ice di-
vide. Accordingly, in Fig. 5 the overall northern Greenland
δ18O stack used in this study is compared to a stack of the
cores of lower accumulation rate drilled east of the main
ice divide (B16, B17, B18, B19, B20, B21 and B23) (stack
“East”) and a stack of those on the ice divide (B22, B26, B27,
B29, B30 and NGRIP) (stack “Divide”) (Fig. 5).
Even though there is a similar overall trend, the three

records show differences in amplitude and timing of warm
and cool events. The correlation between the two sub-stacks
is rather low (r = 0.71 of 30-year running means). In the 11th

and 12th centuries, we observe a quasi-anti-correlation be-
tween stack “East” and stack “Divide”. Even during well-
known climate events such as theMedieval Climate Anomaly
(MCA, AD950–1250; Mann et al., 2009), the Little Ice Age
(LIA, 1400–1900; Mann et al., 1998) and the early twenti-
eth century warming (ETCW, AD1920–1940; Semenov and
Latif, 2012), there are significantly different δ18O patterns.
For example, stack “Divide” shows colder temperatures dur-
ing AD1000–1200. Also, during the 16th century we notice
substantial differences between the two sub-stacks. In stack
“East” events like the AD1420 or the first part of the LIA
show a higher amplitude.
Stack “East” has a higher correlation to the total NG

stack (r = 0.96) compared to stack “Divide” (r = 0.68) for
the period AD994–1994. When looking at the time period
AD1505–1993 with a high number of cores included in both
sub-stacks, it can be seen that the correlation coefficients to
the total NG stack are almost equal (stack “East”: r = 0.95;
stack “Divide”: r = 0.90, p < 0.1). Here, both records reflect
the mean changes in δ18O for northern Greenland. Differ-
ences before AD1505 may be artifacts of low core numbers
even though regional differences in climate conditions can-
not be ruled out.
We consider the NG stack to be a climate record that dis-

plays the overall climate variation independent of local in-
fluences such as topography or accumulation rate. In con-
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trast, results from studies with only one record become less
spatially representative, as they may be affected by a lower
signal-to-noise ratio and a higher influence of other local
non-climate effects.

3.4 Last millennium climate from a stacked NG δ18O
record in relation to other proxy records and
possible forcing factors

The NG stack covers the time between AD753 and AD1994
(Fig. 5). For a better visualization of decadal- to centennial-
scale variability, a 30-year running mean is added. The run-
ning mean shows the warmest period around AD1420 and
the coldest at about AD1680. The isotopically warmest sin-
gle year during the last 1000 years in northern Greenland was
AD1928, whereas AD1835 was the coldest.
Distinct decadal- to centennial-scale warm and cold

anomalies can be detected in the stacked (Fig. 5) as well
as individual δ18O records (Fig. 2) and coincide with well-
known climate anomalies (MCA, LIA, ETCW, marked in
Fig. 5).
We find a pronounced warm period from AD850 to 1100

which has its maximum between AD900 and 1000. This is
about 100 years earlier than the described MCA in Mann et
al. (2009). The warm period is followed by a quasi-periodical
change of warm and cold phases observed approximately ev-
ery 60 to 80 years until about AD1600. During this phase,
the most distinct warm period is observed around AD1420.
A longer period of cold temperatures occurred during the

17th and early 19th century and has already been attributed to
the LIA by a prior NGT study that used only four cores (B16,
B18, B21 and B29; Fischer et al., 1998c). A cold period in
northern Greenland corresponding to the LIA is later than
reconstructed for the entire Northern Hemisphere by Mann
et al. (1998), with lowest values during AD1620–1780 and
in the first half of the 19th century. Interestingly, the warmest
mean values of the last 1000 years at AD1420 lie within the
time frame of the LIA.
A distinct but, compared to other periods, not exceptional

warm event in the early 20th century corresponds to the
ETCW. Since the 1870s, the values are above the 1000-year
mean. At the end of the 20th century, the temperature stag-
nates at a high mean level. However, as the NGT cores were
drilled between AD1993 and 1995, the warmest years of the
recent decades (Wood et al., 2010) are not included in our
record.
For the NG stack as well as most of the individual NGT

cores, the isotopically warmest periods besides the AD1420
event were in the 10th and 20th centuries, in particular be-
tween AD1900 and 1950. These years are even warmer than
the most recent years covered by the NGT cores (i.e., the
1980s).
To place the results in an Arctic-wide context, we com-

pare our northern Greenland temperature record (NG stack)
to ice core records from the Russian Arctic (Akademii Nauk

– AN; Opel et al., 2013), Canada (Agassiz Ice Cap – Agassiz;
Vinther et al., 2008), Svalbard (Lomonosovfonna – Lomo;
Divine et al., 2011) and southern Greenland (Dye3; Vinther
et al., 2006b), as well as a multi-proxy reconstruction of
annual Arctic SAT (Arctic2k; Pages 2k Consortium, 2013;
Fig. 6) that covers our time period.
Note that some of these time series (Agassiz, Arctic2k)

are also stacked records with a wider regional representative-
ness, whereas others are single records (Dye3, AN, Lomo),
which influences the strength of correlation due to different
signal-to-noise ratios. For the discussion of the temperature
record, we concentrate on the smoothed values (30-year run-
ning means).
The strongest correlations with our NG stack are found

for the Agassiz and Arctic2k records (r = 0.58 and 0.66, re-
spectively). For the latter, we have to consider that some of
the NGT cores (B16, B18 and B21 on the old timescale) are
used to generate this multi-proxy record. In total, 59 records
including 16 ice cores were used. NGT cores represent only
3 out of these 59 records. The correlation coefficient between
the stacked anomalies of B16, B18 and B21 and the Arctic2k
temperature is small (r = 0.24), so we can assume that the
NGT records do not dominate the reconstruction.
We conclude that a good correlation between the NG stack

and the Arctic2k record shows that the temperature in north-
ern Greenland generally follows the Arctic-wide mean tem-
perature.
The Lomonosovfonna record is interpreted as a winter

record and has only a weak correlation with the NG stack
(r = 0.22). More summer snow in northern Greenland com-
pared to Lomonosovfonna could be one possible explanation
for the weak correlation between both records. While for the
other drill sites we have comparable r values for both sub-
stacks as for the NG stack, the Lomonosovfonna record has
a stronger correlation to stack “East” (r = 0.2) than to stack
“Divide” (r =−0.12), which supports the argument of dif-
ferent moisture sources or seasonal distribution of snowfall
in the northeast of Greenland.
The Lomonosovfonna, Akademii Nauk and Arctic2k

records show significantly more enriched δ18O values dur-
ing the MCA. However, smaller events of abnormal warm
temperatures during the MCA are observed for Agassiz and
Dye3. Our NG stack shows warmer values earlier than the
MCA time period given by Mann et al. (1998). We conclude
that, further north in the Arctic, the warm events duringMCA
may be less pronounced or earlier in timing.
The Lomonosovfonna and Arctic2k records show a domi-

nant cold period during the LIA fromAD1580 to 1870. Also,
our northern Greenland ice cores, as well as those of Agassiz
and Akademii Nauk, reveal distinct LIA cooling periods in
contrast to the Dye3 ice core from southern Greenland. Like
in our NG stack, the cooling appears in two phases and some
decades later than described by Mann et al. (2009). For the
NG stack, the younger phase (AD1800–1850) is of minor
amplitude and shorter duration.
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Figure 6. Thirty-year running mean for δ18O values from different Arctic regions – northern Greenland (NG stack, this study), southern
Greenland (Dye3; Vinther et al., 2006b), Canada (Agassiz Ice Cap, Agassiz; Vinther et al., 2008), Russian Arctic (Akademii Nauk, AN; Opel
et al., 2013) and Svalbard (Lomonosovfonna, Lomo, Divine et al., 2011) – as well as a reconstructed record (Arctic2k; Pages 2k Consortium,
2013). All records are given on z-level scales (centered and normalized data). The correlation coefficient for the smoothed values with regard
to our stack is also given.

Between AD1920 and 1940, there was a major warming
period in the Arctic, known as the ETCW, which was ob-
served in all records shown here. Chylek et al. (2006) deter-
mined from meteorological data that the 1920–1930 warm-
ing was stronger than the 1995–2005 warming. For the NG
stack and Akademii Nauk record, the ETCW was warmer
than the second half of the 20th century, which distinguishes
them from other shown records. The ETCW is assumed to
be independent of external forcing but caused by internal
climate variability, in particular sea-ice–atmosphere feed-
backs (Wood and Overland, 2010). This led us to conclude
that northern Greenland may also be a good place to study
forcing-independent (i.e., internal) climate changes.
However, natural external forcing (i.e., insolation, solar ir-

radiance and volcanic eruptions) is assumed to influence the
temperature that can be studied from northern Greenland’s
ice cores.
In general, higher solar activity causes higher temperatures

(as during the MCA), whereas cold periods (e.g., LIA) are
dominated by lower solar activity (Ammann et al., 2007).

Based on some of the NGT records (B16, B18, B21 and
B29), Fischer et al. (1998c) explained most of the long-term
variation in northern Greenland through changes in solar ac-
tivity.
Volcanism causes strong negative radiative forcing

(Robock, 2000). It is assumed that volcanic eruptions in-
ject large quantities of sulfur-rich gases into the stratosphere
and global climate can be cooled by 0.2–0.3 ◦C for several
years after the eruption (Zielinski, 2000). Results from Crow-
ley (2000) indicate that volcanism generally explains roughly
15–30% of the variability in global temperatures.
Miller et al. (2012) argued that century-scale cold summer

anomalies, of which the LIA represents the coldest, occur
because natural forcing is either weak or, in the case of vol-
canism, short-lived. Pages 2k Consortium (2013) shows that
periods with strong volcanic activity correspond to a reduced
mean temperature. The LIA may be therefore caused by a
50-year-long episode of volcanism and kept persistently cold
because of ocean feedback and a summer insolation mini-
mum.
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Figure 7. The northern Greenland stack (NG stack; blue: annual;
dark blue: smoothed) is shown with possible forcing factors. Green
represents the reconstructed total solar irradiance (Steinhilber et al.,
2009), purple the reconstructed August Arctic sea-ice extent (Kin-
nard et al., 2011), and red at the bottom the stratospheric sulfate
aerosol injection for the Northern Hemisphere (Gao et al., 2008).
All values are 40-year low-pass-filtered. The discussed AD1420
event is marked in beige.

Between about AD1100 and 1600 we observe quasi-
periodic (60–80 a) cold and warm anomalies in the NG stack
which are not present in the other Arctic records shown
(Fig. 6). The main period determined using Fourier decom-
position between AD1100 and 1600 for 30-year running
mean smoothed values is calculated with 76.31 a.
The Atlantic Multidecadal Oscillation (AMO) could be

one possible influence causing these low-frequency oscilla-
tions. Chylek et al. (2012) explain that the AMO is visible
in δ18O values from central Greenland. As the AMO index
reconstruction (Gray et al., 2004) does not cover the time be-
tween AD1100 and 1600, we can only speculate about an in-
fluence in that time due to the similar periodicity. For the time
period AD1567–1990, the correlation between the NG stack
and the AMO index is weak (r = 0.06), which might be due
to the uncertainties in historical AMO data. However, after
AD1800 we observe a higher correlation coefficient (r = 0.
66, p < 0.05) implying a possible relation.
One of these warmer periods is at about AD1420± 20,

an abnormal warm event which is observed in our northern
Greenland record and has not been pointed out in other ice
core studies before. The event is observable in all nine NGT
cores covering this time (Fig. 2) as well as in NGRIP but not
in the isotope records from southern Greenland such as the
Dye3 ice core (Fig. 6). One reason here might be the specific
geographical position in the north.
Furthermore, we observe a difference between the Cana-

dian and Russian Arctic regarding the 1420 event. Unlike
the Russian Akademii Nauk ice core, the δ18O values of the
Agassiz cores from Ellesmere Island also show a tendency
towards more enriched values in that period but which is not
as strong as in northern Greenland.

The fact that the 1420 event is not clearly noticeable in
other surrounding Arctic ice cores emphasizes that this event
may have occurred on a smaller regional scale. However, it
seems to have been of dominant influence and is also re-
flected in a smaller warming for the Arctic2k record (Fig. 6).
The spatial distribution of the 1420 event in northern

Greenland is mapped in Fig. 3b. The event is strongest in
the upper north and shows a different pattern than the δ18O
anomalies of the 1920/1930 warm phase, which is also at-
tributed to internal variability and is strongest in the northeast
of Greenland.
Figure 7 shows possible forcing factors that might be re-

lated to the AD1420 event. According to the reconstructed
total solar irradiance record of Steinhilber et al. (2009), there
was no solar maximum observed for AD1420 that could ex-
plain the warmer temperatures in northern Greenland. As we
see no forcing anomaly, we interpret the 1420 event as likely
be caused by internal Arctic climate dynamics with a sea-
ice–atmosphere feedback.
Box (2002) argued that climate variability in Greenland

is linked to the North Atlantic Oscillation (NAO), volcan-
ism and sea-ice extent. NAO (Vinther et al., 2003) is calcu-
lated to be weakly reflected (r =−0.2, p < 0.01) in the NG
stack, similar to the results of White et al. (1997) for summit
ice cores, whereas none of the single NGT records is signif-
icantly correlated (p < 0.05) with the NAO index. The NG
stack has an increased signal-to-noise level, which is why
the correlation here might be clearer than from individual
records. Also, the sub-stacks of the records on the ice divide
(stack “Divide”) as well as those east (stack “East”) are sig-
nificantly correlated (r =−0.19 and −0.17, p < 0.05) with
the NAO index. The cores east of the main ice divide are ex-
pected to be out of the major cyclonic track. We conclude
that NAO is not of major importance for northern Greenland
δ18O values.
Around AD1420, an anti-correlation between sea-ice ex-

tent in the Arctic Ocean (Kinnard et al., 2011) and the δ18O
values is observed (Fig. 7). The sea-ice extent reconstruc-
tion of Kinnard et al. (2011) is based on 69 proxy records, of
which 22 are δ18O records. Out of these 22 δ18O, records 5
(NGRIP, B16, B18, B21 and B26) are also used in our NG
stack. We do not expect circular reasoning in the interpreta-
tion of the 1420 event because B16 and B26 do not reach the
age of AD1420 and we do not see a strong anti-correlation
during any other time period.
The sea ice in the Arctic Ocean shows a recession only

during that warm period in northern Greenland. A dimin-
ished sea-ice extent would cause higher temperatures on a
regional scale and would increase the amount of water vapor
from local sources. Therefore, compared to distant sources,
more isotopically enriched moisture (Sime et al., 2013) may
contribute to precipitation in northern Greenland, in particu-
lar east of the main ice divide.
However, we do not see any direct relationship between

sea-ice extent and our NG stack during the rest of time, which
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does not exclude the relationship between sea-ice extent and
δ18O in northern Greenland. The sea-ice reconstruction used
is Arctic-wide, which means that the climatic events of re-
gional extent, like an additional moisture source for northern
Greenland’s δ18O, do not always have to be reflected. Nev-
ertheless, the recent NEEM δ18O record from northwestern
Greenland also shows a generally close relationship with the
Labrador Sea/Baffin Bay sea-ice extent (Masson-Delmotte et
al., 2015; Steen-Larsen et al., 2011).

4 Conclusions

With the full set of the NGT records, it was, for the first time,
possible to describe regional differences in the δ18O values
in northern Greenland over the last 1000 years.
Because of the ice sheet topography we see a clear east-

to-west difference in northern Greenland δ18O distribution.
In total, 12% of the spatial δ18O variability is attributed to
ice sheet topography. The east-to-west gradient is larger than
the north-to-south gradient. We find a more pronounced per-
sistence of warm or cold events east of the main ice divide
and assume more stable climate conditions there. The east-
ern part is more influenced by local effects like changes in
the Arctic Ocean. However, these findings need to be sup-
ported by the results of climate models. For the first time, a
local warm event at AD1420± 20 has been pointed out. We
assume an atmosphere–sea-ice feedback to be one possible
reason for this event.
Due to the shadowing effect of the main ice divide we find

the lowest accumulation rates in the northeast, whereas the
lowest mean δ18O values are found east of the main ice divide
north of the summit. The lowest δ18O mean values seem to
be independent of accumulation rate.
We have presented a new 1000-year stacked δ18O record

for northern Greenland covering 10% of the area of Green-
land. We found this NG stack to be representative of the
northern Greenland temperature.
Northern Greenland δ18O represents known climatic vari-

ations of the last millennium. We see a warm MCA and can
derive distinct LIA cooling from our NG stack.
The results of single-site ice core studies are likely weak-

ened by the finding that there is only 22% common variabil-
ity in the 13 NGT cores.
The solar activity and internal Arctic climate dynamics are

likely the main factors influencing the temperature in north-
ern Greenland. In contrast, we could not find a general cool-
ing effect of volcanic eruptions in our data.
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The following points will be worked on before submission: 

- Compare results to global climate model outputs 

- Studying the reasons of the 1930/40 warm event (ETCW) 

- Make clear whether recent warming can be explained by natural variability 

- Determine common intervals of smoothing, slopes and diffusion calculations and 

adjust figures and recalculate histograms  
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 10 

Summary paragraph  11 

Greenland currently shows record warm temperatures, early melting season, area-wide melting1–12 
4 and a loss in mass of the ice sheet5,6. To assess these findings it is necessary to set the recent 13 

temperature values into historical context. However, instrumental temperature records are 14 

short-termed and geographically sparse. Millennium reconstructions exist but they merge 15 

different proxies and instrumental datasets and thus might be biased towards underestimating 16 

past changes. Further, they are not specific for Greenland. Here we provide the most 17 

comprehensive ice-core compilation of Greenland allowing us to reconstruct the millennium 18 

climate signal in an unprecedented quality. The gradient of the actual warming is not unusual 19 

while recent values haven´t been found comparable during the last thousand years. It shows that 20 

the recent warming is unusual in the context of the last millennium. 21 

 22 

Main  23 

The recent global air temperature has a clear warming trend7. The high latitudes are known to 24 

be extra sensitive to a rise in temperature7,8. Recent instrumental records show, that during the 25 

20th century the air temperature over land in the Arctic rises by up to 5 °C9 which is about twice 26 

as fast as temperature in lower latitudes10,11. Satellite observations show a huge loss in mass for 27 

Greenland during the last years5,6, surface melting at higher altitudes on the Greenland Ice Sheet, 28 
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extremely in 20121–4, and a decline in Arctic sea ice cover12,13, which all pretends an ongoing 29 

warming trend in air temperature.  30 

The recent values have to be set in context of natural variability to definitely assess the observed 31 

Arctic trend14. However, there is a lack in Arctic temperature data. Instrumental temperature 32 

data are too short in time and cannot be used to reconstruct preindustrial climate variability, 33 

and no Arctic annual one-proxy record of the necessary length exists until now. Another 34 

problem is the merge of different proxy-record sources, as they are associated with calibration 35 

uncertainties as well as seasonal bias. Tree-ring records for example are summer proxies and 36 

cannot represent the evolution of annual mean values in Greenland15. Single-spot studies carry 37 

high local noise (e.g. NGRIP) and are not representative for a larger area. Local noise is assumed 38 

to be so high in low accumulation rate sites that it possibly hides the Holocene climate 39 

variability.  40 

In our study we use stable water isotopes as a proxy of temperature. This method is well 41 

established in ice core studies16,17. Enriched δ18O values are interpreted as warmer temperatures 42 

whereas depleted values are referred to colder temperature conditions. 43 

In our new approach, we used 16 instead of one, equally distributed firn cores over northern 44 

Greenland (fig.1). By stacking we reduce the local noise18 and show the result to be correlated to 45 

temperature time series of coastal stations (methods). The stack proofs to be representative for 46 

decadal temperature variability (methods). Our stacked record covers more than the last 1000 47 

years (2011-775 C.E.) back in time and extends till 2011. By that, it is possible to set the recent 48 

trend into the context of natural climate variability. 49 

The annual stacked δ18O record has the three most enriched values (from highest to third 50 

highest) in the years 2002, 2009 and 2001 C.E. and the three most depleted (from most depleted 51 

to third) annual values in 810, 1265 and 862 C.E. 52 

We see a clear warmer medieval time, a positive extreme event around 1400-1450 C.E. and a 53 

colder Little Ice Age which is ended by the recent warming. The decadal natural variability is 54 

reflected in the stacked record which is by now not possible to show with climate models. Clearly 55 

observable from the stack is for example a warm event around 1930/40 C.E. which is attributed 56 

to the Early Twentieth Century Warming (ETCW). This event is explained by anomalies in the 57 

atmospheric flow. A low NAO and a blocking situation over Greenland were likely causing the 58 

warm years. 59 

The last decade (2002-2011) has compared to the mean of the meteorological reference interval 60 

(1961 - 1990 C.E.) which is used in this study as reference interval, a 0.97 ‰ higher mean value. 61 
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Using following the α-value of 0.67 regarding Johnsen et al19, this is equal to a warming of about 62 

1.45°C which can be comparably found in a stacked record of the coastal DMI automatic weather 63 

stations in Greenland20 (+1.62°C). Even warmer than the last decade and any other covered 64 

decade in our stacked firn core record was 1997 to 2006 (~1 ‰, +1.5°C).  65 

There is a first downward (from approx. 950 C.E.) than upward (to approx. 1950 C.E.) long-term 66 

trend in the stacked firn core data. We observe more enriched δ18O values since about 1850 C.E. 67 

The δ18O stack shows a clear increasing trend since about 1980 C.E. This start is about 15 years 68 

later than the start of rising in the global mean temperature (fig. 2).  69 

To exclude that the different core number changes our findings we calculated a stack of a 70 

constant max. core number (7 records, 2011-1372 C.E.), which is used in further calculations 71 

(methods).  72 

Assessing the recent trend two facts are of interest: the gradient of the trend and the absolute 73 

level of the values. 74 

The gradient of the recent rise is not unusual and can be found comparable during the last years 75 

(e.g. around 1400 and 1860 C.E.) (fig.3). The trend of the most recent 20 years has only the fourth 76 

steepest slope of the 11-year running mean record.  77 

However, the level of the values is unusual. The distribution of the annual stacked values makes 78 

the abnormality of the recent values clear. High values occurred during the 1420-event but all 79 

values of the last 15 years are significantly higher compared to the 1961-1990 mean (fig.3). The 80 

three highest values are younger than 2000 C.E. Most of the values higher than the 2-sigma 81 

interval are values of the last 15 years. This is at variance with studies which show that the recent 82 

values are within the natural variability. One example is the study of Kobashi et al.21 which 83 

however covers 4000 years back in time while our study only goes back to 775 C.E., further our 84 

stacked data includes more latest values. 85 

The recent values have already been on a high level before 1980 C.E. when the rise started. That 86 

is why the values rise up to an unusual high level. Before the recent rise the Greenland and global 87 

temperature records are more or less independent. However, since 1980 they show same positive 88 

trend. We suppose that the anthropogenic effect affects the Greenland temperatures now, 89 

additional to the already natural high level. This is an important information to predict future 90 

temperature values in the right way, as proxy data also show the natural decadal variability 91 

which is still underestimated by climate models. Later than global, but the anthropogenic effect 92 

is now also obvious in the Arctic temperatures. 93 
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With the presented data it is for the first time possible to definitively show and asses the recent 94 

warming trend from a one-proxy record over the last more than 1000 years on a decadal time 95 

scale. The abnormality of the recent values can now be verified by a record of large regional 96 

representativity. We can say that the last years in Greenland were the abnormal warmest in the 97 

last millennium. Further we can exclude the rise to be an artefact of other than climatic reasons.  98 

The northern Greenland firn cores can close the Arctic gap in the worldwide measuring network 99 

for a more representative global mean temperature and to help to verify climate model outputs. 100 

 101 
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Figures 154 

 155 

Fig. 1 Overview drill sites. Black circles mark drill site positions of cores from the AWI NGT 156 

traverse 1993/1995, grey dots mark drill sites of cores drilled 2011/20012. Black squares mark older 157 

drills used in this study. With crosses are deep drill sites market for orientation and black dots 158 

show settlements with longer DMI temperature measurements. 159 
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 160 

Fig.2 Anomalies (relative to 1990-1961 C.E.) of the stacked annual northern Greenland δ18O data 161 

(thick: 11-year running mean, violet: annual values, light violet: ±1 standard deviation. The 162 

number of stacked cores is given at top. In gray the global mean temperature anomaly record21 163 

(relative to 1980-1950 C.E.) (thick: 11-year running mean, thinner: annual) is displayed.  164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 

 172 

 173 

 174 

 175 

 176 

 177 

 178 
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a) 179 

 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

b) 188 

 189 

Fig. 3 Abnormity of recent temperatures from histograms. 190 

Histogram (2011-1372 C.E.) of a) the 11-year running mean smoothed stacked record with constant 191 

core number (highlighted in violet are the values of the last 15 years) and b) linear regression 192 

slopes of 20 year intervals of the same record.  193 

The years with the highest values and the start year interval with steepest slopes are given in 194 

order with the warmest and steepest years at top. 195 

 196 
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Methods 197 

Stacking the data 198 

The annual δ18O values of 16 ice core records from northern Greenland were stacked to a mean 199 

record.  200 

First 5 NGT 93/95 records (B18, B21, B22, B23, B26) (Weißbach et al., 2016) and the NGRIP record 201 

(Vinther et al., 2006) were extended to the recent years by the data of the NGT-update cores 202 

drilled in the years 2011 and 2012 (not published data). For their overlapping interval the annual 203 

values of the NGT-update records were used. There was no mean calculated for the overlapping 204 

interval to not smooth the amplitude of variability. 205 

Additional to the in total used 11 NGT 93/95 records, NGRIP and their updated records the 206 

annual records of GRIP (Vinther et al., 2010), GISP2 (Grootes and Stuiver, 1997), NEGIS 207 

(Vallelonga et al., 2014) and NEEM (Masson-Delmotte et al., 2015) were used to calculate a 208 

representative stack for northern Greenland.  209 

The annual anomalies relative to their mean of 1961-1990 C.E. have been averaged to calculate 210 

the stack.  211 

Stack with constant core number 212 

As the records used to calculate the stack are of different lengths also a second stack with a 213 

constant number of records was calculated. Therefore the annual NGRIP, B18, B21, B22, B23, 214 

NEEM and NEGIS records were stacked. Two of the seven records (NEEM and NEGIS) were 215 

continued by other records (B27/28 and B17) of comparable variance and with adjusted mean 216 

values to extend their length to the same time interval. The so produced stack and the stack with 217 

different core numbers are of high similarity (r = 0.95). However, for further calculations the 218 

stack of constant core number was used. 219 

Finding right smoothing interval and boundary value method 220 

The stacked δ18O record was smoothed to take into account for dating uncertainties. To find the 221 

best method to do so, correlations to a stacked record of DMI southern Greenland coastal 222 

temperature data were made. We tested for different time intervals and different filter types 223 

(Gaussian and moving average) as well as 3 different alternatives (1) minimum norm, 2) 224 

minimum slope, 3) minimum roughness) according to Mann (2004) to account for the 225 

boundary-value problem. We find the highest correlation coefficients for the records performing 226 

a 9-year running mean average padding the series with values using the methods of minimum 227 
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slope beyond the boundaries. That method pad the series with the values within one filter width 228 

of the boundary reflected about the time boundary and continues in that way the rising trend. 229 

Using the results of this study we decided to use an 11-year running mean and padding the record 230 

by continuing the rising trend before for further calculations. 231 

 232 

 233 

Fig. 4 Correlation of DMI coastal temperature data and stacked δ18O northern Greenland ice 234 

core data. The correlation coefficients for different tested smoothing methods (colors) and 235 

different filter widths are shown. 236 

 237 

Representativity studies 238 

To check the spatial representativity of the stack we correlated the data to reanalysis data (20C). 239 

We find high correlations between the stacked δ18O record and the gridded δ18O temperature 240 

data for whole Greenland. This supports our statement that the stack is at least representative 241 

for northern Greenland. Also high correlation coefficients were found for the subtropics but not 242 

to northeast Pacific or Asia.  243 
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 244 

Fig.5 Correlation map of 20C temperature data and stacked northern Greenland δ18O data. 245 

 246 

Exclusion of other factors causing the recent values to be unusually high 247 

There are several factors that might be influence the annual δ18O vales. In the following we 248 

discuss the main points: δ18O diffusion, dating uncertainty and core number, which might be 249 

change the extraordinary values after 1980 C.E. 250 

Diffusion 251 

Diffusion smooths the high frequency changes in δ18O data. Regarding Johnsen et al. (2000) the 252 

annual mean data is unaffected by that smoothing and only the sub-annual differences are 253 

reduced. However, we checked that fact by using an 8 cm w.eq. long Gaussian filter to smooth 254 

the high-resolution records of each of the individual cores. The filter length was chosen as an 255 

extreme but realistic case following the study of Johnsen et al. (2000). The filter is constantly 256 

used for the total length of the individual records to calculate the extreme. In reality the filter 257 

length should be decrease with depth because further down in the ice core the real diffusion has 258 

already been carried out. From the filtered high-resolution records annual means were 259 

calculated and the resulting annual records stacked to one record.  260 

Our results show, that the 30-year running mean is not affected by the diffusion experiment. 261 

Smaller differences are in the annual data, which might be are because of the chosen extreme 262 

case.  263 
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 264 

 265 

Fig.6 Stacked records of northern Greenland δ18O values. In red the high-resolution records have 266 

been filtered before stacking their annual records (thin: annual values, thick 30-year running 267 

mean. In red the stack of the unfiltered, original diffused values is given (thin: annual values, 268 

thick: 30-year running mean). At top the number of cores used to produce the stack is given. 269 

 270 

Dating uncertainty 271 

Annual layer counting, especially in low accumulation rate areas as northern Greenland, are 272 

most certain for the youngest years and get more uncertain with age. Therefore it could be the 273 

case that the annual amplitude is reduced with age because of the increasing dating 274 

uncertainties. That would result in an unrealistic assessment of the recent amplitudes compared 275 

to the older ones. 276 

We performed a MonteCarlo method to check if the dating uncertainty can explain the high 277 

recent annual amplitudes and cause the trend which is interpreted as a recent warming trend. 278 

With the mean accumulation rate and known standard deviation from the original layer counted 279 

results at each drill site we calculated 1000 random Gaussian distributed annual accumulation 280 

rates for each site. We used those accumulation rate records to calculate annual δ18O means. 281 

From the 1000 runs we calculated the annual standard error/deviation at each drill site. The 282 

mean annual standard deviation is then used for an error band. We added the annual standard 283 

error to the mean value of all records relative to the 1961-1990 mean. 284 

The band has an increasing trend also since 1980 C.E. The random counted stacked record has 285 

unusual high recent values as well. This suspends the increasing dating uncertainty with depth 286 

as a factor causing the abnormal recent high annual values obvious from our northern Greenland 287 

stacked record. 288 
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 289 

Fig. 7 Original stacked record (petrol) and the resulting stack of the same records randomly 290 

counted (thin orange line, +/- 1 standard deviation error band given in yellow). 291 

 292 

Number of cores 293 

The number of stacked records defines by definition the standard error. The result of a higher 294 

number of records is more precise. As our stack has a higher number of records starting about 295 

1400 and ending 1995 compared to other intervals we check the argument of different core 296 

number by stacking only those records of same length. The resulting stack has the same 297 

characteristics as the original with is of different core numbers. 298 

 299 

 300 
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Key Points:7

• A database is created from 326 observations from ice core and weather stations at Green-8

land9
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• Gridded maps of temperature and d18O are created for Greenland12
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Abstract13

This study presents a comprehensive database of ice core and weather station data from14

Greenland. Based on time series within the period 1890-2014, present day annual and seasonal15

mean values are computed for 326 locations in Greenland. The database comprises measure-16

ments of near-surface temperature, ice core borehole temperature, accumulation, precipitation,17

δ18O, δD and d-excess. The values are compared to existing re-analysis and gridded data prod-18

ucts for Greenland.19

Based on multiple linear regression it is found that for present-day, the spatial distribu-20

tion of annual mean δ18O of Greenland precipitation can be described using linear parame-21

terizations of the form δ18Oann = a ∗ elevsite + b ∗ latsite + c with R2 = 0.98. Similarly22

present-day annual mean surface temperature can be described as Tann = a ∗ elevsite + b ∗23

latsite + c with R2 = 0.93. It is not possible to express the spatial distribution of accumu-24

lation data using the same approach. Thorough analysis of geographical subregions of the data25

reveals that both the temperature and δ18Oann decrease with elevation at different rates in the26

west and in the east of Greenland. Differences in the rate of temperature and δ18Oann decrease27

with elevation are also observed between coastal regions and high elevation regions.28

The parameterizations are combined with a digital elevation model of Greenland to cre-29

ate the first data-based gridded map of δ18O of precipitation for Greenland and the first grid-30

ded map of Greenland temperature where ice core borehole temperatures are included. The31

map of δ18O is corrected for residuals errors and the robustness of the parameterizations in32

space and time are assessed.33

1 Introduction34

Ice cores form a cornerstone in the study of past climates. Isotopic measurements of the35

layers of past snowfall contained in the ice cores provide a vertical timeline of past climate36

conditions stored in the ice [Dansgaard, 1964; Johnsen et al., 1989; Vinther et al., 2010]. The37

isotopic composition of the Greenland precipitation comprises information of fractionation pro-38

cesses during the moisture pathway from source to deposition ( e.g. [Steen-Larsen et al., 2011;39

Bonne et al., 2014]).40

Climatic influences of the isotopic composition of Greenland snow can be studied us-41

ing isotope-enabled general circulation models (GCMs). Such models are GCMs with an ad-42

ditional isotope module that simulates the isotopic fractionation processes throughout the hy-43

drological cycle. This has the advantage that all physical processes influencing the isotopic44

fractionation in the model are known. Water isotope modules are available as a feature in sev-45

eral state-of-the-art atmosphere or fully coupled general circulation models (GCMs), earth sys-46

tem models (ESMs) and regional models; GISS [Jouzel et al., 1987; Schmidt et al., 2007]; ECHAM47

[Hoffmann et al., 1998; Werner et al., 2011, 2016], LMDZ [Risi et al., 2010], GSM [Yoshimura48

et al., 2008], CAM [Lee et al., 2007; Noone, 2003], Hadley GCM [Tindall et al., 2009], GEN-49

ESIS[Mathieu et al., 2002],MIROC[Kurita et al., 2011], iLOVECLIM [Roche, 2013], SPEEDY-50

ier [Dee et al., 2015], REMO-iso [Sturm et al., 2005], RSM [Yoshimura et al., 2010], SAM [Blossey51

et al., 2010] and COSMO [Pfahl et al., 2012].52

Model validation of an isotope-enabled model yield crucial information on strength and53

weaknesses of the given model. Such model validation needs to be done globally and for the54

region of interest. The Greenland ice core records play a key role in benchmarking paleo-climate55

model simulations and therefore Greenland and specifically the Greenland Ice Sheet (GrIS)56

is a region of specific interest for isotope modeling. Model evaluation is therefore essential,57

however the weather and isotope observations from Greenland are limited in both time and58

space. This challenges the data-foundation for an isotope-enabled model validation for Green-59

land.60

Weather observations from Greenland comprise the following:61
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Temperature and precipitation observations (Danish Meteorological Institute (DMI) Cap-62

pelen et al. [2013a,b], coastal observations and few GrIS). Temperature and isotopic compo-63

sition of precipitation (Global Network of Isotope Precipitation (GNIP), coastal observations).64

Near surface air temperature (Greenland Climate Network (GC-Net) Steffen and Box [2001],65

GrIS observations ). Near surface air temperature (Programme for Monitoring of the Green-66

land Ice Sheet (PROMICE) van As et al. [2011], observations from GrIS and outlet glaciers).67

Before 1995, the main part of long-term instrumental records comes from coastal weather68

stations. Since 1995, the air temperatures at the Greenland Ice Sheet have been monitored by69

an increasing network of automatic weather stations (AWS).70

Ice core records provide an excellent opportunity to expand the spatial and temporal cov-71

erage of isotopic composition of precipitation, accumulation and borehole temperatures at Green-72

land. [Johnsen et al., 1989; Vinther et al., 2010]. Borehole temperatures provide isotope-independent73

temperature reconstructions of the Greenland Ice Sheet [Dahl-Jensen et al., 1998]. The tem-74

perature of a borehole close to the surface (normally measured at either 10 or 20 m depth) is75

used to represent the present-day annual mean temperature at the ice core site [Johnsen et al.,76

1989].77

Gridded maps of climate observations provide a tool for easier model-data comparison.78

For Greenland, surface mass balance studies have used ice core data as a foundation for ac-79

cumulation maps [Calanca et al., 2000; Ohmura and Reeh, 1991; Bales et al., 2009; Burgess80

et al., 2010; Shen et al., 2012]. Similarly gridded maps of Greenland temperature have been81

created using weather station data [Steffen and Box, 2001; Fausto et al., 2009], yet none have82

included ice core borehole data. So far maps of isotopic composition of precipitation (e.g. δ18O)83

have not been created for Greenland.84

Knowledge of the spatial distribution of present-day Greenland conditions is essential85

in order to conduct inter-model and model-data comparison. Inherently, this requires a dataset86

where trends in data, natural variability, data uncertainties and spatial representation of regional87

differences must be considered.88

The main objective of this study is to exploit the opportunities of combining weather sta-89

tion and ice core data in order to describe the spatial variations in present-day climate and iso-90

topic conditions. This approach covers both conditions of coastal and interior regions of Green-91

land. The manuscript is structured as follows; (1) A comprehensive collection of ice core data92

and meteorological observations are combined into a dataset of mean values for present-day93

Greenland. (2) Parameterizations of the spatial distribution of respectively temperature and δ18O94

are constructed based on the linear dependency on elevation and latitude. Sensitivities of the95

parameterization coefficients are tested using selected subsets of data. (3) Spatial gridded maps96

of surface temperature and δ18O for Greenland are created using the parameterizations and97

refined by correcting for the residuals. (4) Robustness testing is conducted to assess the ro-98

bustness of the mean data and the parameterizations in space and time.99

The combination of the database and the gridded maps constitute a framework for isotope-100

model performance testing for Greenland. The gridded maps are model-independent data-transparent101

products, which aim to supplement, rather than replace, the original data and allow analysis102

of the spatial features of the data.103

2 Data description104

A database is generated based on annual and seasonal means of data spanning the time105

period 1890-2014 from ice cores and meteorological observations in Greenland. Note that each106

dataset covers slightly different time periods; Ice core data covers the period 1890-2010, DMI107

data covers respectively 1890-2012 and 1958-2012, PROMICE covers 2007-2014, GC-net cov-108

ers 1995-2014, and GNIP covers 1961-2013. Mean values are chosen over individual time se-109
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ries of each location in order to facilitate model-data comparison with modeled mean values110

and yield a representation of the spatial distribution of the values.111

Mean values are computed for temperature, precipitation, accumulation, δ18O, δD and112

d-excess. These parameters are selected as they are all important for isotope modeling and be-113

cause many long-term time series exist that cover a wide spatial range.114

A complicating factor for this dataset is that no period exists for which there is data from115

all different locations. Therefore the combined data synthesis is based on data that represent116

different subsets of time periods within the full time period 1890-2014. This years spanning117

this time period was chosen as a compromise between the length of time and the number of118

records that span the period.119

The mean values of the data are collected in a common dataset with geospatial infor-120

mation and metadata. This dataset is available in both Excel spread sheet and netCDF format.121

The netCDF format has several advantages. It is universally readable, self-described and widely122

used in the modeling community. Details on the measurements for the different types of data123

are described in the following.124

2.1 Greenland ice core data125

The ice core data consist of measurements from 185 different ice cores, firn core and126

snow pit drillings. All measurements span different subsets of time within the period 1890-127

2010. The period 2011-2014 is not covered in this data set. pit studies of data less than 2 years128

are excluded from this study. Cores from the North Greenland Traverse (NGT) [Weissbach et al.,129

2016] span larger time periods.130

The measurements obtained from the ice cores are mean annual δ18O, δD and d-excess.131

Also mean annual accumulation values from the ice core sites are included as well as the tem-132

perature of the borehole from 10 m or 20 m depth. This is used to represent annual mean tem-133

peratures at the ice core site [Johnsen et al., 1989]. The time span that an ice core record cov-134

ers varies depending on the depth of the ice core and the year of drilling. In this study all cores135

are treated independently thus no stacking and extension of several cores are conducted. This136

implies that each ice core record cover different time periods.137

The ice core measurements are conducted by analyzing the discrete ice core samples cut138

in a given resolution (e.g. 2.5 or 5 cm). The mean annual accumulation for the full available139

time periods are computed based on data from Buchardt et al. [2012]. Here the accumulation140

is estimated by counting the annual layers in the ice core [Hammer et al., 1978] and correct141

the layer thickness for density changes with depth [Herron and Langway Jr, 1980; Dansgaard142

and Johnsen, 1969] (see Buchardt et al. [2012] for details).143

The annual mean isotopic composition is computed using isotope measurements and the144

annual layer counting to obtain individual means of the given annual layer weighted with re-145

spect to the amount of samples for the given year, and hereafter compute the annual mean val-146

ues of δ18O, δD and d-excess. This is done for all annual layers within the time period of in-147

terest 1890-2010. At the time of this analysis, no accurately dated ice core data was avaliable148

for years after 2010. The number of samples per ice core is included in the database.149

A total of 14 ice cores from this study have data resolved in half-year time resolution,150

respectively representing winter and summer values. This data origins from Vinther et al. [2010]151

and seasonal data from the NEEM core is added. All seasonal resolved data are diffusion cor-152

rected to account for the dampening of the annual oscillations in δ18O signal post deposition153

for the upper 60 meter of firn [Johnsen et al., 2000]. In cases with summer melt layers, the154

signal obtained from traditional diffusion correction is distorted. The only seasonal resolved155

cores that experience frequent summer melting are Dye 3 and Renland. Thus these cores have156

been corrected using a different approach and dampening of the climate signal in these cores157
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must therefore be considered, however the high accumulation rates at the sites ensure that a158

signal is still detected [Vinther et al., 2010].159

Borehole temperatures present the direct memory of the past surface temperature, this160

approach is isotope-independent and have shown to be a useful source of past climate infor-161

mation from the Greenland Ice Sheet [Dahl-Jensen et al., 1998]. The temperatures of the ice162

at different depths depend on the geothermal heat flow density (heat flux), the ice-flow pat-163

tern, and the past surface temperatures and accumulation rates. Because seasonal variations164

of the borehole temperature are smoothed out at 10 m and below, this temperature represents165

the annual mean surface temperature, following Johnsen et al. [1989]. In this study we assume166

that the temperature represent the mean of the last 3 years before the measurement. E.g. a mea-167

surement from summer 1975 represents the annual mean surface temperatures of the years 1972-168

1974. Borehole temperatures have the advantages that they are undisturbed by instrumental169

calibration drift in time.170

Precipitation intermittency and post-depositional processes influence the ice core data.171

The robustness of the accumulation from ice core records relies on the assumption that the ice172

core represents the annual mean accumulation amount and isotopic composition of the snow173

at the given location. However temporal averaging of the core data is found to minimize the174

effects of wind drift, sastrugi formation and dating errors on the accumulation [Mosley-Thompson175

et al., 2001; Cogley, 2004]. Therefore it is here assumed that temporal averaging also mini-176

mizes changes in the isotopic composition, seasonality of the precipitation, and diffusion [Johnsen177

et al., 2000].178

2.2 Danish Meteorological Institute (DMI) datasets179

This dataset consist of temperature (dry bulb air temperature) and precipitation from au-180

tomatic and manned weather stations primarily located near the Greenland coast. This com-181

prises a total of 90 stations, spanning different subsets of time within the years 1890-2012.182

The data have been collected by the Danish Meteorological Institute (DMI), and two datasets183

are included. The long-term historical climate data collection (1890-2012) [Cappelen et al.,184

2013a] and weather observations (1958-2012) [Cappelen et al., 2013b]. Precipitation is here185

only included where available for the long-term measurements, in total 8 stations. The weather186

stations have been operated with different degrees of automation over time. In cases where187

the location of the weather station has changed during the measurement period the coordinates188

of the location that covers the largest percentage of the time period is chosen. Coastal stations189

with missing elevation data are set to 20m.190

2.3 PROMICE dataset191

This dataset consists of near surface air temperature data from 22 automatic weather sta-192

tions (AWS) located on the mid and exterior part of the Greenland ice sheet. Stations are of-193

ten in sets located close to each other either in the upper ablation zone near the equilibrium194

line or at a lower elevation in the ablation zone. All stations are part of the Programme for195

Monitoring of the Greenland Ice Sheet (PROMICE) lead by the Geological Survey of Den-196

mark and Greenland (GEUS) (e.g. [van As et al., 2011]). The data used here cover the full time197

period from 2007 - 2014, with varying length of time series for the individual stations. The198

positions from 2015 are set as stations coordinates. Each station has two temperature sensors,199

the data from these are averaged and hereafter monthly means of the sensor-averaged daily200

means are used to compute seasonal and annual means of this data.201

2.4 GC-Net dataset202

This dataset consist of near surface air temperature data from 23 AWS located on the203

interior of the Greenland ice sheet. All stations are part of the Greenland Climate Network (GC-204

Net) [Steffen et al., 1996; Steffen and Box, 2001]. Quality control procedures are applied to all205
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AWS data sets. The data used here cover the full time period from 1995-2014, with varying206

length of time series for the individual stations. Data from four temperature sensors are av-207

eraged and hereafter monthly means of the sensor-averaged daily means are used to compute208

seasonal and annual means of this data.209

2.5 GNIP dataset210

This dataset consists of 6 station measurements of isotope and meteorological coastal211

observation from Greenland as part of the Global Network of Isotopes in Precipitation (GNIP)212

network [IAEA and WMO, 2015]. The data includes data of δ18O, d-excess and air temper-213

ature. Due to the short time span of these records precipitation amount of these coastal sta-214

tions is not included here and seasonal means are not computed.215

2.6 General data overview216

The database includes a total of 326 different locations of observations. Here 185 ice217

core locations on the Greenland ice sheet, 6 coastal GNIP stations, 43 ice sheet automatic weather218

station locations (out of these 23 stations are from GC-Net and 22 from PROMICE). DMI data219

comprises 90 weather and climate observations mainly from the coast. Overview of the num-220

ber of different measurements are shown in table 1.221

Number of observations

Datasets No. of obs. T Acc./Precip., δ18O δD d-excess δ18Oseasonal

Ice cores 185 77 101 153 41 40 14
DMI 90 81 8 0 0 0 0
PROMICE 22 17 0 0 0 0 0
GC-Net 23 19 0 0 0 0 0
GNIP 6 6 0 6 4 4 0

Total 326 200 109 159 45 44 14

Table 1. Number of observations for the dataset and for the individual variables in each of those data sets.

These numbers refer to the observations included in this analysis.

222

223

The main purpose of this database is to provide information on the spatial distribution224

of present day mean conditions. Annual and seasonal mean values and standard deviations are225

calculated for the entire timespan of the individual station or core site. Missing data is a chal-226

lenge for weather stations at the Greenland Ice Sheet as the rough climate and remote loca-227

tion of the stations complicates the maintenance and calibration of the stations. Therefore only228

stations are included where monthly mean values, for all of the months, can be computed on229

data from 3 months or more. The spatial range of the annual mean data varies greatly over230

GrIS. The spatial range of the annual mean values of different data types is shown in table 2.231

3 Method234

The created database is used to analyze the spatial characteristics of annual mean sur-235

face temperature (Tsurface), δ18O and accumulation for Greenland. This is done by conduct-236

ing multiple linear regression by means of latitude and elevation. Observations from nearby237

but different drilling sites are treated independently. To represent the spatial variability of the238

observations, no combination of core or stacking of data from several ice cores or observa-239
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Spatial range of variables

T [◦C] min max

Ice cores -32.9 -9.5
DMI -29.7 2.6
PROMICE -17.6 -1.7
GC-Net -30.1 -5.8
GNIP -17.6 1.7

Acc./Precip. [w.eq. m/yr.] min max

Ice cores 0.09 1.11
DMI 0.13 0.96

δ18O [�] min max

Ice cores -39.59 -22.82
GNIP -25.02 -11.17

δD [�] min max

Ice cores -304.9 -253.3
GNIP -184.4 -87.5

d-excess min max

Ice cores 6.32 11.96
GNIP 2.76 11.23

δ18Oseasonal* [�] min max

Ice cores 1.74 7.89

Table 2. Spatial range of the individual variables and data types. All values are computed based on annual

mean values. Except δ18Oseasonal* computed as δ18Osummer-δ18Owinter .

232

233

tions is conducted. The sensitivity to individual datasets and geographical regions is tested by240

performing the regression analysis on the full data set as well as for different subgroups of data.241

3.1 Spatial characteristics of temperature242

Previous studies have described the spatial variability of the Greenland annual mean tem-243

perature using weather stations [Ritz et al., 1996; Steffen and Box, 2001; Fausto et al., 2009].244

In order to provide the most extensive spatial and temporal coverage, all types of annual mean245

temperature data are treated similarly as representing the present-day mean surface conditions246

in Greenland.247
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The datasets used in this study comprise both borehole temperatures, near surface tem-248

peratures from AWS at the GrIS and T2m from coastal meteorological stations. In total 200249

observations of temperature spanning both land and ice sheet regions. Borehole data from ice250

cores is here for the first time included together with AWS observations. A dominant amount251

of the total ice core borehole temperatures are measured in the years 1970-1995. Thus inclu-252

sion of the borehole data aids to constrain the spatial variation of GrIS surface temperatures253

to conditions before the recent warming. The advantages and difficulties that arise from us-254

ing all types of temperature data to represent surface temperature are treated in the discussion255

(see section 5).256

The resulting parameterization of the annual mean temperature Tann in Greenland is found
using multiple linear regression, similar to Ritz et al. [1996]; Steffen and Box [2001]; Fausto
et al. [2009]. Thus we describe the surface temperature in Greenland as

Tann = a ∗ elevsite + b ∗ latsite + c (1)

where elevs and latsite describes respectively the elevation and latitude of the site of the ob-257

servation, the coefficients a, b and c determine the dependence of elevation, latitude and the258

intercept value. This approach yield a description of annual mean temperature in Greenland259

that associated with the expected radiative cooling of an air mass northwards and for higher260

elevation. The advantage of this parameterization is the data-transparent, model-independent261

approach, using only geographical parameters that are constant in time for present day timescales.262

The sensitivity of the parameterization is tested for different geographical regions and263

different data sets, thus also analysing the influence of different types of temperature measure-264

ments. Regression analysis is also used to analyse regional differences in the regression of the265

data. This is done by subgrouping the observations in regions determined by either latitude,266

longitude or elevation, and hereafter test regional differences for one of these at a time. A caveat267

of this approach is that this limits the range of elevation and latitude values which the subgroup-268

regressions are based on. Therefore the subgroups are defined so that each subgroup includes269

locations spanning a wide range of elevation and latitude. Results are shown in table 3. DMI270

and GNIP data are combined in the same subgroup to improve statistics. All combination of271

data sets show a good fit with data with values of R2 > 0.9. The sensitivity to latitude are272

within the range −0.79 to −0.83 ◦C/◦N for all dataset combinations, except the PROMICE273

dataset. A likely cause for this exception might be that many PROMICE stations are located274

in association to outlet glaciers, where local climate conditions and glacial melt might be dom-275

inating the temperatures.276

GC-Net temperatures on the GrIS are higher than neighbouring borehole temperatures.277

Multiple linear regression using all data except GC-Net yields comparable results to the all-278

data parameter and thus we find that a = −0.0076±0.0001 ◦C/m, b = −0.78±0.02 ◦C/◦N ,279

and c = 49.38 ± 1.52 ◦C with R2 = 0.98 and RMSE=1.77 ◦C for 181 observations. Dif-280

ferent coefficient values are achieved when ice core borehole temperatures are excluded from281

the regression. Here a = −0.0063 ± 0.0001 ◦C/m, b = −0.78 ± 0.02 ◦C/◦N , and c =282

49.19 ± 1.46 ◦C with R2 = 0.97 and RMSE=1.44 ◦C for 123 observations. Explanations283

for this difference might be attributed to changes in GrIS temperature, differences in the ice284

sheet surface temperature and the AWS near-surface temperature as well as temperature trends285

as ice core boreholes temperature are measured mainly in before the period 1995 in contrast286

to the AWS stations. Different regimes of temperature lapse rate for high, medium and coastal287

elevation regions of Greenland [Hanna et al., 2011], most likely a result of a transition from288

moist-adiabatic to more dry-adiabatic lapse rate conditions with height might also explain the289

different sensitivity.290

The geographical distribution of the data is shown in tab.4. For elevation it is found that292

high (elevation 2300−3300m) and medium and low (elevation 0−1500m) show ahigh,elev. =293

−0.0080±0.0008◦C/m, alow,elev. = −0.0045±0.0005 ◦C/m confirms that Greenland tem-294

perature lapse rate depends on the elevation. At the same time the latitude coefficients b is within295

the same range, and does not show a sensitivity to elevation regions. Different latitude sub-296

–8–

- 90 - 



Confidential manuscript submitted to JGR-Atmospheres

T
em

p
er

a
tu

re
p

a
ra

m
et

er
iz

a
ti

o
n

co
ef

fi
ci

en
ts

T
a
n
n
=

a
∗e

le
v s

it
e
+

b
∗l

a
t s

it
e
+

c

a
[◦
C

/m
]

b
[◦
C

/◦
N

]
c

[◦
C

]
R

2
#

o
b

s.
R

M
S

E
[◦
C

]

D
a
ta

se
t

co
m

b
in

a
ti

o
n

s

Ic
e

co
re

s
-0

.0
09

6
±

0.
00

05
-0

.8
2
±

0.
04

57
.4

6
±

3.
14

0.
9

77
1.

71
G

C
-N

et
-0

.0
06

5
±

0.
00

04
-0

.8
3
±

0.
07

53
.1

2
±

5.
49

0.
96

19
1.

55
P

R
O

M
IC

E
-0

.0
06

9
±

0.
00

07
-0

.6
1
±

0.
05

38
.8

4
±

3.
67

0.
94

17
1.

12
D

M
I

+
G

N
IP

-0
.0

06
3
±

0.
00

02
-0

.7
9
±

0.
02

49
.7

1
±

1.
59

0.
95

87
1.

39
Ic

e
co

re
s

+
G

C
-N

et
-0

.0
08

5
±

0.
00

03
-0

.8
1
±

0.
04

54
.0

2
±

3.
07

0.
91

96
1.

96
Ic

e
co

re
s

+
P

R
O

M
IC

E
-0

.0
08

6
±

0.
00

02
-0

.7
6
±

0.
03

50
.7

8
±

2.
31

0.
96

94
1.

71
G

C
-N

et
+

P
R

O
M

IC
E

-0
.0

06
9
±

0.
00

03
-0

.7
5
±

0.
05

48
.0

4
±

3.
32

0.
97

36
1.

5
Ic

e
co

re
s

+
G

C
-N

et
+

P
R

O
M

IC
E

-0
.0

08
3
±

0.
00

02
-0

.7
8
±

0.
03

51
.4

8
±

2.
38

0.
95

11
3

1.
89

Ic
e

co
re

s
+

D
M

I
+

G
N

IP
-0

.0
07

5
±

0.
00

01
-0

.7
8
±

0.
02

49
.6

0
±

1.
54

0.
98

16
4

1.
73

G
C

-N
et

+
P

R
O

M
IC

E
+

D
M

I+
G

N
IP

-0
.0

06
3
±

0.
00

01
-0

.7
8
±

0.
02

49
.1

9
±

1.
46

0.
97

12
3

1.
44

Ic
e

co
re

s
+

P
R

O
M

IC
E

+
D

M
I+

G
N

IP
-0

.0
07

6
±

0.
00

01
-0

.7
8
±

0.
02

49
.3

8
±

1.
52

0.
98

18
1

1.
77

L
a
ti

tu
d

e

N
o
rt

h
(>

7
5◦

N
)

-0
.0

07
5
±

0.
00

03
-0

.7
6
±

0.
18

47
.6

2
±

14
.5

2
0.

92
56

2.
53

C
en

tr
a
l

(7
5◦

N
-6

9◦
N

)
-0

.0
07

7
±

0.
00

02
-0

.8
8
±

0.
14

57
.5

9
±

10
.2

7
0.

98
57

1.
72

S
o
u

th
(<

69
◦ N

)
-0

.0
07

4
±

0.
00

01
-0

.5
2
±

0.
05

32
.5

2
±

3.
45

0.
99

87
1.

16

L
o
n

g
it

u
d

e

W
es

t
(>

47
◦ W

)
-0

.0
06

5
±

0.
00

02
-0

.7
9
±

0.
03

50
.3
±

2.
38

0.
97

69
1.

48
C

en
tr

a
l

(4
7◦

W
-3

7◦
W

)
-0

.0
07

4
±

0.
00

02
-0

.7
5
±

0.
03

47
.6

2
±

2.
09

0.
99

87
1.

43
E

a
st

(<
37

◦ W
)

-0
.0

07
8
±

0.
00

03
-0

.8
2
±

0.
09

51
.8

5
±

6.
62

0.
95

44
2.

42

E
le

v
a
ti

o
n

H
ig

h
(>

23
00

m
)

-0
.0

08
0
±

0.
00

08
-0

.8
2
±

0.
04

53
.8

2
±

3.
43

0.
88

79
1.

78
M

ed
iu

m
a
n

d
lo

w
(<

15
00

m
)

-0
.0

04
5
±

0.
00

05
-0

.7
5
±

0.
02

47
.2

3
±

1.
64

0.
92

10
6

1.
59

A
ll

n
o
n

-c
o
a
st

a
l

(>
50

0m
)

-0
.0

08
7
±

0.
00

02
-0

.7
9
±

0.
03

53
.1

3
±

2.
45

0.
95

11
1

1.
87

A
ll

d
a
ta

(t
h

e
co

ef
fi

ci
en

ts
u

se
d

in
th

is
st

u
d

y
)

-0
.0

0
7
5
±

0
.0

0
0
1

-0
.7

8
±

0
.0

2
4
9
.5

3
±

1
.5

3
0
.9

8
2
0
0

1
.8

5

T
a

b
le

3
.

Te
m

pe
ra

tu
re

pa
ra

m
et

er
iz

at
io

n
co

ef
fic

ie
nt

s
fo

rd
iff

er
en

ts
ub

se
ts

of
th

e
fu

ll
da

ta
se

t.

–9–

- 91 - 



Confidential manuscript submitted to JGR-Atmospheres

Geographical distribution of observations

Elevation Very high High Medium Low Coast

(> 2800 m) (2300− 2800 m) (1500− 2300 m) (200− 1500 m) (< 200 m)

21.47 % 29.14 % 10.43 % 11.66 % 27.3 %

Latitude North Central South

(> 75◦N) (75◦N -69◦N) (< 69◦N)

33.13 % 25.77 % 41.4 %

Longitude West Central East

( > 47◦W ) (47◦W- 37◦W ) (< 37◦W )

27.91 % 53.37 % 18.71 %

Table 4. Geographical distribution of the observations.291

groups (north, central and south) do not show changes in the temperature decrease with height.297

They all show values of a within the range −0.0074 to −0.0077 ◦C/m.298

Interestingly, the data show a clear separation in eastern and western conditions. The east-299

ern part of Greenland (here defined as longitude < 37◦W ) show significantly higher sensi-300

tivity to elevation with aeast = −0.0087 ◦C/m) than the western side (here defined as lon-301

gitude > 47◦W ) awest = −0.0065 ◦C/m. This difference is also found in other tempera-302

ture studies [Fausto et al., 2009; Steffen and Box, 2001] and might be a result of different air303

mass characteristics on the east and west sides of the ice divide of GrIS, respectively.304

Fausto et al. [2009] argues that adding a longitudinal component to the temperature pa-305

rameterization improves the match to observations. However, based on the results of Buchardt306

et al. [2012], we argue that in order to create a temperature parameterization with consider-307

ations on longitude, then the position of the observation in relation to the ice divide is more308

descriptive for the temperature characteristics than the absolute longitude coordinates. How-309

ever such information was not provided in this database. To summarize, it is found that the310

above analysis of geographical subsets of the data reveals geographical differences in the sen-311

sitivity to temperature with elevation, both for different elevation regions and for the eastern312

and western side of the ice divide.313

3.2 Spatial characteristics of δ18O314

The spatial distribution of annual mean δ18O (δ18Oann) is described in terms of eleva-
tion and latitude, using the same approach as for temperature. From a physical perspective this
empirical relation reproduce the two classical Greenland isotopic features; the elevation effect
and the latitude effect [Dansgaard, 1964; Johnsen et al., 1989; Vinther et al., 2009]. Cooling
of air masses with elevation and latitude, result in condensation, reduction on moisture con-
tent and distillation, and essentially the elevation and latitude effect on δ18O is a result of this.
Thus it is not surprising that temperature and δ18O can be described using the same geograph-
ical parameters. The spatial variations of δ18Oann is described for Greenland precipitation as

δ18Oann = a ∗ elevsite + b ∗ latsite + c (2)
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where elevs and latsite describes respectively the elevation and latitude of the site of the mea-315

surement and the coefficients a, b and c determines the dependence of elevation and latitude.316

The coefficients of δ18O are estimated using multiple linear regression, results of the regres-317

sion for all data and for test of subsets of the data are shown in tab. 5.318
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The results of the regression using only the GNIP data should be interpreted with cau-319

tion because all 6 data points are coastal, with a range of elevation spanning only 12 − 77320

m.a.s.l. In contrast the main part the ice core data origins from the high interior GrIS. Nev-321

ertheless, it is interesting to note that GNIP and ice core data is comparably sensitive to lat-322

itude changes, bGNIP = −0.66± 0.1 �/◦N and bicecores = −0.66± 0.2 �/◦N .323

In agreement with the findings from the temperature data, the δ18Oann does not show324

a sensitivity to elevation that changes with latitude. Here all values of the elevation coefficient,325

a, are within the range −0.0057 - −0.0063 �/m. Also in agreement with temperature data,326

the longitude regions show that differences exist between the characteristics on the western327

and eastern side of Greenland. The eastern side ( here defined as longitude < 37◦W ) show328

significantly higher sensitivity to elevation with aeast = −0.0087 ◦C/m than the western side329

(here defined as longitude > 47◦W )330

For regression on the western region data (longitude > 47◦W) the coefficients are found331

to be awest = −0.0042± 0.0003 �/m, bwest = −0.70± 0.05 �/◦N , and cwest = 31.85±332

3.73 � with R2 = 0.95 and RMSE=0.60 � for 14 observations.333

For the eastern region (longitude < 37◦W ) the sensitivities to both elevation and lat-334

itude are respectively 1.7 and 1.5 times larger. Thus aeast = −0.0070±0.0003 �/m, beast =335

−1.05± 0.05 �/◦N , and ceast = 61.48± 5.36 � with R2 = 0.96 and RMSE=1.09 � for336

32 observations. While the regression is based on a low number of observations, the results337

still clearly indicate there exist east-west differences in the δ18Oann values over Greenland.338

3.3 Spatial characteristics of accumulation339

The accumulation and precipitation data yield an overview of the spatial distribution of340

GrIS accumulation and coastal precipitation (see fig. 1). For the GrIS, accumulation is high-341

est in the south, and especially southeast, with the highest value of accumulation rate 1.11 w342

eq. m/year at the southeastern slope. Northern GrIS is the driest region, and present the low-343

est accumulation rates down to 0.09 w.eq. m/year. Coastal weather stations have precipitation344

rates in the range 0.13−0.96 w.eq. m/year. As expected, it was not found possible to param-345

eterize the spatial distribution of annual accumulation for the entire Greenland region by means346

of elevation and latitude. Similar to Buchardt et al. [2012], we find that the characteristics of347

the accumulation rate vary greatly between the different regions of Greenland.348

4 Spatial maps354

4.1 Method355

Spatial maps of surface temperature and δ18O are created. The following sequence of356

steps is used to create the spatial maps:357

Creation of parameterization-based spatial map358

First the spatial distribution is described using the linear parameterizations from this study359

(e.g. Tann = a ∗ elevsite + b ∗ latsite + c).360

A uniform parameterization is used to describe the entire Greenland. Only elevation and361

latitude information is required to compute the spatial maps. Here the digital elevation model362

(DEM) by Bamber et al. [2001] provides gridded information on elevation and latitude of Green-363

land, here remapped from 5 km resolution to 0.1 ◦ resolution using bilinear mapping.364

Computation of residuals365

Hereafter the differences between each observation and the corresponding value of the366

nearest-gridpoint location in the data-only spatial map are computed367
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Figure 1. Accumulation and precipitation.349

This figure show the accumulation and precipitation data [w.eq m/year]. Here the symbols show the different

data types. Circles represent ice core data, and diamonds represent DMI data. The colors of the symbols cor-

respond to the annual mean value of the given observation. Note that the colorbar is not linear. See fig. 5 for a

better overview of the spatial distribution of the data.

350

351

352

353
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(e.g. Tres. = Tparm. − Tobs.).368

Elevation-correction of residuals369

An elevation-correction is applied to correct for the elevation differences between the370

0.1 ◦ resolution DEM grid point elevation value and the true elevation of the each observa-371

tional site. The elevation-correction is done using the empirical elevation dependencies found372

in this study (e.g. for Tann: a = −0.0075◦/m as in eq. 3).373

Creation of residual correction field374

A residual correction field is computed by fitting a surface, within the region375

58.5N−84.5N , 75W −8W , to the computed residual values. This is done using the376

the algorithm "Surface Fitting using gridfit" by D’Errico [2005], MATLAB Central File Ex-377

change, retrieved Dec 3, 2015.378

Creation of the residual-corrected spatial map379

The residual correction field is added to to the parameterization-based spatial map. This380

yields a spatial map, based on a data-transparent and model-independent method, but corrected381

for misfits data.382

This method creates a gridded map, useful for model evaluation. Gridded fields are use-383

ful to estimate variables in regions where observational data is scarce. While gridded data should384

never be a replacement for the original data, the gridded data fields have many advantages in385

terms of computing and visualizing model-data comparison. A gridded map of annual mean386

data provides an overall spatial distribution of the annual means at the given region, but does387

not represent any inter-annual or climate variations.388

4.2 Spatial map of surface temperature389

The spatial distribution of Tsurface,ann is described using multiple linear regression for401

all available temperature data (200 locations). It is chosen to describe the temperatures for the402

entire Greenland region using a uniform parameterization. Alternatively a different parame-403

terization for different geographical subregions or different GrIS drainage basins (as in Buchardt404

et al. [2012]) could have been used. However the small number of data per subgroup and the405

varying representation of the full range of elevation within each subregion make the subregional406

approach less favorable. Furthermore, combining the temperature parameterization of differ-407

ent subregions into parameterization for the entire Greenland regions creates difficulties with408

physical un-consistent discontinuities of values across borders. Results from this study show409

that analysis of subregional parameterizations and datasets yield values of R2 in the same range410

as the regression value for all data, R2 = 0.98. Therefore we argue that a more represen-411

tative description of the spatial characteristics of Greenland temperature is achieved by span-412

ning all data types and geographical subregions in the same parameterization.413

The resulting parameterization is given by

Tsurface,ann = −0.0075 ∗ elevsite − 0.78 ∗ latsite + 49.53 (3)

The standard error of the coefficients are a = −0.0075± 0.0001 ◦C/m, b = −0.78±414

0.02 ◦C/◦N , and c = 49.53± 1.53 ◦C with R2 = 0.98 and RMSE=1.85 ◦C.415

Using the linear relation between Tann and elevation and latitude ( eq. 3)416

a parameterization-based spatial map of Tsurface is generated and shown in fig. 2 (a).417

The residuals of the nearest-gridpoints values of the gridded maps (Tres. = Tparm.−Tobs.)418

are shown fig. 2 (b). Coastal residual values are large for some observations, and the resid-419

uals of nearby observations are not always similar in magnitude. There are two reasons for420
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Figure 2. Spatial maps of temperature for Greenland and residuals.390

This figure show the computed spatial map of Tsurface with and with out residual correction Residuals are

for all plots calculated as Tres. = Tparm. − Tobs.. The symbols show the different data types. Circles rep-

resent ice core data, triangles represent GNIP data, squares represent GC-Net data, stars represent PROMICE

data and diamonds represent data from DMI. The colors of the symbols correspond to the annual mean value

of the given observation. a) Spatial map of temperature based on parameterization only. b) The residual val-

ues computed as shown as colors of the symbols. Blue (red) colors refer to points where the parameterization

is too cold (warm) compared to observations. c) Spatial map Tsurface with elevation corrected observations.

d) Residuals between map and elevation corrected observations. Contours show the computed residual correc-

tion field. e) Spatial map Tsurface with residual correction added f) Residuals of the corrected spatial map.

Note that the colorbar is not linear.
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this. First, coastal temperature measurements of nearby sites might represent the regions in421

the local fjord system rather than the regional temperate, thus resulting in temperature differ-422

ences with variations of 3-4 ◦C. Second, the values of elevations in the DEM can vary up to423

500 m in nearby grid points thus resulting in temperature variations of nearby grid points of424

up to 3.75 ◦C.425

All temperature observations (the values of the symbols) are elevation-corrected to match426

the nearest-gridpoint values of the DEM elevation using the empirical elevation dependency427

a = −0.0075◦/m from eq.3. These elevation-corrected temperatures are then compared to428

the spatial map based on the temperature parameterization (fig. 2 (c)). The elevation corrected429

residuals (Tres.,elev.corr. = Tparm. − Tobs.,elev.corr.) show the true range of the misfit be-430

tween the generated spatial map and the observation. They range from −4.3 ◦C to 9.8 ◦C.431

A residual correction field is computed using the described "gridfit-algorithm". The "springs"432

regularization is used to improve the handling of neighbouring locations with alternating signs433

of temperature residuals. Elevation corrected residuals from coastal stations (the DMI and GNIP434

data) are not included in the residual correction field, due the non-systematic bias at the coast.435

The residuals are shown in fig. 2 (d). The contours of the residual correction field for tem-436

perature are also shown (note the reversed colors). The correction increases the temperature437

at the the lower elevation slopes of the GrIS and decreases the temperature at the high ele-438

vations, which in agreement with the spatial characteristics of temperature analysed for the sub-439

regions.440

The spatial map is hereafter corrected for residuals by applying a the residual correc-441

tion to the parameterization spatial map (fig. 2 (e))442

Fig. 2 (f) show the remaining residuals after residual correction is applied to the spa-443

tial map444

(Tres.,corrected = Tparm.,corrected−Tobs.). It is seen that residual correction improves445

the fit of the map with observations over the GrIS, but the coastal locations are not improved.446

The range of all residuals are −5.4◦C to 12.3◦C. Overall, fig. 2 show that the spatial param-447

eterization of Tann over Greenland can be used to describe the spatial distribution of temper-448

ature for the GrIS at first order, however residuals remains.449

4.3 Spatial map of δ18Oann450

Techniques for creating global or regional gridded maps of isotopic distributions ("isoscapes")451

comprise spatial interpolation, objective mapping or clusters of regionalized climatic regres-452

sion models [Bowen and Revenaugh, 2003; Terzer et al., 2013]. For polar regions, δ18O for453

Antarctica has been described using multiple linear regression[Masson-Delmotte et al., 2008;454

Wang et al., 2009] and Generalized Additive Modeling [Wang et al., 2010]. Because of the dif-455

ferent geographical configuration of Antarctica, distance to the coast and longitude was also456

included in these parameterizations. Because of the benefits of expressing the spatial distri-457

bution of δ18Oann using one parameterization describing the conditions for the entire Green-458

land region, the parameterization is thus created based on all data of δ18Oann and a given by459

δ18Oann = −0.0058 ∗ elevsite − 0.65 ∗ latsite + 29.90 (4)

where the standard error on the coefficients are a = −0.0058± 0.0004 �/m, b = −0.65±460

0.03 �/◦N , and c = 29.90 ± 1.51 � with R2 = 0.93 and RMSE=1.33 � for 159 obser-461

vations462

The gridded map of δ18Oann for Greenland, generated using eq. 4 is shown in fig. 3.463

The spatial map using only the parameterization is shown in fig. 3 (a). The residuals, for near-464

est non-missing grid point, is calculated as δ18Ores. = δ18Oparm. − δ18Oobs.. The residu-465

als are within the range −3.55 � to 7.56 �, these are shown in fig. 3 (b).466
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Figure 3. Spatial maps of δ18O for Greenland and residuals.467

This figure show the computed spatial map of δ18O with and with out residual correction. Residuals are for

all plots calculated as δ18Ores. = δ18Oparm. − δ18Oobs.. The symbols show the different data types. Circles

represent ice core data, triangles represent GNIP data. The colors of the symbols correspond to the annual

mean value of the given observation. a) Spatial map of δ18O based on parameterization only, b) The residual

values are shown as colors of the symbols. Blue (red) colors refer to points where the parameterization is too

negative (positive) compared to observations. c) Spatial map δ18O with elevation corrected observations. d)

Residuals between map and elevation corrected observations. Contours show the computed residual correc-

tion field. e) Spatial map δ18O with residual correction added f) Residuals of the corrected spatial map. Note

that the colorbar is not linear.
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Elevation correction are applied to the values to match the values of the DEM elevation.477

Here the elevation dependency a = −0.0058◦/m from eq.4 is used. The elevation corrected478

values are shown in fig. 3 (c) and the residuals in fig. 3 (d). The effects of elevation correc-479

tion is clearly seen for Renland at the east coast. This ice core is drilled on a small high plateau480

ice cap separated from the GrIS. The true elevation is much higher than described by the DEM.481

Due to the simplicity of the parameterizations not all observations (δ18Oobs) match the param-482

eterized values (δ18Oparm.). The ice core residuals range from −3.2 � to −4.4 �, and GNIP483

data from −2.7 � to 7.0 �484

The residual correction fields are applied to the spatial map of the parameterization (see485

fig. 3 (e)). As the regional biases are more systematic than for temperature, the "springs" reg-486

ularizer is not applied in the gridfit routine in this case. Due to lack of near by eastern obser-487

vations constraining the residual correction Renland was not included. As a control, the resid-488

uals of the corrected spatial map are computed. For ice core data they are within the range489

−2.2 � to 2.4 �, and for GNIP data from 0.01 � to 6.1 �. To conclude, fig. 3) show that490

the spatial distribution of δ18O for Greenland can be described by means of elevation and lat-491

itude and remaining residuals are improved using the residual correction.492

The plot of the residuals δ18Ores. show an interesting structure in northern Greenland493

with east-west differences. West of the ice divide the δ18O values of the ice cores are higher494

than suggested by the regression model and east of the ice divide the observed δ18O values495

are lower than suggested by the regression, thus confirming the east-west differences found496

in the analysis of subsets of data in sec. 3.2. This suggest that other processes than depletion497

as a result of cooling with increasing latitude and elevation are important for δ18O here.498

5 Discussion499

Based on data from a total of 326 locations at Greenland the spatial distribution of Tsurface500

and δ18O are described by parameterizations. The uncertainty of the spatial regression are de-501

termined both by the uncertainty of the temporal mean of each observations and also by the502

uncertainty in the representation of the spatial distribution. In the following the data will be503

compared to other gridded products of temperature and precipitation. Here after the robust-504

ness of the parameterisations used for the generation of the spatial maps will be analysed and505

discussed.506

5.1 Comparison to other gridded data and reanalysis products507

5.1.1 4.6.1.1. Temperature508

The gridded map of temperature is created using a combination of near surface and sur-509

face temperature. The resulting map is compared to commonly used gridded maps of temper-510

ature based on observations or reanalysis data (see fig. 4). These are the following: Observation-511

based gridded near-surface temperature map based on AWS data [Fausto et al., 2009]. Reanal-512

ysis data of surface temperature (Tskin) and temperature at 2 meter height (T2m) from ERA-513

interim (1979-2012) [Dee et al., 2011]. A combination of reanalysis and regional model data514

for Greenland using RACMO (1957-2008) Ettema et al. [2009]. No elevation correction is ap-515

plied.516

Comparison with existing gridded fields of temperature show an overall agreement with528

observations and other gridded estimates, both in terms of spatial pattern and absolute values.529

The temperature data is a combination of surface-temperature (ice cores), near-surface tem-530

perature (PROMICE, GC-Net) and air temperature (the coastal stations; DMI and GNIP). This531

can explain why ice cores and AWS data from the ice sheet display different temperature even532

at location close to each other. Differences in temperatures due to atmospheric temperature533

inversion layers, length of time period and natural variability might also explain these dissim-534

ilarities.535
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Figure 4. Gridded temperature maps and data from this study compared to other gridded temperature

estimates.

517

518

This figure show annual mean temperature data from the observations compared to annual means of gridded

data, reanalysis and regional model products. Here the symbols show the different data types. Circles repre-

sent ice core data, triangles represent GNIP data, squares represent GC-Net data, stars represent PROMICE

data and diamonds represent data from DMI. The colors of the symbols correspond to the annual mean

value of the given observation. a) The gridded annual mean near-surface temperature map from this study

without residual correction, b) The gridded annual mean near-surface temperature map from this study with

residual correction, c) Near surface annual mean temperature for present day from Fausto et al. [2009], d)

Annual mean skin temperature from ERA-Interim (1979-2012). e) Annual mean T2m from ERA-Interim

(1979-2012). f) Annual mean skin temperature for RACMO (1957-2008) [Ettema et al., 2009].
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Interestingly the comparison of the point-data to the gridded temperature reveals that sur-536

face and near-surface temperature estimates for GrIS varies in a range of 2−4◦ C for high537

interior Greenland. The map of Fausto et al. [2009] T2m is warmest. ERA-Interim Tsurface538

have very cold values at low elevation in the coastal northern tip of Greenland and colder than539

observations near mid-eastern area near Scoresbysund. This is not as clear in the T2m fields.540

RACMO is in general the coldest at the interior of the ice sheet except for south dome at south-541

ern Greenland where ERA-interim is closer to the temperatures.542

5.1.2 4.6.1.2. Accumulation and precipitation543

Comparison between data from ice core accumulation, data from meteorological mea-544

surements of precipitation and gridded estimates of accumulation and precipitation requires545

considerations on the dissimilarities. Coastal data provide solid precipitation data not accu-546

mulation data and the relation between solid precipitation on the coast and accumulation from547

ice cores on the ice sheet is unknown. Steep coastal terrain, fjord systems and microclimatic548

differences might influence the precipitation for coastal stations. Wind drift and sastrugi for-549

mation might influence the accumulation records, and sublimation, melt and evaporation pro-550

cesses can influence comparison of accumulation records with re-analysis based precipitation551

estimates.552

The accumulation data achieved from ice cores are compared to a selection of gridded553

maps of accumulation [Burgess et al., 2010], precipitation (RACMO [Ettema et al., 2009] and554

ERA-Interim [Dee et al., 2011]), and "precipitation-evaporation" (P-E) (ERA-Interim [Dee et al.,555

2011]). Results are shown in fig. 5. Results show that variations exist in the gridded estimates556

of accumulation, precipitation and P-E and their match with accumulation and precipitation557

data.558

The accumulation map by Burgess et al. [2010] based on a calibration of PolarMM5 us-559

ing a large selection of ice core and coastal data show, as expected accumulation values that560

match the ice cores (fig. 5 (a)). Both precipitation maps (fig. 5 (b and d)) have values lower561

than ice core accumulation for central northern Greenland. RACMO precipitation show good562

agreement with the accumulation ice core data near the southern part of the GrIS, but ERA-563

I precipitation is higher than accumulation from ice cores. However, as expected evaporation564

is more important in the warmer southern region and the P-E field for ERA-Interim (fig. 5 (c))565

show a better match with accumulation data here. Melt of the ice sheet surface is more fre-566

quent and could potentially alter the accumulation rate. Due to the existing dry bias in pre-567

cipitation for ERA-Interim, the northern regions become even drier when accumulation is com-568

pared to P-E.569

Except for the calibrated map of Burgess et al. [2010], the coastal precipitation values570

do not match the gridded estimates. The coastal weather stations are often located in fjords571

and local conditions might be important here. However an inadequate representation of the572

steep Greenland topography might also explain the discrepancy.573

5.2 Sensitivity to variability584

The uncertainty of the spatial regressions are determined both by the uncertainty of the585

temporal mean of each observations and also by the uncertainty in the representation of the586

spatial distribution. Temporal variability of temperature and d18O will be discussed separately.587

Hereafter robustness testing of the parameterizations are conducted.588

5.2.1 4.6.2.1 Variability of temperature589

The parameterizations in this study uses temporal means for each observation. Each of590

these mean, span a subset of the full present-day time period 1890-2014. It is assumed that591

the mean values is representative of the full time period 1890-2014. However temperature ob-592
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Figure 5. Accumulation and precipitation observation compared to gridded maps.574

This figure show annual mean accumulation and precipitation data [w.eq m/year] from the observations

compared to annual means of gridded reanalysis and regional model products. Here the symbols show the dif-

ferent data types. Circles represent ice core accumulation data and diamonds represent precipitation data from

DMI. The colors of the symbols correspond to the annual mean value of the given observation. a) Annual

mean accumulation map based on ice cores from Burgess et al. [2010], b) Annual mean precipitation from

ERA-Interim (1979-2012), c) Annual mean P-E (precipitation - evaporation) from ERA-Interim (1979-2012),

d) Annual mean precipitation using RACMO (1957-2008) [Ettema et al., 2009]. Note the range of the color

scale is selected to focus on GrIS conditions, and variations at the southeastern Greenland slopes are not well

represented using these color scale.
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servation from GrIS are only short term measurements and might not represent the values of593

the mean present-day surface conditions at GrIS. This is especially relevant as most AWS-instruments594

on the GrIS are installed after year 2000, thus recording temperatures during a period with anoma-595

lously high near-surface temperatures [Box et al., 2013]. Borehole temperatures are mainly mea-596

sured during the colder time period 1975-1995, and are therefore providing an excellent sup-597

plement to the AWS temperature measurements.598

The only long-term records are the coastal temperature measurements from DMI. Po-599

tentially these measurements could be used to correct for the warm bias recorded in the AWS600

measurements. Yet while a correlation between coastal temperatures and δ18O variations from601

ice cores exist [Vinther et al., 2006], it is unclear whether this relation is constant in time and602

whether the temperatures at the ice sheet respond to warming trends from sea surface condi-603

tions [Noel et al., 2014].604

The data types span different measurement types that are all used to represent the same605

variable. For temperature the data comprise coastal T2m, near-surface T2m from ice-sheet AWS,606

and borehole temperatures from ice cores. Coastal temperatures might be influenced by lo-607

cal conditions in the surrounding fjords. Surface melt of the GrIS can influence the 10 m depth608

temperature for boreholes located in regions with frequent melting/refreezing [Reeh, 2008].609

Similarly melt can also control the AWS temperature observations in the ablation zone Fausto610

et al. [2009]. Melt is not a big concern here as dominant part of the ice cores are drilled in611

the high interior, yet melt might influence the southern region temperatures.612

Warming trends of the GrIS can not be excluded to impact the results, yet we argue that613

the spatial regression of temperature data representing different time periods and data types614

of colder and warmer temperatures produce a mean Tsurface of GrIS that are representative615

of present day conditions. Comparison with other temperature maps for Greenland show that616

the resulting absolute values and spatial representations are comparable to regional models and617

re-analysis products.618

5.2.2 4.6.2.2 Variability of δ18O619

The existence of long-term records of δ18O for Greenland allow an analysis of the im-620

portance of time span length to accurately predict the average of the entire data series for δ18O.621

Whether a longer time span is more likely than any short span to represent the mean values622

of δ18O is analyzed for two long-term records:623

NEEM (77.44◦N, 51.07◦W, 2484 m ) (1890-2007).624

South Dome (63.53◦N, 44.58◦W, 2854 m ) (1890-1957 & 1958-2012).625

The mean for the full data series is shown together with time period means of 5 year,626

10 year and 25 year (see fig. 6). From the figure it can be seen that natural variability is present627

in both records and common trends in data are negligible until near year 2000.628
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Figure 6. The representativeness of different length of temporal means for records of δ18O for NEEM and

South Dome.

629

630

Two time series of δ18O data. The grey line is the annual δ18O values. The black line is the 5 year average.

The green line is the 10 year average. The blue line is the 25 year average and the dashed line is the mean for

the full period.

631

632

633

Similar to analysis of accumulation variability by Cogley [2004], we find that long-term634

time series yield values that better resembles the mean values for the full period. Short term635

data included in this study might thus be biased, but the range of the temporal variations are636

comparable to the error of the regression, RMSE=1.33 �. Thus we conclude that this method637

is robust to temporal varations in δ18O.638

It was considered applying a uniform or regional time period correction to the mean val-639

ues to account for time period biases. Yet this approach was rejected as the limited coverage640

of long-term data for the entire time period 1890-2014 challenges possibilities for trend cor-641

rections. Furthermore the regional differences in the variability of precipitation and temper-642

ature [Burgess et al., 2010; Mernild et al., 2015; Hanna et al., 2011] create an argument for643

doing a regional-dependent correction of variability, but the limited spatial coverage does not644

give adequate enough information to makes us able to do such a correction.645

5.3 Robustness testing of the parameterizations646

A robustness testing of the spatial parameterizations of Tsurface and δ18O are conducted.647

Both spatial representation and the importance of natural variability influencing the means are648

tested.649
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Figure 7. Standard deviation of annual mean δ18O for each station.650

Each value is displayed with blue markers and is plotted against the number of years of measurement for the

same station. Standard deviation of the ice core data calculated on longer time periods than (1890-2014) are

not include here. The dashed line δ18Ostd.dev = 1.5 � is the δ18Oσ,max used in this study.

651

652

653

Analysis of time series of δ18O and temperature records show the range of the natural654

variability of the data for each of the locations. The standard deviation of the data time se-655

ries plotted against the number of years that the given time series span. From fig. 7 and fig.656

8 it is clear that natural variability is present in the records of δ18O and temperature. Based657

on the figure a rough estimate of the maximum of the range of the standard deviation (δ18Oσ,max)658

is set to δ18Ostd.dev = 1.5 � (dashed line). Similarly Tσ,max) is set to Tstd.dev = 3◦ C659

The parameterization coefficients used to create the gridded maps are here tested for ro-665

bustness to the spatial representation described by the selection of data points. This is done666

separately for temperature Tsurface and δ18O. A bootstrapping method is applied without re-667

placement.668

A subset of 50 randomly selected data points out of a total of 200 data points for tem-669

perature and 159 for ice cores are selected for N=1000 times. The parameterization coefficients670

are determined using multiple linear regression on the subset of the data. For each selection,671

n, absolute values and differences between the parameterization values and the observed val-672

ues (all borehole temperatures and ice core δ18O) are computed for selected locations, where673

both Tsurface and δ18O is measured at the same location. The locations represent a wide range674

of latitude and elevation values at the higher elevation regions of the ice sheet. The result of675

this robustness test is shown as the grey bars in histogram fig. 9 and fig. 10 and table 6 and676

table 7 where the coordinates of the locations are also found.677
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Figure 8. Standard deviation of annual mean temperature for each station.660

This figure displays the standard deviation of annual mean temperature for each station. Each value is dis-

played with red markers and is plotted against the number of years of measurement for the same station. The

dashed line Tstd.dev = 3◦ C is the selected Tσ,max used in to denote the maximum of the range of standard

deviation this study.
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Analysis of the importance of time period means (fig. 6) shows that for mean values based678

on 5 year averages the range of the mean values time period error is within the δ18Ostd.dev =679

1.5 found for the natural variability of the records. 72 % of the ice core δ18O mean values680

represent time periods of 5 years or longer. The importance of representing the right time pe-681

riod is analyzed. For N = 1000 times a random error within the range 0±δ18Oσ,max δ18Oσ,max =682

1.5 is added to each of the data points. Hereafter the parameterization coefficients are deter-683

mined for the full dataset with the random error and the differences between the parameter-684

ization values and the observed values are computed. The same is conducted for temperature685

with random errors in the range of 0 ± Tσ,max, where Tσ,max = 3◦ C, as estimated from686

the results of fig. 8.687

The mean bias of the parameterizations is the same, subset sampling and random errors688

produce the same bias compared to the temperature borehole observations. Only the standard689

deviation varies, with fewer variations for the error testing than for the sampling testing. Largest690

variations in temperature are found for "ongt19" in northern Greenland.691

Regional parameterization might yield a better description of spatially anti-correlated sig-692

nal from NAO on each side of the ice divide Sodemann et al. [2008a,b]; Appenzeller [1998];693

Vinther [2003]; Vinther et al. [2010]. However it is found that divisions of data in subregions694

of Greenland create challenges for regions where number off observations are limited and where695

the range of elevation and latitude of observations within the subregion does not create a good696

regression. Furthermore the combination of regional parameterization into a map for the en-697

tire GrIS creates un-physical boundaries at the regional borders. Therefore it is chosen to de-698

scribe all Greenland data using one parameterization.699

While recent warming trends, overrepresentation of data from certain time periods and700

mismatch between comparison of Tsurface and T2m can however not be ruled out to influ-701

ence the parameterization, based on the robustness testing it is clear that the variations are com-702

parable to the RMSE errors of the regression on all data. Therefore we conclude that the pa-703

rameterization can describe the spatial distribution within the range ±1.5 � and ±3◦ C.704

Temperature difference values for robustness test

Location Coordinates Elevation Sampling Variability

mean [◦C] std.dev [◦C] mean diff. [◦C] std.dev [◦C]

NGRIP 75.10◦N , 42.32◦W 2918 m 0.73 0.40 0.71 0.21
South Dome 63.53◦N , 44.58◦W 2854 m 1.07 0.49 1.11 0.27
NEEM 77.44◦N , 51.08◦W 2484 m -1.01 0.46 -1.04 0.20
Camp Century 77.17◦N , 61.10◦W 1880 m -0.33 0.46 -0.36 0.18
GRIP 72.57◦N , 37.62◦W 3232 m 0.55 0.39 0.55 0.22
ongt19 78.00◦N , 36.40◦W 2234 m 2.99 0.49 2.96 0.20

Table 6. Mean values and standard deviations of temperature differences714

computed as Tdiff,n = Tparm.,n − Tobs for the given locations for each n of N = 1000 realizations for the

given locations for the robustness test.

715

716
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Figure 9. Histogram from the temperature robustness test.705

This figure displays the results of the robustness test of the parameterization (see also table 6).706

The sampling sensitivity test: The histogram with grey bars shows the values of difference between the

observations and the parameterizations values computed as

707

708

Tdiff,n = Tparm.,n − Tobs for the given locations for each n of N = 1000 realizations.709

The error-sensitivity test:The red line histogram show the results from the error-sensitivity test where regres-

sion is conducted for all data with a random error applied to each data point. The error has a random value

within the range of 0 to ±Tσ,max, where Tσ,max = 3◦ C, as estimated from the results of fig. 8. Note that

"ongt19" is plotted on a different temperature range.

710

711

712

713
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Figure 10. Histogram from δ18O sampling sensitivity test.717

This figure displays the results of the bootstrapping sampling sensitivity test (see also table 7).718

The sampling sensitivity test:The grey histogram show the values of difference between the observations and

the parameterizations values computed as δ18Odiff,n = δ18Oparm.,n − δ18Oobs for the given locations for

each n of N = 1000 realizations for the given locations.

719

720

721

The error-sensitivity test: The blue line histogram show the results from the error-sensitivity test where re-

gression is conducted for all data with a random error applied to each data point. The error has a random

value within the range of 0 to ±δ18Oσ,max, where δ18Oσ,max = 1.5 �, as estimated from the results of fig.

7.

722

723

724

725

6 Conclusion729

This study presents a comprehensive database consisting of data from 326 ice core and730

weather station observations during the period 1890-2014. The data comprise annual and sea-731

sonal mean values of δ18O, δD and d-excess, accumulation and temperatures from ice core732

boreholes, from near-ice-surface measurements and temperatures from air measurements for733

Greenland. Data originates from ice core measurements, GNIP data and meteorological ob-734

servations from the DMI and the projects PROMICE and GC-Net.735

Based on multiple linear regression methods using the data from the database, the spa-736

tial characteristics of Tsurface and δ18O for Greenland are described. The resulting linear pa-737

rameterizations describes, respectively δ18O and temperature by means of latitude and eleva-738

tion only. The multiple linear regression approach was also used to investigate differences in739

the regression coefficients among different datasets used to form the database, and differences740

in the regression coefficients for different geographical subregions. Differences in the west-741

ern and eastern region response to changes with elevation are found for both Tsurface and δ18O.742
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δ18O difference values for robustness test

Location Coordinates Elevation Sampling Variability

mean [◦C] std.dev [�] mean diff. [�] std.dev [�]

NGRIP 75.1◦N , 42.32◦W 2918 m -1.28 0.23 -1.25 0.09
South Dome 63.53◦N , 44.58◦W 2854 m -0.29 0.22 -0.30 0.13
NEEM 77.44◦N , 51.07◦W 2484 m -1.71 0.28 -1.69 0.10
Camp Century 77.17◦N , 61.1◦W 1880 m -1.97 0.40 -1.97 0.12
GRIP 72.57◦N , 37.62◦W 3232 m -0.87 0.27 -0.84 0.10
ongt19 78.00◦N , 36.40◦W 2234 m 0.65 0.33 0.66 0.11

Table 7. Mean values and standard deviations of δ18O differences726

computed as δ18Odiff,n = δ18Oparm.,n − δ18Oobs for the given locations for each n of N = 1000 realiza-

tions of the robustness test.

727

728

Furthermore the temperature decrease with higher elevation is more rapid in high-elevation re-743

gions than in coastal and mid-elevation regions.744

For the first time an observational-based gridded map of δ18O of precipitation is cre-745

ated for Greenland. This is done using the empirical parameterization for the annual mean δ18O746

data from 185 ice cores and 6 coastal GNIP observations. The gridded maps are constructed747

in a sequence of steps. First, a parametrization-based spatial map is created using a DEM of748

Greenland. Here after the residuals between the map and observations are computed. An elevation-749

correction is applied to correct for differences between DEM grid point elevation and the true750

elevation of the each observational site. The fit of the map to data is hereafter improved by751

adding a residual-correction field using a surface fitting algorithm of the data. The residual752

correction field is added to to the parameterization-based spatial map. This yields a spatial map,753

based on a data-transparent and model-independent method, but corrected for misfits to data.754

Based on the robustness testing and the RMSE errors from the regression on all data we con-755

clude that the parameterization can describe the spatial distribution within756

the range ±1.5 �.757

A data-based gridded map is also created for Greenland annual mean Tsurface, using758

the same approach. Here borehole data from ice cores are for the first time included together759

with AWS observations. A dominant part of the ice core borehole temperatures are measured760

in the years 1970-1995. This aid to constrain the spatial variation of GrIS Tsurface to con-761

ditions before the recent warming. Here robustness testing and RMSE error yield an error range762

of ±3◦ C. The gridded maps of temperature also show values in the same range and a sim-763

ilar spatial distribution compared to other gridded temperature maps for Greenland. However764

recent warming trends, overrepresentation of data from certain time periods and mismatch be-765

tween comparison of Tsurface and T2m can not be ruled out to influence this parameteriza-766

tion. The database and gridded maps provide model-independent descriptions of the present-767

day spatial distribution of isotope-model relevant parameters at Greenland. We therefore sug-768

gest this dataset and gridded maps as a common tool for performance testing, inter-model com-769

parison as well as future development and improvement of isotope models.770
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7 Conclusion and outlook 
 

Northern Greenland is a, until now, less studied area in the Arctic. However, it is considered as 

key area for understanding the relation of the observed changes in global mean temperature and 

precipitation. The Greenland Ice Sheet has a strong impact on the global sea level. A change in 

the mass balance of the ice sheet towards more melting contributes directly to sea level rise. 

Large meltwater injections would also affect the ocean circulation due to changes in the fresh 

water budget, as well as the global atmospheric heat transport. To monitor and evaluate recent 

changes in the overall mass balance of the Greenland Ice Sheet, detailed studies of local 

accumulation rates, which represent the positive term in the mass balance, and their temporal 

changes over the last millennium, are of great relevance. However, until recently few data sets 

have been available from northern Greenland.  

Values of δ18O in ice and snow are used as a proxy of air temperature. Thus, evaluation of the 

temporal distribution of δ18O from northern Greenland ice cores has the potential to fill in the 

gap of temperature data in the Arctic. In order to derive a reliable temporal signal, a detailed 

study of the spatial δ18O distribution is necessary as the δ18O-temperature relationship can be 

influenced by locally varying factors. Such a data set would contribute to a more representative 

global mean and provide the potential to assess the recent temperature values in the context of 

history to answer the question- is there a recent warming trend in northern Greenland? 

In this thesis, for the first time the full data set of 13 NGT 93/95 ice cores were made available 

and provide the basis for detailed spatial distribution studies. The records of the completed high-

resolution δ18O data set were dated and annual means of accumulation rate and δ18O calculated. 

The lowest mean values for δ18O are found east of the main ice divide, revealing a strong 

topographic influence on the mean δ18O values. The main ice divide separates northern 

Greenland in an eastern and a western part. Apart from these large-scale variations in the mean 

values, a high local variability in the δ18O records became obvious, which disturbed the climate 

signal and delimits the interpretation of data from isolated cores. By stacking northern 

Greenland δ18O ice core data to one record the signal-to-noise ratio could be improved and the 

spatial variability could be separated from the climate signal for the first time. The stack is 

representative for a large area and is more trustworthy than multiproxy stacks because of the 

direct linear relationship of δ18O to temperature. The stacked δ18O record allows to extract the 

climate history over the last millennium. Well-known global climate events (e.g. MCA, LIA and 

ETCW) as well as a new event around 1420 A.D., are observed in the stacked record. The stack 

is sensitive to decadal variability (e.g. ETCW), which is not temporally resolved in climate 
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models. It was possible to extend the NGT 93/95 stack to 2011 A.D. by adding the records of 

recently drilled NGT-update cores. The resulting stack covers the last millennium as well as the 

most recent years. Its high quality allows for the first time an unambiguous assessment of the 

recent warming trend, which includes anomalous values over the last millennium.   

The full NGT 93/95 data set enables more detailed statements about the spatial accumulation 

rate distribution and the size and location of the area of lowest accumulation rates in Greenland. 

The lowest values are found in the precipitation shadow east of the main divide, which covers 

an area larger than expected. The ice sheet topography is confirmed as the dominant impact 

factor influencing the accumulation rate distribution. The new available data also provide an 

update for the old accumulation rate maps (e.g. Ohmura and Rhee, 1991). 

To summarize, the improved data set of spatial distribution of accumulation rates in northern 

Greenland contributes essentially to accurate mass balance studies for a more precise sea level 

rise forecast. The separation of local effects and climate signal in the δ18O proxy data closes a gap 

of knowledge about temperature variability in the Arctic, which is important for the calculation 

of a more representative global mean temperature. For the first time, the temperature evolution 

during the past 1000 years in this climatic key area can be studied unambiguously.  

The data set can be easily extended in the future, as the δ18O-stacked record is a basis for further 

updates. The most recent values can be easily assessed that way and the future warming trend 

be studied. The coefficient to link δ18O to temperature is varying spatially as well as temporally. 

Measuring the firn temperature at least in 2 different depths at several of the drill sites would 

allow for a more accurate translation of δ18O to temperature and possibly also for an assessment 

of the effect of polar amplification in northern Greenland. More data, ideally including seasonal 

cycles, would enable annual layer counting also in the deeper core segments of NGT 93/95 

records from the dry northeast. For example, concentrations of Ca2+ and particulate dust show 

distinct seasonal cycles in Greenland with maxima in spring. The use of NO3
- as a distinct marker 

for forest fires would also improve the dating process. Measurements via CFA could provide the 

necessary data. A dating with higher resolution of all NGT 93/95 cores offers the possibility to 

study the temporal variability of accumulation rates and changes in their spatial distribution 

over the last millennium. This information can further improve the accuracy of mass balance 

studies in Greenland. Records of trace elements also contribute to a better understanding of the 

mechanisms behind the natural variability of temperature in northern Greenland like the 

influence of NAO and the occurrence of blocking situations. Learning about these mechanisms 

offers the possibility to improve the implementation of these processes into climate models with 

the aim to reproduce the natural variability and enable more precise forecasts. 
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