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With global climate change altering marine ecosystems, research on plankton ecology is

likely to navigate uncharted seas. Yet, a staggering wealth of new plankton observations,

integrated with recent advances in marine ecosystem modeling, may shed light on

marine ecosystem structure and functioning. A EuroMarine foresight workshop on the

“Impact of climate change on the distribution of plankton functional and phylogenetic

diversity” (PlankDiv) identified five grand challenges for future plankton diversity and

macroecology research: (1) What can we learn about plankton communities from the

new wealth of high-throughput “omics” data? (2) What is the link between plankton

diversity and ecosystem function? (3) How can species distribution models be adapted

to represent plankton biogeography? (4) How will plankton biogeography be altered due

to anthropogenic climate change? and (5) Can a new unifying theory of macroecology

be developed based on plankton ecology studies? In this review, we discuss potential

future avenues to address these questions, and challenges that need to be tackled along

the way.
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INTRODUCTION

Marine ecosystems are altered by anthropogenic climate change
and ocean acidification at an unprecedented rate (Waters et al.,
2016). In recent years, observational studies have documented
shifts in plankton biogeography and community structure in
several ocean basins associated to sea warming, with changes that
rank among the fastest and largest documented (Beaugrand et al.,
2002; Poloczanska et al., 2013; Rivero-Calle et al., 2015). How
changes in plankton distribution, phenology, and biomass may
impact fisheries and other ecosystem services is poorly quantified
(Cheung et al., 2013), with large uncertainties in themagnitude of
potential cascading effects caused by trophic mismatch (Edwards
and Richardson, 2004), trophic amplification (Chust et al.,
2014a), and on global biogeochemical cycles (Doney et al., 2012).
In consequence, current management policies suffer from a lack
of understanding of marine systems (Borja et al., 2010), and
biases arise in the perception of potential ocean calamities in the
absence of robust evidence (Duarte et al., 2015).

While recent oceanographic efforts such as Tara Oceans
(Pesant et al., 2015) and Malaspina (Duarte, 2015) expeditions
have generated a staggering wealth of novel observational data
on plankton distribution and diversity (Figure 1), these same
data have revealed the extent of our ignorance of marine
ecosystem structure and function. A large fraction of plankton
diversity recorded in recent surveys cannot be assigned to known
taxonomic groups (de Vargas et al., 2015), highlighting how
profoundly our knowledge of the planktonic world is biased
toward the taxa sampled or cultured. Not only the identity of
major players, but also the drivers of community structure and
interactions between organisms remain a “mare incognitum.” In
the surface ocean, plankton composed of prokaryotes (viruses,
bacteria, and archaea) and eukaryotes (protists and metazoans;
Figure 1) have been shown to form complex interaction networks
driven by multiple biotic and abiotic factors (Lima-Mendez et al.,
2015), and despite their key role as resource for higher trophic
levels, mesopelagic plankton communities are some of the least
studied on Earth (St. John et al., 2016).

Despite these gaps in our understanding, the existing
data reveal the importance of community composition for
marine ecosystem function. For instance, an investigation
of planktonic communities at the global scale using high-
throughput metagenomic sampling techniques has recently
linked carbon export patterns to specific plankton interaction
networks (Guidi et al., 2016), suggesting that the who’s
who in the plankton world is of paramount importance
for the carbon cycle. Integrated with revised estimates in
species abundance and biomass (Buitenhuis et al., 2013), and
combined with advances in statistical (Robinson et al., 2011)
and mechanistic modeling techniques (Follows et al., 2007),
novel high-throughput metagenomic data may allow us to relate
biogeographic patterns of plankton distribution and diversity to
further ecosystem processes.

Marine plankton ecology research is thus at a crossroads:
At a time where marine ecosystems reveal their nature for the
first time, these transient ecosystems have already adapted to
environmental changes and are continuing to do so (Waters et al.,

2016), with unknown consequences for ecosystem function, and
ecosystem service provision. In this context, a close collaboration
between researchers belonging to various fields of plankton
ecology appears timely to identify the most pressing questions,
and to accelerate progress in our understanding of marine
ecosystem structure and function. Recently, a EuroMarine
foresight workshop on the “Impact of climate change on the
distribution of plankton functional and phylogenetic diversity”
(PlankDiv), held in March 2016 in Villefranche-sur-Mer, France,
gathered experts in climate change ecology, species distribution
modeling, plankton biology, as well as genomics and evolution.
They identified five fundamental questions in future plankton
diversity and macroecology research: (1) What can we learn
about plankton communities from the new wealth of high-
throughput “omics” data? (2) What is the link between
plankton diversity and ecosystem function? (3) How can
species distribution models be adapted to represent plankton
biogeography? (4) How will plankton biogeography be altered
due to anthropogenic climate change? and (5) Can a new unifying
theory of macroecology be developed based on plankton ecology
studies? These questions, along with their associated challenges,
are the subject of this review.

THE NEW WEALTH OF PLANKTON DATA

Several recent circumpolar missions have ushered in a new era
of plankton biogeography research at the planetary scale. This
recent explosion of biological data is perhaps best exemplified
by the output of the Tara Oceans expedition (Karsenti et al.,
2011). While still only offering a temporal snapshot of marine
communities, the 7.2 Terabites of metagenomic data gathered
are a 1,000 times that generated by the previous largest
marine data project, the Sorcerer II Global Ocean Sampling
(Rusch et al., 2007). High-throughput omics data offer great
potential to reveal the global structure of transient marine
planktonic ecosystems, since genetic methods compare favorably
to traditional observational methods such as microscopy or
flow cytometry in terms of the time expenditure, expert
knowledge required to identify organisms, and the cost of
equipment and analysis. The growing spatial coverage of data
enables researchers to estimate global-scale taxonomic diversity
of unicellular eukaryotes (de Vargas et al., 2015), to identify
the main environmental drivers of community structure in
marine prokaryotes (Sunagawa et al., 2015), and to delve into
the complexity of biotic interactions between plankton species
spanning multiple domains of life, as well as their link to
global biogeochemical cycling (Lima-Mendez et al., 2015; Guidi
et al., 2016). Complementary to a “bulk” screening of marine
biodiversity, single-cell genomics approaches allow matching of
phenotype and genotype, and have been used to investigate the
phylogenetic affinities of microbial dark matter (i.e., currently
unculturable microbial organisms; Rinke et al., 2013; Hug
et al., 2016) and to uncover niche partitioning within globally
distributed lineages of marine microbes (Kashtan et al., 2014).
In combination, bulk and targeted approaches could unravel
the taxonomic composition of planktonic organisms, as well as
aspects of their ecological function (Thrash et al., 2014; Louca

Frontiers in Marine Science | www.frontiersin.org 2 March 2017 | Volume 4 | Article 68

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Chust et al. Future Plankton Ecology Research

FIGURE 1 | The staggering wealth of plankton species. Diverse assemblages consist of uni- and multicellular organisms with different sizes, morphologies,

feeding strategies, ecological functions, life cycle characteristics, and environmental sensitivities. Courtesy of Christian Sardet, from “Plankton—Wonders of the

Drifting World” Univ Chicago Press 2015.

et al., 2016) and genome evolution to new environments (Mock
et al., 2017).

Both approaches are challenged by the lack of high quality
reference databases (Sunagawa et al., 2015). This highlights
the need for comprehensive reference databases to guide the
validation and integration of the streams of new data, and their
comparison with taxonomic information (e.g., Buitenhuis et al.,
2013). In addition, genomic sampling often results in temporal
snapshots of one particular aspect of biodiversity [e.g., ribosomal-
RNA based Operational Taxonomic Unit (OTU) richness].
Applying this approach to marine plankton communities at
similarly broad geographic scales is difficult and expensive, but
necessary to improve the assessments of the temporal variability
of plankton diversity (Lewandowska et al., 2014). Currently,
high-resolution time-series datasets are often restricted to easily-
accessible, mostly coastal locations, making extrapolation to
the expanses of the open ocean difficult. Therefore, the use of
these data for ecological purposes may not be straightforward,
especially when trying to estimate abundances of planktonic
organisms from metabarcoding (e.g., Decelle et al., 2014).

While the genomic quantification of species composition has
become more and more common (Bik et al., 2012; Bik, 2014),
and harbors potential for marine ecosystem monitoring in times
of rapid environmental and ecosystem change, the link between
the identity and the functional role of species remains obscure.
Genomic approaches can provide thousands of OTUs, whose
metabolic state, morphology, and environmental tolerances are

largely unknown. Supplementary measurements of functional
traits in laboratory experiments and the quantification of spatio-
temporal variability across populations is severely limited by
our success in culturing the large diversity of plankton in vitro.
Estimates that <30% of plankton are cultivable highlight the
daunting task of obtaining such data across the heterogeneous
plankton lineages and put alternatives, such as single-cell
screens, metatranscriptomic approaches, or in silico method
developments, to the forefront for the characterization of at least
some aspects of plankton diversity.

ASSESSING FUNCTIONAL AND
PHYLOGENETIC FACETS OF PLANKTON
BIODIVERSITY

Traditional approaches have determined marine biodiversity
using species occurrence or abundance information at the
regional to global scale (e.g., Tittensor et al., 2010). However,
there is a growing consensus about the need to assess other facets
of biodiversity such as functional diversity, which accounts for
biological traits, and phylogenetic diversity to link environmental
changes, ecosystem composition and ecosystem function (Naeem
et al., 2012; Mouillot et al., 2013). These two promising concepts
developed for macro-organisms should be increasingly used
within the marine and climate change contexts to further
improve our understanding of the link between plankton
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diversity, ecosystem productivity, or additional functions related
to global biogeochemical cycles.

Functional diversity uses a set of complementary indices
(Mouillot et al., 2013) combining measures of species abundance
with selected physiological and ecological traits suggested to
reflect the fitness of an organism, and which may influence
ecosystem function (Violle et al., 2007). Since certain traits may
occur across species pertaining to different taxa, estimates of
functional diversity allow for the comparison of assemblages
with little (no) taxonomic or phylogenetic overlap, but with
similar responses to their environment. This metric can account
for the intraspecific variability of ecological strategies (e.g., the
trophic status of mixotrophic species), and it can include a
diverse range of trait variables (e.g., size, feeding strategy, nutrient
uptake kinetics). Although much progress has been made in
understanding which characteristics of plankton determine their
growth, reproduction, and survival (Litchman and Klausmeier,
2008; Litchman et al., 2013; Benedetti et al., 2016), information
on traits is restricted to a few well-studied species (Barton et al.,
2013). Consequently, trait choice often depends on subjective
criteria such as the availability of data (Petchey and Gaston,
2006), therefore open access trait databases should be developed
for marine species (Costello et al., 2015). In addition, it is
challenging to measure multiple functional traits of thousands
of species. Although omics data could allow identifying traits
at the community level (Louca et al., 2016), more research is
still needed to assign functional traits to sequences, especially for
eukaryotic plankton. Despite these methodological issues, trait-
based approach of marine communities opens new opportunities
for a better understanding of ecosystem functioning and for
the development of ecological indicators (Beauchard et al.,
2017).

An alternative approach relies on the interspecific
phylogenetic differences as a proxy for the overall diversity
of a system, assuming that biological characteristics linked
to individual fitness and ecological roles show phylogenetic
conservatism, i.e., that communities consisting of species with
a lower degree of relatedness differ more in their respective
trait values, and are thus more diverse (Mouquet et al., 2012).
Phylogenetic diversity indices (Tucker et al., 2016) measure
the breadth and distribution of evolutionary history present
in an assemblage (Mouquet et al., 2012; Cadotte et al., 2013),
using DNA sequences to assess the phylogenetic distances
between species, by aligning sequences to a reference tree,
or by de-novo building of phylogenetic trees (Hinchliff et al.,
2015).

With the advent of metagenomic data, these promising
approaches need to be further explored in terms of their
applicability to and relevance for the description of marine
ecosystem function. However, the use of phylogenetic diversity
critically depends on methodological advances: a substantial
fraction of high-throughput sequences obtained by second
generation sequencing for microbial communities may still
lack sufficient phylogenetic information to provide a reliable
phylogenetic placement. In the near future, the popularization
of third generation sequencing (e.g., PacBio, Nanopore), which
sequences single molecules of DNA in real time, may circumvent

this problem, and will provide full opportunities to use
phylogenetic diversity estimates to study present and future
ecosystem function.

SPECIES DISTRIBUTION
MODELING—RUNNING BEFORE WE CAN
WALK?

Species Distribution Models (SDMs) are statistical tools that
model a species realized niche, i.e., the environmental conditions
under which the species can maintain a viable population
(Hutchinson, 1957), by relating their occurrence or abundance
to environmental conditions (Guisan and Zimmermann, 2000).
Several key ecological attributes make planktonic species
particularly well-suited for SDMs (Robinson et al., 2011): (i)
their distribution reflects their environmental preferences, since
plankton are short-lived organisms, with population dynamics
tightly connected to climate (Sunday et al., 2012); (ii) plankton
are less commercially exploited than other marine species, and
thus, their spatial patterns are less biased by captures as in
the case of many fish and shellfish species. These attributes
make them a key group for monitoring the impacts of climate
change on biodiversity and ecosystem functioning (Richardson,
2008). So far, SDMs have seldom been applied to study plankton
biogeography, with only a handful of studies on phytoplankton
(Irwin et al., 2012; Pinkernell and Beszteri, 2014; Brun et al., 2015;
Rivero-Calle et al., 2015; Barton et al., 2016) and some more on
zooplankton (e.g., Reygondeau and Beaugrand, 2011; Chust et al.,
2014b; Villarino et al., 2015; Brun et al., 2016; Benedetti et al.,
in press). This is due not only to the limited data availability
for model development, but also due to several unaddressed
methodological issues.

In plankton, a major problem with SDMs is the scarcity
of occurrence data, which can lead to an incomplete niche
description and/or biased models. A major challenge is
therefore to discern biological distribution patterns from patterns
of sampling effort, especially in traditional taxonomy-based
plankton data sets where reliable absences data are usually
unavailable and large regions, such as the South Pacific, are
chronically undersampled. Using one of the most extensive
plankton data sets to date, the North Atlantic Continuous
Plankton Recorder data, Brun et al. (2016) found that a suite
of commonly used SDMs are unable to predict and hindcast
the distribution of zooplankton and phytoplankton example-
species on the decadal scale. One way to improve SDMs is
either through careful methodological adjustments, such as a
targeted selection of the background (Phillips et al., 2009), the
reduction of environmental predictors, and model complexity
(Merow et al., 2014). Another approach could be to merge
existing data archives and to combine genomic data with
traditional approaches in order to reduce the sampling bias.
However, since SDMs apply at the species level, this will require
specific identifications, either from microscopy, imaging, or
sequencing, which would necessitate to keep taxonomic expertise
in our laboratories and, in parallel, to develop specific tools for
automatic identification.
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In their basic form and most common use, classical SDMs do
not account generally for three major ecological processes that
may be crucial for plankton distribution: (i) the role of dispersal
and its limitation, (ii) biotic interactions, and (iii) intraspecific
variability, which we discuss below. The relative importance of
these processes in shaping planktonic species’ ranges is still being
under debate (Cermeño and Falkowski, 2009; Chust et al., 2013).

Plankton dispersal is controlled by ocean currents and can
impact diversity and community structure (Lévy et al., 2014).
Although barriers to dispersal are fewer in the marine realm
compared to the terrestrial one (Steele, 1991), coupling ocean
connectivity patterns (Treml et al., 2008; Foltête et al., 2012)
with niche models is likely important. Source-sink dynamics may
arise frequently because of the advection of water masses (e.g.,
Beaugrand et al., 2007; Villar et al., 2015) that can introduce
species to unsuitable regions (Pulliam, 2000), potentially biasing
SDMs. Future developments for plankton could ensue from
graph-based techniques (Dale and Fortin, 2010) and from SDMs
coupling with simple dispersal models (Foltête et al., 2012; Zurell
et al., 2016).

Furthermore, the need to account for biotic interactions when
predicting species distributions has been advocated (Boulangeat
et al., 2012; Wisz et al., 2013). Recently, the exploration
of the plankton “interactome” (Lima-Mendez et al., 2015)
allowed to describe how biotic interactions occur across trophic
levels and relate to environmental conditions and ecosystem
functioning, with many new symbiotic interactions identified
(Guidi et al., 2016). When prior knowledge is too limited,
food-web models could be inferred from simple size-based,
or multi-traits assumptions (Albouy et al., 2014), or based on
ecosystem models (e.g., Follows et al., 2007; Le Quéré et al.,
2016) in combination with satellite estimates of (phyto)plankton
community composition (e.g., Hirata et al., 2011).

Finally, SDMs do not consider intraspecific variability, thus
assuming that genetic adaptation is negligible. However, many
planktonic species exhibit local adaptation (Peijnenburg and
Goetze, 2013; Sjöqvist et al., 2015) or consist of several ecotypes
with different environmental preferences, and phenotypic
plasticity, dispersal, and evolutionary changes could mitigate
climate change impacts as they could help species to adapt to
changing conditions (O’Connor et al., 2012). One possibility to
account for both local adaptation and phenotypic plasticity is
to include a population-dependent component in mixed effect
models (e.g., Valladares et al., 2014). Furthermore, the joint use
of genomic and taxonomic informationmay help to constrain the
differences between subpopulations or ecotypes of a species, and
to identify so-called cryptic species.

ADRIFT IN AN OCEAN OF CHANGE

In contrast to works on higher trophic levels (e.g., Cheung
et al., 2009), the investigation of the response of plankton
to future climate changes has mostly focused more on bulk
variables (e.g., biomass, production), with large uncertainties
associated with the simulated response of primary and secondary
production (e.g., Bopp et al., 2013; Laufkötter et al., 2015). Yet,

observational evidence of changes in planktonic ecosystems has
been accumulating over the past decades, with ongoing efforts
to attribute these changes to specific environmental drivers (e.g.,
Beaugrand et al., 2008; Rivero-Calle et al., 2015).

SDMs have been used to support observations of poleward
plankton distribution range shifts in response to global warming
in the North Atlantic (Beaugrand et al., 2002; Richardson, 2008),
as well as changes in the relative abundance of certain groups
(Rivero-Calle et al., 2015). However, range shifts and in particular
phenological changes can vary according to region and species,
leading to unexpected emergent patterns (Richardson et al.,
2012; Poloczanska et al., 2013; Burrows et al., 2014; Barton
et al., 2015). In fact, multiple non-exclusive and interlinked
adaptation strategies at the organismal level may all operate
in concert, or, alternatively, the selection of one strategy may
reduce the necessity to employ another. For example, shifts in
spatial distribution may preclude the necessity for phenological
adjustments in a given species attempting to maintain its thermal
niche. Other adaptation strategies involve species plasticity
and genetic modification in order to face changing conditions
(Lavergne et al., 2010; Dam, 2013), which have been documented
for spatially isolated zooplankton (Peijnenburg et al., 2006; Yebra
et al., 2011), but could not be confirmed for other species (Provan
et al., 2009). Another alternative adaptation strategy is the change
in depth-distribution, i.e., the migration to deeper waters in
search for cooler temperatures carried out by fishes (Perry et al.,
2005).

Given the multitude of adaptation options, future projections
of ecosystem change are prone to large uncertainties. Moreover,
disentangling the effects of anthropogenic climate change
on plankton distribution and phenology shifts from other
drivers (e.g., climate variability, population dynamics) is equally
challenging (Chust et al., 2014b). In particular, the combination
of controlling factors, together with systematic biases in sampling
effort can lead to biases in estimated trends. The decomposition
of factors using different SDMs can detect the so-called “niche
tracking,” which is the shift of a species distribution to follow
the displacement of their habitat, e.g., poleward shifts (Monahan
and Tingley, 2012; Bruge et al., 2016). At the community
level, thermal biases between the average thermal affinity of
assemblages and local temperature (Stuart-Smith et al., 2015)
have to be considered to improve our understanding of the
sensitivity of plankton reorganization with warming.

TOWARD A UNIFIED THEORY OF
MACROECOLOGY

Predicting how species will respond to global environmental
change requires an understanding of the processes generating
their current large-scale spatio-temporal patterns of diversity
and distribution, which is the essence of macroecology.
One such predominant pattern on Earth is the decline in
biodiversity of terrestrial and marine macroorganisms from
tropical to polar areas (e.g., Tittensor et al., 2010). Hypotheses
explaining this pattern often call upon evolutionary history
(Mittelbach et al., 2007), diversity-area relations (Rosenzweig,
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1995), temperature effects (Allen et al., 2002), or climatic
stability (Fraser and Currie, 1996). Although these premises often
find empirical support, their testing in the open oceans has
been limited. Whereas, zooplankton likely reflect the general
latitudinal trend (Beaugrand et al., 2013), bacterioplankton
may form seasonal diversity peaks at high (Ladau et al.,
2013) and mid (Sunagawa et al., 2015) latitudes, and for
phytoplankton the validity of the global pattern itself and the
processes that may explain it are still ambiguous (Rodríguez-
Ramos et al., 2015; O’Brien et al., 2016). To alleviate data
scarcity, which may have contributed to uncertainty, we suggest
the implementation of SDMs as strategic tools to integrate
novel with traditional data and to depict aspects of global
diversity variation across major taxa and spatio-temporal
scales.

The validity of the concept of SDM in plankton and its
specific adaptation warrant further testing of the processes
that determine plankton distribution, abundance, community
assembly, and the maintenance of diversity at local to
global scales. More than a decade after the appearance of
the unified neutral theory of biodiversity (Hubbell, 2001),
there is still an active debate on the relative contribution
of demographic stochasticity, dispersal, and niche processes
on plankton communities (Pueyo, 2006a,b; Cermeño and
Falkowski, 2009; Chust et al., 2013), which promoted the
revisiting of the “Paradox of the Plankton” (Hutchinson,
1961). Recent studies have tried to reconcile neutral and
niche theories (Adler et al., 2007) and suggest that neutral
combined with metabolic theory can explain macroecological
patterns (Tittensor and Worm, 2016). Furthermore, neutral
processes might similarly shape both population genetics
and community patterns in plankton (Chust et al., 2016).
The combination of data from time-series, global in situ
observations and experiments on marine plankton provides a
unique opportunity to characterize the niches of species (Brun
et al., 2015) and to explore the relations between ecological
niche characteristics (e.g., niche dissimilarity) and local species
richness.

Thus, important open questions include: Is plankton
community assembly mainly driven by niche assembly or neutral
processes? Does this depend on the spatio-temporal scale of
observation? Which method(s) can be used to disentangle the
dominating process in community assembly and ecosystem
structure? What will be the effect of the removal of geographical
barriers that have long separated the Earth’s biogeographical
provinces on marine plankton diversity (“homogocene,”
Rosenzweig, 2001)? How does the evolution of microorganism
dependency based on gene loss shape the structure and
dynamics of communities (Mas et al., 2016)? Due to their
fast duplication rates and rapid response to environmental
conditions, planktonic communities assemble, dismantle, and
re-assemble constantly in natural environments, thus tracking
environmental disturbances. Therefore, they are optimally suited
to test classical ecological theories established for terrestrial

ecosystems, and to answer questions related to diversity-stability
relationships, the area-diversity hypothesis, or food web
interactions.

CONCLUSION

Plankton ecology research stands at a crossroads. The staggering
increase in the wealth of plankton observation data coincides
with a time of significant advances in marine ecosystem
modeling, which allow, for the first time, the testing of
important theories of macroecology in the marine realm. These
achievements offer great promise to shed light on marine
ecosystem functioning and ecosystem service provision within
the context of global climate change. To unlock their potential,
we identified a strong need for concomitant developments in
the field of bioinformatics and biostatistics, ecological niche
modeling, and genetic reference database assembly, thus allowing
for a successful integration of these novel with traditional
observations, including taxonomic expertise. Paired with the
rigorous verification of new and existing macro-ecological
theories in the marine realm, and the testing and application of
novel biodiversity metrics that better link ecosystem composition
to ecosystem function and ecosystem service provision, these
theoretical and empirical advances may allow for the urgently
needed quantification of potential impacts of climate change on
marine ecosystems and feedbacks to higher trophic levels. Due
to the complexity of the task, and the scarcity of observational
evidence of these transient ecosystems, we conclude that inter-
disciplinary, collaborative efforts between experts focussing on
different aspects of plankton ecology will be critical in mediating
this process.
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