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Abstract The impact of a subgrid-scale ice thickness distribution (ITD) and two standard ice strength
formulations on simulated Arctic sea ice climate is investigated. To this end, different model configurations
with and without an ITD were tuned by minimizing the weighted mean error between the simulated and
observed sea ice concentration, thickness, and drift speed with an semiautomatic parameter optimization
routine. The standard ITD and ice strength parameterization lead to larger errors when compared to the
simple single-category model with an ice strength parameterization based on the mean ice thickness.
Interestingly, the simpler ice strength formulation, which depends linearly on the mean ice thickness, also
reduces the model-observation error when using an ITD. For the ice strength parameterization that makes
use of the ITD, the effective ice strength depends strongly on the number of thickness categories, so that
introducing more categories can lead to overall thicker ice that is more easily deformed.

1. Introduction

Reliable sea ice models are an essential ingredient of climate models, but also of accurate sea ice forecasts
that are required by the increasing shipping activities in the Arctic. The requirement of accuracy, together
with advances in computing power, has led to an increase in sea ice model complexity over the last deca-
des. With the rising amount of available observational data of Arctic sea ice, many new physical processes
have been included in additional model parameterizations [Hunke et al., 2011]. For the development of
future model systems, a thorough scrutiny of each component of a sea ice model as well as its interaction
with other components seems necessary [e.g., Hunke, 2014].

One of the most commonly used parameterizations in current sea ice models employs a subgrid-scale ice thick-
ness distribution (ITD) to describe the ice thickness in each grid cell. Most implementations today are based on
Thorndike et al. [1975]. There are two main reasons that motivated this parameterization: First, the conductive
heat flux through sea ice is dominated by the contributions of thin ice and open water, even if they cover only a
small fraction of the total area. Second, most of the ice deformation processes, especially of a thicker and stron-
ger pack, are ridging of the thinner ice fraction and shearing along leads (also characterized by thin or no ice).
Hence, an ITD is used in many sea ice models and many new parameterizations—such as an ice enthalpy distri-
bution [Zhang and Rothrock, 2001] or an anisotropic rheology of discrete failure regimes [Wilchinsky and Feltham,
2012]—are based on an ITD model. Although ITD models seem to be well-established, many questions about
the exact mechanics of the involved processes and about the ITD’s impact on model simulations remain.

Already when the ITD parameterization originally was developed, two main problems were identified that
are still the biggest sources of uncertainty today: (1) the redistribution of ice between different ice thickness
categories by ridging processes [Thorndike et al., 1975] and (2) the assumption that the deformation energy
is either lost to friction or converted to potential energy as ice floes ridge and raft [Rothrock, 1975]. Both
Thorndike et al. [1975] and Rothrock [1975] make assumptions about the mechanical processes that govern
sea ice ridge formation, but Pritchard [1981] already showed that they were missing important parts of the
energy balance. At the time there were only a few observations of thickness and ridge profiles available
[see e.g., Parmerter and Coon, 1972, and references therein], and dynamical modeling studies provided the
most reliable understanding of ridging processes [Parmerter and Coon, 1973]. The amount of available data
has increased since. After discrete element models of the ridging process [Hopkins, 1998], laboratory
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experiments of ridging [Tuhkuri, 2002], and in situ measurements of stresses in ice floes [Tucker and
Perovich, 1992; Richter-Menge and Elder, 1998], the analysis of ridging properties is still an important field of
ongoing research. Methods range from evaluating airborne observations [Herzfeld et al., 2015] and basin-
wide process-oriented model simulations [Hopkins and Thorndike, 2006] to the analysis of conceptual mod-
els [Godlovitch et al., 2011]. A common notion is that the details of the physical processes during ridging
and their large-scale statistical properties, that is, the key features in shaping an ITD and determining the
amount of energy necessary for deformation, are still not sufficiently well understood.

To evaluate an ITD model in view of uncertain theory, one of the first approaches was to compare the results to
observed ice thickness. Such assessments are impeded by the sparsity of observational data for ice thickness.
Still, Thorndike et al. [1975] could successfully simulate thickness distributions with a column ITD model that
were similar to upward-looking sonar measurements from submarines sailing under the Arctic sea ice. Bitz et al.
[2001] reproduced this result in their global coupled model against a much larger set of similar upward-looking
sonar data. In spite of this partial success, high uncertainties remain in ice thickness data both from models and
observations [Schweiger et al., 2011]. Schweiger et al. [2011] also emphasize the importance of model parameter-
izations such as an ITD or the ice strength and the difficulty in evaluating their impact. One way forward is to
combine different data sets. For example, Lindsay and Schweiger [2015] used ice thickness observations from dif-
ferent sources to reduce the uncertainty in Arctic-wide trends; Stroeve et al. [2014] compared models of the Cli-
mate Model Intercomparison Project Phase 5 (CMIP5) with a similar collection of thickness data and showed
that these models still cannot accurately reproduce statistics, regional distributions, and trends of ice thickness;
Chevallier et al. [2016] reported that observed concentrations are represented accurately in global ocean reanaly-
sis products, but that errors with respect to observed drift speeds remain and that there are large differences
between the models in the regional ice thickness fields with no product standing out.

With the availability of data being a limiting factor, a common method to assess the impact of an ITD
parameterization on sea ice models is to compare model configurations with and without this parameteriza-
tion. Bitz et al. [2001] found in a coupled global climate model that including an ITD increases the mean ice
thickness. This increase improved the fit to upward-looking sonar observations for mainly thick, ridged ice
in the central Arctic, but deteriorated the fit in the peripheral seas. In addition, the interannual variability of
both the sea ice export through Fram Strait and the ocean meridional overturning circulation increased
with an ITD model. Feedback mechanisms were found to have a stronger effect on the sea ice in climate
simulations with an ITD model [Holland et al., 2006]. Komuro and Suzuki [2013] show the positive impact of
this parameterization on the reproduction of realistic heat fluxes through the pack ice. Maslowski and
Lipscomb [2003] compared two successive versions of a sea ice model and found that the later version
improved the reproduction of sea ice observations significantly for which they stated the inclusion of an
ITD parameterization into the model as the main reason. Massonnet et al. [2011] compared NEMO-LIM2 and
NEMO-LIM3 model output to a much more exhaustive set of observations, but arrived at the same conclu-
sions that the inclusion of an ITD parameterization into the model is one of the main reasons for a much
improved model performance. All studies clearly show the positive impact of including an ITD model, but
all evaluations are either limited by the lack of reliable observational data (again) or the simultaneous
change of multiple model components confounds the conclusions.

Here we attempt a systematic investigation of the impact of an ITD parameterization on the reproduction
of different large-scale observations of sea ice. We are supported by the ever increasing amount of available
observational data. Our approach to systematic comparisons contains three steps: (1) We construct a cost
function with error-weighted satellite data for sea ice concentration, thickness, and drift as a robust mea-
sure of model performance; (2) We use this cost function to systematically tune different model configura-
tions with and without an ITD model separately; that is, we explicitly do not use the same model
parameters when using an ITD or a single-category model to avoid biases introduced by different parame-
terizations as much as possible. (3) We distinguish clearly between the effects of changing the ice thickness
representation and the effects of changing the ice strength formulation.

The remainder of the paper is structured as follows: First we describe how we evaluate the different model
configurations in section 2. This section contains an overview over the cost function, the optimization tech-
nique, the most important model equations, and the approach to tuning the different model configurations.
The results of these comparisons are presented in section 3. The results are discussed in section 4 and the
most important conclusions can be found in section 5.
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2. Method

2.1. Cost Function
To evaluate our model results quantitatively, we construct a cost function from satellite observations as a
measure for model quality. We follow Kauker et al. [2015] and use four different data sets: (1) the reproc-
essed concentration data set and error estimates from OSISAF [EUMETSAT Ocean and Sea Ice Satellite Appli-
cation Facility, 2011] (1979–2009); (2) the ICESat-JPL thickness product [Kwok and Cunningham, 2008] with a
local error estimated as in Kauker et al. [2015] yet with an upper limit of 1 m for the uncertainty (March and
October/November, 2003–2008); (3) the OSISAF sea ice drift [Lavergne et al., 2010] (October–April, 2002–
2006); and (4) the sea ice drift of Kimura et al. [2013] (May–July, 2003–2007). All of the drift data are derived
from passive-microwave satellite data, with error estimates provided by Sumata et al. [2014, 2015].

The cost function F is defined as

F5
XN

i51

ðyi2xiÞ2

NdðyiÞn2
i

(1)

where yi is an observational data point with measurement uncertainty ni, xi the simulated value of the corre-
sponding model variable, NdðyiÞ the number of data points in each of the four data sets, and N the total
number of observations. In equation (1) each data point yi is weighted by 1=Nd in order to give equal
weight to all four data sets. For instance, if the error for each data point ðxi2yiÞ was exactly equal to the
measurement uncertainty ni, the cost function for each data set would be equal to one, summing up to a
total value of F 5 4. Note that the cost function is an average misfit of all included points, so that even for
cost function values of less than four there can (and indeed do) exist regions where further improvement is
still possible without overfitting.

2.2. Green’s Function Approach
For a meaningful comparison of two model configurations, both configurations are tuned individually to
minimize the differences between simulated and observed concentration, thickness, and drift fields from
1979 to 2009 where available. We use an semiautomatic optimization approach for a set of parameters
with large impact on the ITD. The adjoint capabilities of the MITgcm [e.g., Heimbach et al., 2010] cannot
be used to optimally estimate the parameters, because our experiments span multiple decades. Instead
we use Green’s functions to linearize the problem and obtain a maximum likelihood estimate for a set
of optimal parameters. A detailed mathematical background for the Green’s function approach can be
found in textbooks [e.g., Menke, 2012], while the short description below follows Menemenlis et al.
[2005].

The relationship between the vector of observational data y and the model can be expressed as

y5MðmÞ1u (2)

where the operator M combines the integration of the model and the sampling of the output at the specific
locations. The model depends on a set of control parameters, for which m is a vector of perturbations
around a reference m0. u is the remaining error due to nonperfect parameter choices and systematic errors
in the model. To get an optimal estimate of the control parameters m01m, a cost function

F5uT R21u (3)

is minimized that measures a least squares error weighted by a symmetric matrix R21. For the special cost
function (1) in section 2.1, the error is the model-data misfit ui5yi2xi and R21 is diagonal with elements
R21

ii 5ðNdðyiÞn2
i Þ

21. Equation (3) is minimized after linearizing operator M with a matrix M. M is constructed
by writing the Green’s function for each of the control parameters into a new column. This first-order
approximation allows to write equation (2) as

Dy5y2Mð0Þ5 Mm1u (4)

with the model data misfit Dy. In this notation, Mð0Þ is the sampled output of a model integration with the
reference set of control parameters m0, that is, the vector of perturbations is 0. Differentiating (3) with
respect to the control vector m and equating the resulting gradient to zero, we obtain
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@FðmoptÞ
@m
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50: (5)

Solving for the perturbation

mopt5 MT R21M
� �21

MT R21Dy (6)

gives a set of optimal control parameters m01mopt. As a criterion for a successful optimization, the lineariza-
tion error by this approach should be much smaller than the vector n consisting of the measurement uncer-
tainties ni

jjMðmoptÞ2Mmoptjj � jjnjj: (7)

Because each of the Green’s functions is calculated by one sensitivity experiment, the total computational
effort necessary to construct M limits the number of control parameters.

2.3. Model Equations
2.3.1. Momentum Equations and Thermodynamics
For the dynamic part of the model, we assume a viscous-plastic rheology with an elliptical yield curve and a
normal flow rule [Hibler, 1979]. The ice velocities are calculated from the momentum balance:

m
@u
@t

5mfC k3u1sa1sw2mĝDH1r � r; (8)

where m5qi H1qsHs is the ice and snow mass per unit area, H and Hs are the grid cell averaged thick-
nesses of ice and snow, qi and qs are the densities of ice and snow, u is the sea ice velocity vector, fC is
the Coriolis parameter, k is a unit vector pointing vertically upward, DH is the sea surface tilt, ĝ is the grav-
itational acceleration, and r is the internal ice stress. The surface stress sa and the water drag sw can be
written as

sa5qaCajua2ujRaðua2uÞ (9)

sw5qoCojuo2ujRoðuo2uÞ (10)

where ua;uo are the surface velocities, qa;qo are the reference densities, Ca, Co are the drag coefficients, and
Ra;Ro are rotation matrices for atmosphere (subscript a) and ocean (subscript o) [McPhee, 1975]. Following
Zhang and Hibler [1997], the momentum balance (8) neglects the advection of momentum. The resulting dis-
cretized equations are solved using a line successive relaxation method [Zhang and Hibler, 1997].

The stress tensor r is related to the deformation rate tensor _e5 1
2 ru1ðruÞT
h i

by the constitutive relation

r52g _e1 ðf2gÞ eI
:

2
Pr

2

� �
I (11)

where Pr is the replacement pressure, I is the Identity Matrix, g and f are the shear and bulk viscosities, and
_e I5_e111_e22 is the first strain rate invariant (i.e., divergence). The bulk viscosity f5P=ð2D_eÞ and the shear
viscosity g5f=e2 in turn can be calculated from the ice strength P, the axis ratio e of the elliptical yield curve,

and the deformation measure D_e5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_e2

I 1e22 _e2
II

q
, where _e II5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð_e112_e22Þ214_e2

12

q
is the second strain rate

invariant (or maximum shear at a point). The replacement pressure Pr52D_e f is calculated after regularizing
f with the smooth formulation of Lemieux and Tremblay [2009] to avoid spurious creep [Hibler and Ip, 1995].

The single-category model is based on the two continuity equations

@A
@t

52r � ðuAÞ1SA (12)

@H
@t

52r � ðuHÞ1SH (13)

for the prognostic variables ice concentration A and ice volume per grid cell area H 5 Ah, where h is the
mean ice thickness. The variables change with time according to advection by the horizontal velocity u
and the respective source terms SA and SH. The thermodynamic fluxes are calculated using a 0-layer
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model [Semtner, 1976]. Note that Bitz et al. [2001] analyzed the impact such simple thermodynamics
have on an ITD model compared to more complex thermodynamics. They found that ice concentration
is almost indistinguishable from the one simulated with more complex thermodynamics but there are
nonnegligible changes in ice thickness and growth rates, which should be kept in mind for the inter-
pretation of the results presented below.
2.3.2. Ice Thickness Distribution
One main focus of our investigation is the subgrid-scale ice thickness distribution gðh; x; tÞ [Thorndike et al.,
1975], a probability density function for thickness h following the evolution equation

@g
@t

52r � ðugÞ2 @

@h
ðfgÞ1W; (14)

where f is the thermodynamic growth rate and W a function describing the mechanical redistribution of sea
ice during ridging or lead opening.

The mechanical redistribution function W creates open water when the sea ice flow is divergent and ridges
when the sea ice flow is convergent. The function W depends on the total strain rate and the ratio between
shear and divergent strain. In convergent motion, the ridging mode

xrðhÞ5
nðhÞ2aðhÞ

Nx
(15)

gives the effective change of ice volume for thickness between h and h1dh as the difference between the
ice n(h) generated by ridging and the ice a(h) participating in ridging, normalized by the factor Nx. Follow-
ing Lipscomb et al. [2007], the participation function is aðhÞ5bðhÞgðhÞ, and the relative amount of ice of
thickness h is weighted by an exponential function

bðhÞ5b0exp ½2GðhÞ=a��; (16)

where GðhÞ5
Ð h

0 gðhÞdh is the cumulative thickness distribution function, b0 is a normalization factor, and a�

determines the relative amount of thicker and thinner ice that take part in ridging. The ice generated by
ridging (from an original thickness h1 to a new ice thickness h) is calculated as

nðhÞ5
ð1

0
aðh1Þcðh1; hÞdh1; (17)

where the density function cðh1; hÞ can be written as:

cðh1; hÞ5
1

kk
exp

2ðh2hminÞ
k

� �
h � hmin

0 h < hmin:

8><
>: (18)

In this parameterization, the normalization factor k5 hmin1k
h1

, the e-folding scale k5lh1=2
1 and the minimum

ridge thickness hmin5min ð2h1; h11hraftÞ all depend on the original thickness h1. The maximal ice thickness
allowed to raft is constant hraft51 m and l is a tunable parameter.

In the numerical implementation, these equations are discretized into a set of thickness categories using
the delta function scheme proposed by Bitz et al. [2001]. A smoother linear remapping scheme [Lipscomb,
2001] is available but not used. Its effect will be discussed in section 4.1. For each thickness category in an
ITD configuration, the volume conservation law equation (13) is evaluated as in the single-category model,
but with the net surface ice-atmosphere heat flux calculated from the values for ice and snow thickness in
the current category. There are no conceptual differences in the thermodynamics between the single-
category and ITD configurations. The only difference is that in the ITD configuration, new ice of thickness H0

is created only in the thinnest category; all other categories are limited to basal growth. The conservation of
ice area (12) is replaced by the discretized evolution equation for the ITD (14). The thickness category limits
of the discretization in space are given in Table 1. The total ice concentration and volume can then be calcu-
lated by summing up the values for each category.

In the single-category model, ridge formation is treated implicitly by limiting the ice concentration to a
maximum of one [Hibler, 1979]. In this simple case (A 5 1), the concentration can no longer increase and
convergence leads then to an increase in ice thickness (i.e., a ‘‘ridge’’).
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2.3.3. Ice Strength Parameterizations
Rothrock [1975] derived a parameterization for the ice strength P

P5Cf Cp

ð1
0

h2xrðhÞdh (19)

from considerations of the amount of potential energy gained and frictional energy dissipated during ridg-
ing. The physical constant Cp5qiðqw2qiÞĝ=ð2qwÞ is a combination of the gravitational acceleration ĝ and
the densities qi, qw of ice and water, and Cf is a scaling factor relating the work against gravity to the work
against friction during ridging.

Hibler [1979] proposed a simpler ice strength parameterization for a single-category model that is still wide-
ly used today. In this model, the ice strength P is parameterized as

P5P�A h e2C�ð12AÞ (20)

where P depends only on average ice concentration and thickness per grid cell, the compressive ice
strength parameter P�, and the ice concentration parameter C�. In the following, we will refer to the ice
strength parameterization of Hibler [1979] as H79 and that of Rothrock [1975] as R75.

Note that the parameterization R75 is a function of the ITD in each grid cell, while H79 is applicable both for
ITD and single-category models. In contrast to H79, which builds on the plausible assumption that thick and
compact ice has more strength than thin and loosely drifting ice, the R75 parameterization clearly contains
more physical assumptions about energy conservation. For that reason R75 is often considered to be more
physically realistic than H79.

2.4. Optimization Approach
2.4.1. Optimized Parameters
We define three groups of control parameters for our optimization that we think are most important
for adjusting the modeled sea ice to observations. Group 1 contains parameters that are not directly
related to the choice of ITD parameterizations: the albedo of cold and melting snow and ice, the air
and water drag coefficients, the aspect ratio e of the elliptical yield curve, and the thickness of newly
formed ice H0. Group 2 contains parameters only relevant to the H79 ice strength formulation: the ice
compressive strength parameter P� and the ice concentration constant C� . Finally group 3 contains
parameters of the R75 strength formulation: the ice strength parameter Cf, and the ice redistribution
coefficients l and a�.
2.4.2. Optimization Runs
For our comparisons, we have three goals in mind: (1) evaluate the differences of model configurations
with and without an ITD with respect to reproducing observed sea ice fields; (2) account for the influence of
the number of ice thickness categories; and (3) account for the influence of the ice strength parameteriza-
tion. The quality of each model configuration is measured by means of a cost function. For an unbiased
comparison of model quality, we first tune each model configuration in order to minimize the total cost
function F.

We use the MIT general circulation model (MITgcm), in a coupled ocean/sea-ice configuration, forced with
prescribed atmospheric reanalysis data. In this configuration, which is a coarser version of Nguyen et al.
[2011], we implemented the ITD model in the MITgcm sea ice model [Losch et al., 2010]. The model region
is the Arctic face of a global cubed sphere configuration with an average resolution of 36 km. Similar sea ice
models are currently being used in configurations with horizontal resolutions between 5 km for regional
simulations [Dupont et al., 2015] and around 50 km for global reanalysis [Chevallier et al., 2016]. Our model

Table 1. Bin Limits for ITD Configurations

No. of
Categories Bin Limits in m

5 0.0 0.64 1.39 2.47 4.57
20 0.0 0.16 0.33 0.50 0.67 0.86 1.06 1.28 1.52 1.79
. . . 2.10 2.46 2.89 3.42 4.06 4.85 5.82 7.01 8.46 10.2
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is therefore representative of a broad group of medium resolution models. All model runs start from a 5
year spin-up with periodic forcing of the year 1979. The model is then run from 1979 to 2009.

The initial choice of model parameters follows Nguyen et al. [2011], but we use a more recent atmospheric
forcing data set following the recommendations of Lindsay et al. [2014]: The NCEP Climate System Forecast
Reanalysis (NCEP-CSFR) [Saha et al., 2010] produced the best results for our configuration in a comparison
of different reanalysis products (i.e., the smallest model-data misfit prior to the formal optimization, not
shown).

Starting from the tuned set of parameters of Nguyen et al. [2011], we adjust the parameters of group 1 with
one optimization step to account for the differences in forcing, grid resolution, and other model details.
This setup without ITD parameterization is referred to as the ‘‘Baseline’’ hereafter. Next we tune a case with
an ITD using five ice thickness categories, a number recommended by Bitz et al. [2001]. In order to deter-
mine the parameters to be adjusted when switching to an ITD, we perform three different optimizations
with the non-ITD-specific parameters of group 1 (‘‘ITD5-g1’’), the ITD and R75-specific parameters of group 3
(‘‘ITD5-g3’’) or both sets together (‘‘ITD5-g13’’). Table 2 lists which parameters are modified in which experi-
ment. The best result (minimum cost function F) is obtained when only tuning the ITD-specific parameters
of group 3 (Table 3). Therefore we continued from Baseline by tuning parameters of group 3 for two differ-
ent numbers of ice thickness categories (5 and 20) with the R75 ice strength parameterization to arrive at
the configurations ‘‘ITD5R’’ and ‘‘ITD20R.’’

Tuning the strength-specific parameters of group 2 yields the configuration noITD with a single-category
thickness representation. In order for those optimizations to satisfy criterion (7), we require the linearization
error to be smaller than 10% of the observation uncertainty on average. This requirement was satisfied in

one step for noITD and two steps for
each of ITD5R and ITD20R. This optimi-
zation approach decreases the cost
function values of the ITD configura-
tions by 25%230% (Table 3).

To assess the role of the strength
parameterization in the context of an
ITD model, we evaluated two addition-
al model runs with an ITD and the sim-
pler H79 ice strength parameterization:
‘‘ITD5H’’ and ‘‘ITD20H.’’ For those runs,
we assume that the parameters, which
have already been tuned using our
cost function, give sufficiently good
results in this new combination. There-
fore we forego further optimization for

Table 2. Optimized Parametersa

Parameter Starting Values Baseline noITD ITD5R ITD20R

Albedo dry ice aId 0.7000 0.71 – – –
Albedo wet ice aIw 0.7060 0.7119 – – –
Albedo dry snow aSd 0.8652 0.8556 – – –
Albedo wet snow aSw 0.8085 0.7903 – – –
Air drag cd;a 1.14e-3 1.657e-3 – – –
Water drag cd;w 5.563e-3 6.647e-3 – – –
Axis ratio e 2.0 1.523 – – –
lead opening H0 0.5 0.5649 – (0.3546) (0.3292)
Ice strength (H79) P� 2.264 – 2.299 – –
Ice strength (H79) C� 20.0 – 15.92 – –
Ice strength (R75) Cf 14.0 – – 13.926 14.07
Ridging participation a� 0.04 – – 0.04058 0.04249
Ridge shape l 4.5 – – 3.029 3.104

a‘‘-’’ means no change from the last column, values in bracket are from additional optimizations for H0.

Table 3. Cost Function Valuesa

Concentration Thickness
Winter

Drift
Summer

Drift Total

Baseline 1.71 0.75 0.52 1.06 4.04
noITD 1.69 0.75 0.50 1.03 3.97
ITD5 no tuning 1.84 0.81 1.20 2.00 5.84
ITD5-g1 1.79 0.85 1.06 1.74 5.44
ITD5-g3 1.62 0.75 0.69 1.23 4.28
ITD5-g13 1.67 0.78 0.81 1.39 4.66
ITD5R 1.57 0.72 0.56 1.20 4.05
ITD5R-H0 1.49 0.79 0.54 1.22 4.03
ITD20 no tuning 1.91 1.17 0.88 1.56 5.53
ITD20R 1.71 0.90 0.45 1.09 4.15
ITD20R-H0 1.63 0.87 0.42 1.11 4.04
ITD5H 1.57 0.63 0.45 0.95 3.59
ITD20H 1.77 0.61 0.46 0.91 3.76

aExperiment names as defined in Table 4.
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the runs ITD5H and ITD20H and instead
use the parameters from the respective
R75 runs with the values P� and C� from
noITD.

This approach implies that the thickness
of newly formed ice is H050:5649 m, the
value resulting from the optimization of
the Baseline configuration, in all ITD con-
figurations. Arguably, this high value may
prevent the ITD model from representing
the behavior of thin ice realistically, espe-
cially since the thinnest category for ITD20
contains only ice thinner than 16 cm. To

investigate the effect of this artifact on our analysis, we additionally optimize only H0 for the two configura-
tions ITD5R and ITD20R. We find that it is possible to further decrease the model-data misfit by tuning H0 as
shown in Table 3 for runs ‘‘ITD5R-H0’’ and ‘‘ITD20R-H0,’’ but that our qualitative results are not affected. Tun-
ing of H0 also does not reduce the value of H0 to be within the limits of the thinnest category for ITD20R
(see Table 2). We thus conclude that it is not necessary to contain newly formed ice in the thinnest thick-
ness category in order to minimize model-data differences. An overview of the different optimized runs is
given in Table 4.

3. Results

Based on the cost function, both combinations of ITD and H79 give best results and even the configuration
noITD has a smaller cost function value than the two configurations with ITD and R75. This result is
described in more detail in section 3.1. We then investigate separately the influence of the ITD (section 3.2)
and the strength parameterization (section 3.3) on the quality and characteristics of the model results in
order to explain why the configurations with R75 have difficulties fitting the data. Especially for the ice
strength parameterization, we find a strong dependence on the thickness resolution in the ITD. For this rea-
son, we account for the different number of thickness categories throughout this section.

The simulated sea ice climate in our experiments is very close to the one described by Nguyen et al. [2011].
Due to our more specific tuning, we can even improve the fit to sea ice observations compared to their
already very good model state, but still suffer from biases in thickness and concentration, that are common
to many comparable models [Chevallier et al., 2016]. We therefore assume that our model provides a good
representation of Arctic sea ice and we focus our analysis on the differences in the fit to observations, as
expressed by our cost function, that are caused by changes in the model setup.

3.1. Cost Function
The total error calculated from the cost function F is slightly larger for both ITD5R and ITD20R when com-
pared to noITD and significantly larger than both model configurations ITD5H and ITD20H. An overview of
the cost function values can be found in Table 3.

To investigate the individual strengths and weaknesses of the different model configurations in more detail,
we split up the total cost function values into four contributions for each of the individual data sets (Table
3). The difference between the four different ITD configurations (ITD[5,20][R,H]) and noITD are shown in Fig-
ure 1. The ITD configurations using R75 improve the fit to some data sets, but this reduction in cost function
is outweighed by increases in differences in others. For instance, ITD5R has a clearly better fit to concentra-
tion data than noITD and a slightly better fit to thickness, but the fit to the drift data is much worse than in
noITD. ITD20R, on the other hand, has in total a comparable and in winter even a slightly better fit to the
drift data than noITD, but the fit to thickness and concentration is much worse compared to ITD5R. Part of
this behavior can also be observed for ITD5H and ITD20H: In this case, the fit to thickness and drift is similar,
but the fit to concentration is much better for ITD5H than for ITD20H. These observations are a first hint of
the strong influence of the number of thickness categories on the simulated sea ice concentration for a
general ITD model, but also on all other sea ice characteristics for the R75 strength parameterization.

Table 4. Optimized Runs

Initiated From Optimized Parameters

Baseline Nguyen et al. [2011] Group 1
ITD5-g1 Baseline Group 1
ITD5-g3 Baseline Group 3
ITD5-g13 Baseline Group 1 1 3
noITD Baseline Group 2
ITD5R Baseline Group 3
ITD20R Baseline Group 3
ITD5H ITD5R Group 2 taken from noITD
ITD20H ITD20R Group 2 taken from noITD
ITD5R-H0 ITD5R H0

ITD20R-H0 ITD20R H0
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3.2. Ice Thickness Distribution Model
We isolate and assess the effect of the ITD model by first comparing the configuration noITD with ITD5H
and ITD20H, all of which use the same strength parameterization H79.

The more complex ITD model reduces the misfit for ice concentration especially in the marginal ice zone for
the entire year, see Figure 2 for summer results; winter results are not shown. All model configurations gen-
erally overestimate the concentration especially in the North Atlantic, where the ice edge extends too far
south and south east. While this overestimation is found in many medium resolution models [Chevallier
et al., 2016], the ITD configurations largely reduce this misfit when compared to noITD. In contrast, the sum-

mer ice concentration in the
central Arctic and in the straits
of the Canadian Arctic Archipel-
ago is higher with an ITD model
(Figure 2). This is because most
ice in the ITD model is in the
thicker ice categories and
thicker ice takes longer to melt.
In the noITD model, sea ice melt
leads to sea ice concentration
changes even for thicker ice
because a linear ice thickness
distribution between 0 and 2h
is assumed so that there is
always thin ice available for fast
melting.

The ice thickness generally
increases with number of ice
thickness categories, with much
stronger tendencies in the
straits of the Canadian Arctic
Archipelago. The difference in
ice thickness between ITD5H 2

Figure 1. Difference in cost function values (ITD configuration 2 noITD) between different model configurations with an ITD and noITD.
Shown are contributions of single data sets and total values.

Figure 2. Mean difference in ice concentration (ITD5H 2 noITD) between an ITD configura-
tion using five thickness categories and noITD, both with the H79 strength formulation, in
Summer (July–September).
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noITD is 0:1160:20 m (mean and standard deviation) for ice thinner than 4 m in ITD5H, and the compara-
ble difference between ITD20H 2 noITD is 0:1760:25 m. These differences grow to 1:1461:67 m for ITD5H
and 1:4561:49 m for ITD20H, if only ice thicker than 4 m in the ITD run is taken into account. Ice of this
thickness is found mainly in the straits of the Canadian Arctic Archipelago and north of Greenland.

We now explicitly compare the ITD5 and ITD20 configurations for both strength parameterizations R75 and
H79 in order to investigate the impact of the number of thickness categories. For ITD20, we observe gener-
ally a larger total ice volume compared to ITD5: First, if there is ice in an ITD5 configuration with a concen-
tration of less than one, the concentration is in almost all cases higher in the corresponding ITD20 run.
Second, the higher thickness observed for an ITD model compared to noITD is further increased, with the
differences between ITD20 and ITD5 (Figure 3) showing a similar pattern as the differences between an
ITD5 configuration and noITD (not shown).

The differences in ice drift are less clear. We find mostly higher drift speeds in the configurations ITD20R
than in ITD5R, while we find the exact opposite for ITD20H and ITD5H. This ambiguous result can be
explained by the effect of ice thickness resolution on the ice strength parameterization (see subsection 3.3,
below).

3.3. Ice Strength
In this section, the effects of the different strength parameterizations on an ITD model are compared in
greater detail. In this context, the role of the number of thickness categories is emphasized.

We find that the nonlinearity in the R75 parameterization leads to higher fluctuations in the ice strength on
the near-grid scale. For both ITD5 and ITD20, the most prominent difference between the strength formula-
tions is found in the ice thickness of very thick ice north of Greenland and the Canadian Archipelago. Ice
exceeding four meters in thickness, which mainly exists in those regions, is on average thicker by more
than 70 cm in the R75 runs when compared to H79; but ice thinner than 2 m, especially common in the
peripheral regions of the Arctic, is slightly thinner on average with R75 when compared to H79 (Figure 4).
As a possible explanation for these observations, we see generally larger ice strength gradients with R75
than with H79, with the most prominent differences north of Greenland and Ellesmere Island (results not
shown). The calculation of the ice strength following R75 depends nonlinearly on the local distribution of
ice into different thickness categories, so that to some degree higher small-scale fluctuations are expected.
But the magnitude of those strength gradients can lead to stronger gradients in the velocity fields, especial-
ly for otherwise immobile ice. Due to this process, we find in the runs using R75 higher convergence rates

for ice thicker than 3 m (Figure
5). This increased ridging espe-
cially in regions of already thick
ice dynamically creates peak ice
thicknesses much higher than
observed.

The differences in concentration
and drift between R75 and H79
are less clear for all ITD configu-
rations. The differences in sea
ice concentration for ITD5 and
ITD20 for a climatological
August are plotted in Figure 6;
the patterns are very similar
throughout the year. The ice in
the marginal ice zone between
Siberia and Svalbard, in winter
and spring even down to Ice-
land, is less compact for R75
than for H79. At the same time,
the ice concentration is larger
for R75 in the other marginal

Figure 3. Mean difference in ice thickness H (ITD20H 2 ITD5H) between ITD configurations
with 20 and 5 thickness categories, both using the H79 strength formulation, in Winter
(December–May).
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seas, most notably in the Beaufort and Chukchi Seas and in the Baffin Bay. In the central Arctic, the differ-
ences in concentration depend on the number of thickness categories: in the ITD5 configurations, the ice is
more compact for R75 than H79; but in the ITD20 configurations, the ice in summer is slightly less compact
for R75 compared to H79. The ice drift is slower for R75 in large parts of the central and western Arctic and
faster in the outflow of the transpolar drift and in Fram Strait (not shown). In the remaining Arctic regions,

Figure 4. Mean difference in ice thickness (h(R75) 2 h(H79)) between ITD configurations using R75 and H79 with the same number of
thickness categories. The data are binned for ice thickness in the R75 configurations. Purple for ITD5, green for ITD20 with shaded range
between 25th and 75th percentile.

Figure 5. Frequency distribution of absolute convergence rates for configurations ITD5R, ITD20R, ITD5H, ITD20H, noITD; only accounting
for ice thicker than 3 m.
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we find a similar ambiguity as in the concentration fields: For R75, the ice tends to be slightly slower in the
ITD5 configurations and slightly faster in the ITD20 configurations when compared to H79. Those changes
can be traced back to similar patterns in the ice strength with the ice being weaker for R75 where it is faster
and vice versa (not shown).

We explain those differences by the effects of two different mechanisms. On the one hand, the mean ice
state with R75 is characterized over large parts of the central and western Arctic by larger thicknesses and
often also slightly higher concentrations. Physically, those changes in the mean ice state generally lead to
higher ice strength and thereby slower drift. On the other hand, the ice strength is a nonlinear function of
thickness distribution for R75, which makes the differences to the linear H79 formulation not uniform. To
illustrate this, we compare the strength values for both R75 and H79 computed from the ice states of model

Figure 6. Mean change in August ice concentration (A(H79) 2 A(R75)) between ITD configurations using H79 and R75 for (a) 5 thickness categories and (b) 20 thickness categories.

Figure 7. Mean difference in ice strength between R75 and H79 calculated for the same ITD. Differences are evaluated for 5 (magenta)
and 20 (green) thickness categories, results are binned for ice strength after R75 with the shaded area between the 25th and 75th
percentile.
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simulations using R75. For ice with a compressive strength (R75) higher than 40; 000 Nm22, the strength val-
ues calculated by R75 are higher than those for H79, and the differences grow linearly with the ice strength
over a large range (Figure 7). In contrast, in the range below 30; 000 Nm22, the ice strength values calculat-
ed by R75 are lower than those for H79.

Finally, the R75 ice strength depends more strongly on the actual distribution of ice thicknesses than on the
averaged characteristics of the sea ice. Figure 8 shows the difference in ice strength together with the differ-
ence in ice thickness between ITD5 and ITD20 simulations for both strength parameterizations. The ice
thickness is mainly larger for the ITD20 model for both H79 and R75. As expected following the simple rela-
tionship (20) and the physical understanding that thicker ice is more difficult to deform, H79 calculates
higher ice strength for the thicker ice in ITD20 over most thickness bins. The impact of the ice thickness on
the ice strength reduces for ice thicker than 3 m, most likely because the calculation of the ice strength is
increasingly affected by the replacement pressure method [Hibler and Ip, 1995], which tends to reduce the
ice strength of thick, immobile pack ice. In contrast, while for R75 the mean thickness is also mostly higher
in the ITD20 configuration than in ITD5, the average ice strength is lower. So for this ice strength formula-
tion, finely resolving the thin ice categories (and thereby weakening the ice pack) has a larger impact on
the ice strength than the physical property that thicker ice should be more difficult to deform.

4. Discussion

The H79 ice strength formulation can be justly criticized because it is not derived from first principles.
Therefore, the option of using the physically motivated R75 formulation is often thought of as a great
advantage of an ITD model. In contrast to that notion, our results suggest that simulating realistic drift fields
with medium-resolution sea ice models with R75 strength is difficult. In particular, in our simulations the
model performance did not improve over a sufficiently tuned single-category setup after including an ITD
parameterization together with the commonly used R75 strength parameterization. Somewhat counterintu-
itively, the model performance was better for fewer thickness categories and the model especially improved
when the ITD was combined with the H79 strength formulation.

4.1. Ice Thickness Distribution Model
Our model overestimates the concentration along the ice edge almost everywhere in the North Atlantic
and most of the time. In both ITD5 runs this overestimation is greatly reduced. Bitz et al. [2001] described a

Figure 8. Average difference (ITD20 2 ITD5) in ice strength (dashed) and ice thickness (solid) between ITD configurations using 20 and 5
thickness categories evaluated for H79 (cyan) and R75 (red). Differences are evaluated for different ice thicknesses, binned into thickness
bins of the ITD5 simulations, as described in section 3.3.
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similar effect and explained it by faster melting of thin categories in the ITD, which leads to more open
water, that is, lower ice concentration, especially during the summer season. Somewhat in contrast, we find
also higher summer ice concentrations for the ITD configurations, mostly in the central ice pack. We explain
this also by the same effect of thin ice melting. The single-category approach of Hibler [1979] assumes a uni-
form distribution of thickness between 0 and 2h for the creation of open water, so that there can be more
thin ice available in this configuration than in the ITD models, which may not have any ice in the thinnest
category.

In addition, the effect of an ITD model on the ice edge depends strongly on the number of categories.
Resolving the ice thickness distribution better (ITD20 versus ITD5 configurations) leads to higher ice concen-
trations in the marginal ice zone with the consequence of a larger ice edge position error than in the noITD
model. We find that the increase in total ice volume and the associated ice export with more thickness clas-
ses is too strong to be balanced by the increased melting in the marginal ice zone that one would expect
when the thinner categories are better resolved.

The mean ice thickness increases with the number of thickness categories (noITD< ITD5< ITD20) [see also
Holland et al., 2006; Komuro et al., 2012]. This result is consistent with the physical reasoning that a better
resolution of thin ice in the pack allows for more ice growth, because heat fluxes and deformation (ridging)
increase. In contrast, Massonnet et al. [2011] found in a comparison between model versions a decrease in
ice thickness, which they attributed to the use of an ITD model. We argue that their analysis may have been
confounded because in comparing different model versions they changed multiple model components and
parameters, including a lower value for the thickness of new ice H0 in the model version with the ITD, which
also changes ice thickness and concentration fields.

We did not fully address the question of (numerical) convergence of the ITD model with the number of
thickness categories. A fine resolution of the thin ice range was found to be necessary to reproduce
observed heat fluxes [Bitz et al., 2001] and a better resolution of the upper thickness range was required to
reproduce total ice volume [Hunke, 2014]. Based on our experiments with 5, the minimum number recom-
mended by Bitz et al. [2001], and 20 categories, which were chosen to have a simulation with a nearly con-
verged ITD model [Lipscomb, 2001], we find that the better resolved solution does not lead to the best
model-data fit. More thickness categories increase the ice volume and eventually lead to an overestimation
of thickness, apparently introducing a stronger bias in the solution than the effects of a coarse thickness res-
olution. It is unclear in how far these effects can be moderated by more realistic thermodynamics, as the
thermodynamics can have a strong impact on ice thickness [Bitz et al., 2001; Losch et al., 2010].

The delta function scheme [Bitz et al., 2001], which we use in our simulations, was criticized to be prone to
produce numerical discontinuities in the ITD and to leave many thickness categories empty, thereby artifi-
cially reducing the thickness resolution [Lipscomb, 2001]. A linear remapping scheme was implemented to
overcome these issues [Lipscomb, 2001]. We observe the same improvements in test simulations with the
linear remapping scheme (smoother thickness distributions with fewer gaps, not shown), but also on aver-
age slightly thicker ice and higher ice concentration. The main results of our study, however, remain intact:
the quality of the model output, measured by the cost function, is higher for ITD configurations with H79
than for noITD, which in turn is better than the combinations of ITD and R75; and notably we observe the
same dependency of the ice strength on the number of thickness categories (not shown).

4.2. Ice Strength
Bitz et al. [2001] found that for R75 the ice is weaker if a given thickness distribution is better resolved.
This is probably so because the strength of the ice pack is determined mostly by the amount of thin ice
and if the thin end of the thickness distribution is better resolved, thinner ice can lead to smaller ice
strength. H79 misses this sensitivity to thin ice because of linearity. We show that for R75 this effect can
be strong enough in a realistic model setup to outweigh the opposing effect of thicker ice resulting
from more thickness categories (Figure 8). Although this behavior may be physical and could be seen as
an advantage of R75 over H79, it reduces the ability to reproduce large-scale satellite observations in
our experiments.

The differences in modeled ice drift patterns in our simulations are mostly caused by the different ice
strength formulations, because other drivers such as the wind forcing were the same for all experiments.
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Because the number of thickness categories has such a strong impact on the solutions with R75, we cannot
distinguish a clear change of drift patterns due to an ITD that would be independent of the choice of
strength parameterization. In a comparison of different ocean-sea ice reanalysis products to satellite obser-
vations of ice drift—unfortunately they used a different observational data set, which makes a direct com-
parison of their results to ours difficult—Chevallier et al. [2016] identified the choice of atmospheric forcing
and differences in drag coefficients as the most important model parameters and confirmed the strong role
of the wind stress in determining the drift patterns of sea ice [Hunke et al., 2011]. Our results indicate that
when those leading-order effects are held constant, changing the formulation of ice strength is a powerful
way of affecting the model-data misfit for sea ice drift.

Holland et al. [2006] attributed the increased ice thickness with an ITD model to the larger ice growth rates
generally produced by an ITD. We can now distinguish the effects of the strength parameterization from
the choice of thickness representation in the model to show that while an ITD leads to a general increase in
the overall thickness, the choice of R75 is mainly responsible for excessively large maximal thicknesses north
of Greenland and Ellesmere Island. These are caused by the strong small-scale gradients in the ice strength
for R75 that allow higher deformation rates in very thick ice, so that already thick ice can be ridged further,
eventually leading to much higher maximal thickness values than observed.

Although the derivation of R75 is arguably more physical than that of H79, it leads to a poorer model-data
misfit. In the following, we speculate about the reasons for this counterintuitive result: Rothrock [1975]
already mentioned two issues with known energy sinks in his derivation of the work necessary for ridge for-
mation: (1) fracturing of ice was neglected following an argument of Parmerter and Coon [1973] and (2) fric-
tional loss in shearing was neglected and assumed to be at most of the order of frictional losses in
compression based on the notion of a Coulomb friction model. To estimate the work against friction in
compression, Rothrock [1975] made strong assumptions about complicated processes of ice interaction
without having enough data available to constrain them. He arrived at approximately similar contributions
by gravitational and frictional work. This lead to a scaling factor Cf 5 2, but later Flato and Hibler [1995] esti-
mated this factor to be Cf 5 17 based on a model comparison to observed buoy drift patterns. This large dif-
ference in Cf between estimates by theory and numerical model comparisons together with a reevaluation
of energy dissipation in shear [Pritchard, 1981] suggest to us that important physical effects are not properly
included in the approach of R75.

Fundamental questions about the form of a new ice strength parameterization are unclear. For example,
Hopkins [1998] found in model simulations of ridging processes that pressure ridge formation leads to a
scaling of the ice strength proportional to h3=2. Hibler [1980] also supports a scaling with h3=2 by physical
reasoning, but in the absence of sufficient observational data his theory is based on important parts on
physical intuition. Note, however, that Hopkins [1998] considers only ice breaking in flexure, not in crushing.
The load that ice can withstand before it is crushed grows linear in h [Rothrock, 1975]. Further, ice strength
scaling with h2 was found in numerical simulation of ridge formation with a different experimental setup
[Hopkins et al., 1991]. The R75 ice strength scales with h3=2, while the ice strength after H79 is linear in the
mean thickness h [Lipscomb et al., 2007], but neither appear to cover all observational evidence. We empha-
size that there still exists great uncertainty in the exact nature of such a scaling. Our results indicate that the
linear relationship [Hibler, 1979] might be better suited to represent Arctic-wide averages.

4.3. Qualitative Assessment of Our Results
Measuring the quality of our model results with the cost function (1) allows us to assess the overall perfor-
mance of a given configuration in a detailed and quantifiable way. To this end, we evaluate the reproduc-
tion of large-scale sea ice features, such as sea ice extent, thickness, and drift—as opposed to the details
of the ocean state. Three of the four data products (thickness and both drift products) are limited to cer-
tain seasons in a few years, and two of them (thickness and drift from Kimura et al. [2013]) are also limited
to the central Arctic. Still the combination of the four products allows a year-round coverage of the whole
Arctic in those years. In our analysis, we implicitly assume that large errors in one sea ice property (e.g.,
thickness) would affect other sea ice properties (e.g., drift and concentration) in a detectable manner.
Additionally, the availability of the concentration data for the entire 30 year simulation period provides
some measure against overfitting the model to the short period 2002–2008 covered by the other satellite
products.
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Are the results presented in section 3 sensitive to the exact choice of observations included in the cost func-
tion? We tested this by evaluating the cost function for any combination of three (out of four) sets of obser-
vations and found that the main conclusion of the paper is robust to the exact choice of observations. In all
cases, the ITD configurations together with the strength parameterization H79 lead to a better fit to the
observations than the single-category configuration noITD with the strength parameterization H79. The
noITD case in turn leads to a better fit than the ITD with the ice strength parameterization R75 (Table 3).

Our modeling approach is based on a simple single-category ice model (in fact, it is a two-category model:
ice and no-ice) [Hibler, 1979] without internal heat capacity (linear internal temperature profile) and without
considering a brine parameterization [Bitz and Lipscomb, 1999]. Both of these omissions will lead to a larger
seasonal amplitude in ice thickness and to the absence of a lag between the net surface heat fluxes and the
seasonal cycle of ice thickness. When we minimize the cost function (1), the biases in ice thickness will be
compensated by adjustments in the optimal choice of surface albedo for sea ice and snow. While it is true
that we are compensating for a winter bias in ice growth (induced by the lack of thermal inertia) by includ-
ing another bias in summer melt (via the albedo), the fact that we are mainly interested in the ice strength
parameterization—something that is important only during one season (mid to late winter) when the ice
interactions are significant [Steele et al., 1997; Richter-Menge, 1997]—suggests that our conclusions are not
sensitive to the presence or absence of sea ice thermal inertia. Moreover, the absence of a lag between sur-
face atmospheric forcing and sea ice thickness will only be important for a few weeks near the onset of the
melt season (the delayed ice growth in fall occurs at a time when the ice interactions are small) [Richter-
Menge, 1997]; this will therefore result in second order changes in the cost function over the full winter sea-
son. For these reasons, we believe that the simpler treatment of thermodynamics will not impact the main
conclusions.

The choice of forcing data generally has a large impact on model results [Lindsay et al., 2014]. Prior to opti-
mization, we chose the best forcing data set based on our cost function. A different forcing data set may
change the magnitude of ice thickness or the regional distribution of ice and it will guide the optimization
to a different set of optimized parameter values, but the internal mechanics of the model that are responsi-
ble for the differences between the parameterizations are not affected.

5. Conclusions

A rigorous model-data comparison for an ITD model and two different strength parameterizations leads us
to the following conclusions: Sea ice models with an ITD parameterization can outperform single-category
models in reproducing observed concentration, thickness, and drift fields. Somewhat unexpectedly, the
best fit to observations is achieved with an ITD model following Thorndike et al. [1975] combined with a sim-
ple ice strength parameterization [Hibler, 1979]. The more sophisticated ice strength parameterization by
Rothrock [1975] leads to the poorest agreement to observations, even compared to the single-category
model: Problems associated with this parameterization overcompensate the positive effect of an ITD model
on the overall model.

It is not obvious why the Arctic-wide behavior of sea ice is reproduced with the least accuracy for the ice
strength parameterization after Rothrock [1975] in our simulations. We found the modeled physics to pro-
duce implausibly large peak ice thicknesses, probably due to very high deformation of already thick ice and
also a very strong dependence of the modeled ice strength on the number of thickness categories. This
points to potential issues in both the physical assumptions in the formulation and the numerical discretiza-
tion procedure. A short-term improvement may be achieved by using the ITD parameterization together
with the H79 strength formulation for medium resolution models. But because of the lack of physical justifi-
cation for this parameterization, this short-term solution may turn out to be insufficient for sea ice simula-
tions in climate change scenarios.

The increasing availability of satellite data make possible detailed, quantitative analyses of model parame-
terizations. These can be further enhanced by additional data sources such as EM-Bird thickness measure-
ments [Haas et al., 2009] or ice age [Hunke, 2014]. We argue that in order to realistically reproduce Arctic
sea ice it is necessary to reevaluate the ice strength formulation as a major link between ice volume and ice
drift.
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