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Abstract. Mollusks record valuable information in their hard
parts that reflect ambient environmental conditions. For this
reason, shells can serve as excellent archives to reconstruct
past climate and environmental variability. However, animal
physiology and biomineralization, which are often poorly un-
derstood, can make the decoding of environmental signals
a challenging task. Many of the routinely used shell-based
proxies are sensitive to multiple different environmental and
physiological variables. Therefore, the identification and in-
terpretation of individual environmental signals (e.g., water
temperature) often is particularly difficult. Additional prox-
ies not influenced by multiple environmental variables or an-
imal physiology would be a great asset in the field of paleo-
climatology. The aim of this study is to investigate the poten-
tial use of structural properties of Arctica islandica shells as
an environmental proxy. A total of 11 specimens were ana-
lyzed to study if changes of the microstructural organization
of this marine bivalve are related to environmental condi-
tions. In order to limit the interference of multiple parame-
ters, the samples were cultured under controlled conditions.
Three specimens presented here were grown at two different
water temperatures (10 and 15 ◦C) for multiple weeks and
exposed only to ambient food conditions. An additional eight
specimens were reared under three different dietary regimes.
Shell material was analyzed with two techniques; (1) confo-
cal Raman microscopy (CRM) was used to quantify changes
of the orientation of microstructural units and pigment dis-

tribution, and (2) scanning electron microscopy (SEM) was
used to detect changes in microstructural organization. Our
results indicate that A. islandica microstructure is not sen-
sitive to changes in the food source and, likely, shell pig-
ment are not altered by diet. However, seawater temperature
had a statistically significant effect on the orientation of the
biomineral. Although additional work is required, the results
presented here suggest that the crystallographic orientation
of biomineral units of A. islandica may serve as an alterna-
tive and independent proxy for seawater temperature.

1 Introduction

Biomineralization is a process through which living organ-
isms produce a protective, mineralized hard tissue. The con-
siderable diversity of biomineralizing species contributes to
high variability in terms of shape, organization and miner-
alogy of the structures produced (Lowenstam and Weiner,
1989; Carter et al., 2012). Different architectures at the
micrometer and nanometer scale and different biochemical
compositions determine material properties that serve spe-
cific functions (Weiner and Addadi, 1997; Currey, 1999;
Merkel et al., 2007). Besides these differences, all miner-
alized tissues are hybrid materials consisting in hierarchical
arrangements of biomineral units surrounded by organic ma-
trix, also known as “microstructures” (Bøggild, 1930; Carter
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and Clark, 1985; Rodriguez-Navarro et al., 2006), “ultra-
structures” (Blackwell et al., 1977; Olson et al., 2012) or
overall “fabrics” (Schöne, 2013; Schöne et al., 2013). The
carbonate and organic phases represent the fundamental level
of the organization of biomaterials (Aizenberg et al., 2005;
Meyers et al., 2006). The mechanisms of microstructure for-
mation and shaping, especially in mollusks, has attracted in-
creasing attention during recent decades. At present, it is
commonly accepted that the organic compounds play an
important role in the formation of the inorganic phases of
biominerals (Weiner and Addadi, 1991; Berman et al., 1993;
Dauphin et al., 2003; Nudelman et al., 2006). However, the
identification of the exact mechanisms driving biomineral-
ization is still an open research question. Previous studies
conducted on mollusks show that environmental parameters
can influence microstructure formation (Lutz, 1984; Tan Tiu
and Prezant, 1987; Tan Tiu, 1988; Nishida et al., 2012).
These results set the stage for research that focuses on the
use of shell microstructures as proxies for reconstructing en-
vironmental conditions (Tan Tiu, 1988; Tan Tiu and Prezant,
1989; Olson et al., 2012; Milano et al., 2017).

Mollusks are routinely used as climate and environmen-
tal proxy archives because they can record a large amount
of environmental information in their shells (Richardson,
2001; Wanamaker et al., 2011a; Schöne and Gillikin, 2013).
Whereas structures at nanometric levels are still underex-
plored as potential environmental recorders, shell patterns at
lower magnification, such as individual growth increments,
are commonly used for this purpose (Jones, 1983; Schöne
et al., 2005; Marali and Schöne, 2015; Mette et al., 2016).
Mollusks deposit skeletal material on a periodic basis and
at different rates (Thompson et al., 1980; Deith, 1985). Dur-
ing periods of fast growth, growth increments are formed,
whereas during periods of slower growth, growth lines are
formed (Schöne, 2008; Schöne and Gillikin, 2013). The pe-
riodicity of such structures ranges from tidal to annual (Gor-
don and Carriker, 1978; Schöne and Surge, 2012). By cross-
dating time series with similar growth patterns it is possible
to construct century- and millennia-long master chronologies
(Marchitto et al., 2000; Black et al., 2008, 2016; Butler et al.,
2013). This basic approach, in combination with geochem-
ical methods, has great potential in reconstructing past cli-
matic conditions (Wanamaker et al., 2011b). At present, the
most frequently used and well-accepted geochemical proxy
is oxygen isotopic composition of shell material (δ18Oshell)

(Epstein, 1953; Grossman and Ku, 1986; Schöne et al.,
2004; Wanamaker et al., 2007), which may serve as a pa-
leothermometer and/or paleosalinometer (Mook, 1971; An-
drus, 2011); however, δ18Oshell value is influenced by both
seawater temperature and the isotopic composition of seawa-
ter (δ18Owater; related to salinity). Thus, δ18Oshell-based tem-
perature reconstructions are particularly challenging in habi-
tats with fluctuating δ18Owater conditions such as estuaries or
restricted basins (Gillikin et al., 2005). Because of the mul-
tiple impacts on δ18Oshell values, there have been substantial

efforts to develop alternative techniques to reconstruct envi-
ronmental variables from mollusk shells (Schöne et al., 2010;
Milano et al., 2017).

This study investigates the possibility using shell mi-
crostructure properties to serve as a new environmental
proxy. For this purpose, the effects of seawater tempera-
ture (grown at 10 and 15 ◦C) and dietary regime on the mi-
crostructural units of Arctica islandica cultured under con-
trolled conditions were analyzed and quantified. A. islandica
was chosen as model species because of its great potential in
paleoclimatology and paleoceanography (see Schöne, 2013;
Wanamaker et al., 2016). Its extreme longevity of up to more
than 500 years makes this species a highly suitable archive
for long-term paleoclimate and environmental reconstruc-
tions (Schöne et al., 2005; Wanamaker et al., 2008, 2012;
Butler et al., 2013).

2 Materials and methods

The analyses were conducted on 11 A. islandica shells. Three
juvenile A. islandica shells, sampled for the seawater temper-
ature experiment, were collected alive on 21 November 2009
aboard the F.V. Three of a Kind off Jonesport, Maine, USA
(44◦26′9.829′′ N, 67◦26′18.045′′W), in 82 m water depth.
From 2009 to 2011, all animals were kept in a flowing seawa-
ter laboratory at the Darling Marine Center, Walpole, Maine,
USA (see Beirne et al., 2012, for additional details). In 2011,
clams were grown at two different temperature regimes for
16 weeks (Table 1). At the completion of the experiment,
shells were estimated to be between 4 to 5 years old. Eight
1-year old juveniles were collected in July 2014 from Kiel
Bay, Baltic Sea (54◦32′ N, 10◦42′ E; Fig. 1) and kept alive
in tanks at 7 ◦C for 6 months at the Alfred Wegener Insti-
tute (AWI) for Polar and Marine Research, Bremerhaven,
Germany. During this time interval, the animals were fed
with an algal mix of Nannochloropsis sp., Isochrysis gal-
bana and Pavlova lutheri. Then, they were transferred to the
Royal Netherlands Institute for Sea Research (NIOZ), Texel,
the Netherlands, and cultured in tanks at three different di-
etary conditions for 11 weeks (Table 1).

2.1 Seawater temperature experiment

The seawater temperature experiment started on 27 March
and ended on 21 July 2011. Prior to the start of the exper-
iment the animals were marked with calcein. The staining
leaves a clear fluorescent marker in the shells that can be
used to identify which shell material has formed prior to
and during the experiment. Initially, the animals were kept at
10.3± 0.2 ◦C for 48 days. Then, they were briefly removed
from the tanks and marked again. Subsequently, the clams
were cultured for 69 more days at 15.0± 0.3 ◦C. Ambient
seawater was pumped from the adjacent Damariscotta River
estuary and adjusted to the desired temperature. The salin-
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Figure 1. Shell of adult Arctica islandica used in the temperature
experiment (top) and juvenile from the Baltic Sea used in the food
experiment (bottom). The map indicates the localities where the two
sets of shells were collected: Jonesport, Maine (circle), and Kiel
Bay (square).

ity was measured with a Hydrolab® MiniSonde. It ranged
between 30.2± 0.7 and 30.7± 0.7, in the two experimen-
tal phases, respectively. During the entire culture period, all
clams were exposed to ambient food conditions. At the end
of the experiment the soft tissues were removed.

2.2 Food experiment

The food experiment was carried out from 9 February to
29 April 2015. The animals were placed in aquaria inside a
climate room at 9 ◦C. Water temperature in the tanks ranged
between 8 and 10 ◦C. Water salinity was measured by us-
ing an ENDECO 102 refractometer and ranged between 29.6
and 29.9± 0.1 in each aquarium. The 15 L tanks were con-
stantly supplied with aerated water from the Wadden Sea.
The clams were acclimated for 3 weeks before the start of the
experiment. Three dietary regimes were chosen. One treat-
ment consisted of feeding the animals with Microalgae Mix
(food type 1), a ready-made solution of four marine microal-
gae (25 % Isochrysis, 25 % Tetraselmis, 25 % Thalassiosira
and 25 % Nannochloropsis) with a particle size range of 2–
30 µm. A second treatment was based on PhytoMaxx (food
type 2), a solution of living Nannochloropsis algae with a 2–
5 µm size range. A third treatment served as control; i.e., the
animals were not fed with any additional food. In treatments
with food type 1 and 2, microalgae were provided at the con-

Table 1. List of the studied specimens of Arctica islandica and ex-
perimental conditions.

Sample ID Locality Age Experiment Treatment

A2 Maine 5 Temperature 10 ◦C+ 15 ◦C
A4 Maine 4 Temperature 10 ◦C+ 15 ◦C
A5 Maine 4 Temperature 10 ◦C+ 15 ◦C
S12 Kiel Bay 1 Diet Food 1
S14 Kiel Bay 1 Diet Food 1
S15 Kiel Bay 1 Diet Food 1
G11 Kiel Bay 1 Diet Food 2
G12 Kiel Bay 1 Diet Food 2
G15 Kiel Bay 1 Diet Food 2
N13 Kiel Bay 1 Diet No additional food
N15 Kiel Bay 1 Diet No additional food

stant optimum concentration of 20× 106 cells L−1 (Winter,
1969). A dispenser equipped with a timer was used to dis-
tribute the food 5 times per day. At the end of the experi-
ment the soft tissues were removed. A distinct dark line in the
shells indicated the transposition to the NIOZ aquaria and the
associated stress. This line marks the beginning of the tank
experiment.

2.3 Sample preparation

The right valve of each specimen was cut into two 1.5 mm
thick sections along the axis of maximum growth. For this
purpose, a low-speed precision saw (Buehler Isomet 1000)
was used. Given the small size and fragility of the juvenile
shells used in the food experiment, the valves were fully em-
bedded in a block of Struers EpoFix (epoxy) and air-dried
overnight prior the sectioning. Sections of the clams used
in the temperature experiment were embedded in epoxy af-
ter the cutting. All samples were ground using a Buehler
Metaserv 2000 machine equipped with Buehler silicon car-
bide papers of different grit sizes (P320, P600, P1200,
P2500). In addition, the samples were manually ground with
Buehler P4000 grit paper and polished with a Buehler di-
amond polycrystalline suspension (3 µm). Sample surfaces
were rinsed in demineralized water and air-dried. In the sam-
ples of the temperature experiment, the calcein marks were
located under a fluorescence light microscope (Zeiss Axio
Imager.A1m microscope equipped with a Zeiss HBO100
mercury lamp and filter set 38: excitation wavelength, ca.
450–500 nm; emission wavelength, ca. 500–550 nm).

2.4 A. islandica shell organization

The shell of A. islandica consists of pure aragonite and it is
divided in two major layers, an outer shell layer (OSL) and
the inner shell layer (ISL). The OSL is further subdivided
in outer portion (oOSL) and inner portion (iOSL) (Schöne,
2013). These layers are characterized by specific microstruc-
tures (Ropes et al., 1984; Fig. 2). The oOSL largely con-
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Figure 2. Sketch showing the microstructures characterizing the different shell layers of Arctica islandica. The oOSL is formed by homoge-
nous microstructure (HOM), whereas the oOSL and ISL are composed of crossed acicular structure (CA); dog is direction of growth.

sists of homogenous microstructures with a granular aspect
(Schöne et al., 2013). This type of architecture is character-
ized by approximately equidimensional units of about 5 µm
in width. The unit shape tends to be irregular with a bulky
aspect. The organization lacks of specific structural arrange-
ment typical of other types of microstructures such as the
crossed-lamellar and crossed-acicular microstructures. The
latter are the main component characterizing the iOSL and
ISL (Dunca et al., 2009). Here, elongated units are arranged
with two main dip directions, resulting in a relative oblique
alignment. As shown in Fig. 2, the elongation of the struc-
tures becomes more evident in the ISL.

The present study focuses on ventral margin of the shells.
Analyses were carried out exclusively in the OSL.

Similar to other mollusks, the shell of A. islandica contains
pigment polyenes, which are obviously visible when using
CRM (Hedegaard et al., 2006). Polyenes are organic com-
pounds containing single (C−C) and double (C=C) carbon–
carbon bonds forming a polyenic chain. Their distribution
across the shell is not homogenous. The pigments are abun-
dant in the oOSL, whereas they become scarce in the iOSL.
Furthermore, an enrichment in polyenes has been observed in
the growth lines, potentially indicating their involvement in
the biomineralization process (Stemmer and Nehrke, 2014).
However, the specific functions of these organic compounds
have not been disclosed yet (Hedegaard et al., 2006; Karam-
pelas et al., 2009). Given the high phenotypic variation in
pigmentation among and within mollusk species, it has been
proposed that coloration does not have a primary function as
an adaptive tool (i.e., camouflage, warning signaling) as in
other animals (Seilacher, 1972; Evans et al., 2009). This, in
turn, can indicate a certain degree of influence of the environ-
ment on the pigments, in particular by diet (Hedegaard et al.,
2006; Soldatov et al., 2013). In the current study, the effect
of different dietary regimes was tested in order to explore the
potential of polyenes as environmental proxy.

2.5 Confocal Raman microscopy and image processing

Shells were mapped with a WITec alpha 300 R (WITec
GmbH, Germany) confocal Raman microscope. Scans of
50× 50 µm, 100× 50 µm and 150× 50 µm were performed
using a piezoelectric scanner table. All Raman measurements
were carried out using a 488 nm diode laser. A spectrometer
(UHTS 300, WITec, Germany) was used with a 600 mm−1

grating, a 500 nm blaze and an integration time of 0.03 s. On
each sample two to six scans were made, depending of the
thickness of the shell. For instance, in juvenile shells (food
experiment), two scans of each sample were made. On larger
shells used in the temperature experiment, six maps were
completed, i.e., two maps in the oOSL, two in the middle of
the iOSL and two in the inner portion of the iOSL. Each scan
contained between 40 000 and 120 000 data points, depend-
ing on the map size. The spatial resolution equaled 250 nm.
Half of the maps were performed on the shell portion formed
before the experiments. The other half were made on the
shell portion formed under experimental conditions. In order
to avoid areas affected by transplantation or marking stress,
the scans were located far off the calcein and stress lines. Ra-
man maps on food experiment shells were performed 300 µm
away from the stress line. In the shells from the temperature
experiment, the scans were made 1 mm away from the cal-
cein mark.

Polarized Raman microscopy is known to provide com-
prehensive information about the crystallographic properties
of the materials (Hopkins and Farrow, 1985). The aragonite
spectrum is characterized by two lattice modes (translation
mode Ta, 152 cm−1 and librational mode La, 206 cm−1) and
the two internal modes (in-plane band ν4, 705 cm−1 and sym-
metric stretch ν1, 1085 cm−1). The ratio (Rν1/Ta) between
peak intensities belonging to ν1 and Ta is caused by differ-
ent crystallographic orientations of the aragonitic units (Hop-
kins and Farrow, 1985; Nehrke and Nouet, 2011). Within
each scan, Rν1/Ta was calculated for each data point. New
spectral images were generated using WITecProject software
(version 4.1, WITec GmbH, Germany). These images were
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Figure 3. Raman spectrum of Arctica islandica showing the typical aragonite peaks (gray line). The exact position of the polyene peaks R1
and R4 was determined by using a peak fitting routine based on a Gaussian function (black line).

then binarized by replacing all values above 2.5 with 1 and
the others with 0. The orientation was quantified by calculat-
ing the area formed by pixels of value 1 over the total scan
area. The imaging software Gwyddion (http://gwyddion.net/;
last access: June 2016) was used for this purpose. The results
were expressed in percentage.

The Raman scans of the food experiment shells were ana-
lyzed to investigate the pigment composition. Polyene peaks
have definite positions in the spectrum according to the num-
ber of the C−C and C=C bonds of the chain, which are spe-
cific for certain types of pigments. The two major polyene
peaks at ∼ 1130 (R1) and 1520 cm−1 (R4) were identified
by using the “multipeak fitting 2” routine of IGOR Pro (ver-
sion 7.00, WaveMetrics, USA). Their exact position was
determined adopting a Gaussian fitting function (Fig. 3).
The number of single (N1) and double carbon bonds (N4)

was calculated by applying the equations by Schaffer et
al. (1991):

N1 = 476(R1− 1082), (1)
N4 = 830(R4− 1438). (2)

Spectral images of the R4 band were used to locate the
polyenes in the shell and measure the thickness of the pig-
mented layer. The images were analyzed using the soft-
ware Panopea (© Schöne and Peinl). The thickness of the
pigmented layer was calculated as distance between the
outer shell margin and the point where the concentration of
polyenes suddenly declined. The measurements were taken
perpendicular to the shell outer margin. This analysis was
conducted only on the shells of the food experiment. Given
the larger size of the shells used in the temperature experi-
ment, the spectral maps were not sufficient for a correct lo-
calization of the pigmented layer boundaries and estimation
of its thickness.

To quantify changes of the orientation of individual
biomineral units of the juvenile shells (food experiment), the
spectral maps were subdivided into two portions. The outer-
most shell portion (oOSL) was enriched in pigments whereas
the iOSL showed a decrease in polyene content.

2.6 Scanning electron microscopy

After performing Raman measurements, the samples were
prepared for SEM analysis. Each shell slab was ground with
a Buehler Metaserv 2000 machine and Buehler silicon F2500
grit carbide paper. To reduce the impact of grinding on the
sample surface of juvenile shells, extra grinding was done by
hand. Then, the slabs were polished with a Buehler diamond
polycrystalline suspension (3 µm). Afterward, shell surfaces
were etched in 0.12 N HCl solution for 10 (food experiment
samples) to 90 s (temperature experiment samples) and sub-
sequently placed in 6 vol % NaClO solution for 30 min. After
being rinsed in demineralized water, air-dried samples were
sputter coated with a 2 nm thick platinum film by using a
Low Vacuum Coater Leica EM ACE200.

A scanning electron microscope (LOT Quantum Design
2nd generation Phenom Pro desktop SEM) with backscat-
tered electron detector and 10 kV accelerating voltage was
used to analyze the shells. Images were taken at the same dis-
tances from the calcein and stress lines as in the case of the
Raman measurements to assure comparability of the data.

In addition, stitched SEM images of the ventral margins
were used to accurately determine the shell growth advance
during the culturing experiments. Growth increment widths
were measured with the software Panopea. Given the differ-
ence in duration of the two phases of the temperature exper-
iment, the measurements were expressed as total growth and
instantaneous growth rate (Fig. 4a, b). The latter was calcu-
lated using the following equation (Brey et al., 1990; Wit-
baard et al., 1997):

Instantaneous growth rate= (ln(yt/y0)/a), (3)

where y0 represents the initial shell height, yt is the final shell
height and a is the duration of the experiment. In the case
of the food experiment, only the total growth was calculated
(Fig. 4c).
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Figure 4. Arctica islandica shell growth under controlled conditions. (a) Total growth and (b) instantaneous growth rate during the tempera-
ture experiment. (c) Total growth during the food experiment.

Figure 5. Effect of temperature increase on biomineral orientation. (a) Position of the Raman maps of the three specimens reared at 10 and
15 ◦C. Dotted lines indicate the location of the calcein marks; dog is direction of growth. (b) Raman spectral maps of Rν1/Ta . Left images
of each column represents shell portion formed at 10 ◦C, right images represent shell portions formed at 15 ◦C. First row of pairs refers to
oOSL, the other two represent the iOSL; scale bars= 10 µm. (c) Proportions of biominerals with Rν1/Ta > 2.5 a.u. with respect to the total
map area. Asterisks indicate significant difference between the orientation of iOSL microstructures formed at 10 and 15 ◦C (p < 0.05).
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3 Results

3.1 Effect of seawater temperature and diet on
A. islandica shell growth

When exposed to a water temperature of 10 ◦C, the shells
grew between 11.67 and 14.17 mm during a period of 48
days. During a period of 69 days at 15 ◦C, the growth ranged
between 2.32 and 5.77 mm (Fig. 4a). The instantaneous
growth rate showed a decrease between the two experimen-
tal phases. At 10 and 15 ◦C, the average instantaneous growth
per day was 0.0091 and 0.0013, respectively (Fig. 4b). The
decrease in total growth and growth rate between the two
temperatures was statistically significant (t test, p < 0.01).

During the food experiment, shells grew between 0.37
and 3.71 mm with large differences due to the different food
types. Growth of specimens exposed to food type 1 ranged
between 1.87 to 3.71 mm, whereas those cultured with food
type 2 grew between 0.55 to 0.96 mm. Both control speci-
mens added 0.37 mm of shell during the experimental phase
(Fig. 4c). ANOVA and Tukey’s HSD post hoc tests showed
significant differences between specimens cultured with food
type 1 and 2 (p < 0.05) and between food type 1 and control
shells (p < 0.05).

3.2 Effect of seawater temperature on A. islandica
microstructure

At a water temperature of 10 ◦C, the area occupied by mi-
crostructural units oriented with Rν1/Ta higher than 2.5 a.u.
(= arbitrary units) ranged between 31.3 and 50.6 % in the
oOSL and between 21.3 and 33.5 % in the iOSL. When ex-
posed to 15 ◦C, values ranged between 25.6 and 48.7 and be-
tween 45.7 and 55.9 % in the oOSL and iOSL, respectively
(Fig. 5). Whereas the slight difference of area with Rν1/Ta >

2.5 in the oOSL was not significant between the two water
temperatures (t test, p = 0.62), the area with Rν1/Ta >2.5 in
the iOSL significantly increased at 15 ◦C (t test, p = 0.02).
Under the SEM, no difference was visible between units
formed at 10 and 15 ◦C (Fig. 6).

3.3 Effect of food on A. islandica microstructure
and pigments

In the shells cultured with food type 1, the area occupied
by biomineral units oriented with Rν1/Ta higher than 2.5 a.u.
during the experiment ranged between 24.8 % (oOSL) and
43.0 % (iOSL). In the shell portion deposited during the ac-
climation phase, the ratio varied between 19.4 % (oOSL) and
36.2 % (iOSL). Although a trend was recognized, these vari-
ations were not statistically different (t tests OSL: p = 0.43;
ISL: p = 0.57; Fig. 7a). On the contrary, in the clams ex-
posed to food type 2, the area occupied by units oriented with
Rν1/Ta > 2.5 ranged between 11.7 % (oOSL) and 20.4 %
(iOSL). Before the experiment, the proportions were higher,
i.e., 18.1 % (oOSL) and 26.3 % (iOSL) (Fig. 7b). As for the

Figure 6. SEM images of Arctica islandica shell microstructures
formed at 10 ◦C (left column) and at 15 ◦C (right column). The
sketch indicates the position of the images 1 mm away from the cal-
cein mark (gray line). The first row of images refers to the oOSL,
the other two row refers to the iOSL. Scale bars if not otherwise
indicated= 5 µm.

other treatment, the difference was not significant (t tests
oOSL: p = 0.34; iOSL: p = 0.28). In the control shells
grown with no extra food supply, the area with Rν1/Ta > 2.5
ranged between 24.6 % (oOSL) and 44.8 % (iOSL) during
the experiment and 21.2 % (oOSL) and 44.5 % (iOSL) be-
fore the experiment (Fig. 7c). Hence, no trend was visible and
the two portions did not show significant differences (t tests
oOSL: p = 0.59; iOSL: p = 0.99). As for the temperature
experiment, under the SEM, the microstructure of the shells
from the food experiment did not show any change (Fig. 8).

All treatments showed a slightly thicker pigmented layer
formed during the experiment than during the acclimation
phase (Fig. 9a). During the experiment, clams cultured with
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Figure 7. Effect of different diets based on (a) food type 1, (b) food type 2 and (c) ambient food on biomineral orientation. The optical
microscope images indicate the position of the Raman scans. Dotted line marks the start of the experiment. The portion of shell prior the line
was formed during the acclimation phase; dog is direction of growth. The Raman spectral maps indicate the ratio Rν1/Ta for each data point
of the scan. For each shell, maps on the left represent shell portions during the experiment, maps on the right represent shell portions formed
during the acclimation phase. In the acclimation portion of the sample reared with ambient food, a significant change in the microstructure
orientation is visible. The respective area of the Raman map was not considered in further calculations because it was influenced by the
emersion and transportation stress at the start of the experiment. Scale bars= 10 µm. The graphs show the proportions of biominerals of
oOSL and iOSL with Rν1/Ta > 2.5 a.u. with respect to the total map area.

Table 2. Details of the pigment composition of the Arctica islandica shells used in the food experiment. The position of the major polyene
peaks R1 and R4 in the Raman spectrum is indicated together with the number of single and double carbon bonds of the pigment molecular
chain (N1 and N4). Each shell was analyzed in the portions formed before and during the experimental phase.

Sample ID Shell portion R1 (cm−1) R4 (cm−1) N1 N4

S12 Acclimation 1130.9 1515.2 9.7 10.8
Food 1 1121.4 1515.3 12.1 10.7

S14 Acclimation 1133.2 1519.4 9.3 10.2
Food 1 1132.2 1518.6 9.5 10.3

S15 Acclimation 1129.5 1516.5 10.0 10.6
Food 1 1132.1 1519.8 9.5 10.1

G11 Acclimation 1132.6 1518.4 9.4 10.3
Food 2 1129.5 1517.0 10.0 10.5

G12 Acclimation 1131.7 1518.7 9.6 10.3
Food 2 1132.1 1518.2 9.5 10.4

G15 Acclimation 1132.4 1519.5 9.4 10.2
Food 2 1128.0 1520.9 10.3 10.0

N13 Acclimation 1130.2 1515.6 9.9 10.7
Ambient food 1131.4 1514.1 9.6 10.9

N15 Acclimation 1117.9 1516.0 13.3 10.6
Ambient food 1130.7 1517.0 9.8 10.5

Average 1129.7± 4.2 1517.5± 2.0 10.1± 1.1 10.4± 0.3
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Figure 8. SEM images of Arctica islandica shell microstructures
formed during the acclimation phase at AWI (left column) and dur-
ing the food experiment (right column). Scale bars= 4 µm.

food type 1 showed, on average, a thickening by 6.4 %. In
the food type 2 specimens, the layer thickness increased by
9.9 %. Control shells showed an increase of 10.4 % (Fig. 9b).
However, none of these differences was statistically signifi-
cant (t test. Food type 1: p = 0.43; food type 2: p = 0.39;
control: p = 0.10). According to the position of the polyene
peaks, the number of single carbon bonds in the pigment
chain did not change between the acclimation and experi-
mental phase (N1 = 10.1±1.3 and N1 = 10.0±0.9, respec-
tively). Likely, no significant variation was observed in the
number of double carbon bonds (N4 = 10.5± 0.2 and N4 =

10.4± 0.3, respectively; Table 2).

4 Discussion

According to the results, variations of both food type and wa-
ter temperature can influence the shell production rate of A.
islandica. However, the shell microstructure and pigmenta-
tion react differently to these two environmental variables.
Whereas changes of the dietary conditions do not affect the
shell architecture and pigment composition, the crystallo-
graphic orientation of the biomineral units responds to sea-
water temperature fluctuations.

4.1 Environmental influence on shell microstructure

The environmental conditions experienced by mollusks dur-
ing the process of biomineralization appear to influence shell
organization (Carter, 1980). Among the different environ-
mental variables, water temperature is the most studied driv-
ing force of structural changes of the shell. For instance,
shell mineralogy can vary depending on water temperature
(Carter, 1980). According to the thermal potentiation hypoth-
esis, nucleation and growth of calcitic structural units is fa-
vored at low temperatures by kinetic factors (Carter et al.,
1998). As a consequence, bivalve species living in cold wa-
ter environments exhibit additional or thicker calcitic layers
compared to the corresponding species from warm waters
(Lowenstam, 1954; Taylor and Kennedy, 1969). Changes in
the calcium carbonate polymorph also affect the type of mi-
crostructures (Milano et al., 2016a). However, architectural
variations often occur without mineralogical impact (Carter,
1980).

The present results indicate that temperature induces a
change in the crystallographic orientation of the biomin-
eral units of A. islandica. Although water temperature was
previously shown to have an impact on microstructure for-
mation, the attention has been mainly focused on the ef-
fects on the morphometric characteristics (e.g., size and
shape) or on the type of microstructure. Milano et al. (2017)
demonstrated that size and elongation of prismatic struc-
tural units of Cerastoderma edule were positively correlated
to seawater temperature variation throughout the growing
season. Likely, low temperatures induced the formation of
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Figure 9. Effects of diet on shell pigment distribution. (a) Raman spectral maps of the 1524 cm−1 band representing the distribution of the
polyenes in the shell cultured with food type 2. Dotted line marks the start of the experiment; dog is direction of growth. (b) The graph shows
the thickness of the pigmented layer over the whole shell thickness before and during the food experiments.

small nacre tablets in Geukensia demissa (Lutz, 1984). Sea-
sonal changes of the microstructural type were reported in
the freshwater bivalve Corbicula fluminea (Prezant and Tan
Tiu, 1986; Tan Tiu and Prezant, 1989). During the warm
months, crossed-acicular structure was produced, whereas
simple crossed-lamellar were formed during the winter pe-
riod. So far, variations of the crystallographic properties of
bivalve biominerals have been exclusively investigated as a
response to hypercapnic (acidified) conditions. Mytilus gal-
loprovincialis and Mytilus edulis showed a significant change
in the orientation of the prisms forming shell calcitic layer
when subjected to hypercapnia (Hahn et al., 2012; Fitzer et
al., 2014a). Altered crystallographic organization may de-
rive from the animal exposure to suboptimal conditions.
These findings together with the present results suggest that
thermal- and hypercapnic-induced stress are likely to affect
the ability of the bivalves to preserve the orientation of their
microstructural units (Fitzer et al., 2014b).

Different food sources do not significantly influence the
orientation of the biomineral units or the composition and
distribution of pigments in shells of A. islandica. In previ-
ous studies, the relationship between microstructure and diet
was virtually overlooked resulting in a lack of data in the
literature. As suggested by Hedegaard et al. (2006), how-
ever, the type of polyenes is influenced by food. The inges-
tion of pigment-enriched microalgae potentially leads to an
accumulation of pigments in mollusk tissues and the shell
(Soldatov et al., 2013). On the other hand, it has been argued
that polyenes do not generate from food sources like other

pigments (i.e., carotenoids), but they are locally synthesized
(Karampelas et al., 2009). In accordance to Stemmer and
Nehrke (2014), the results presented here support the view
that the specific diets on which the animals rely on do not
influence shell pigment composition. The chemical charac-
teristics of the polyenes are likely to be species-specific and
independent from the habitats.

4.2 Confocal Raman microscopy as tool for
microstructural analysis

From a methodological perspective, the present study rep-
resents an innovative approach in the investigation of shell
microstructural organization. Electron backscatter diffraction
(EBSD) has been previously used to determine the crys-
tallographic orientation of gastropod (Fryda et al., 2009;
Pérez-Huerta et al., 2011) and bivalve microstructural units
(Checa et al., 2006; Frenzel et al., 2012; Karney et al., 2012).
Whereas, CRM on mollusk shells is generally applied within
studies on taphonomic mineralogical alteration and pigment
identification (Stemmer and Nehrke, 2014; Beierlein et al.,
2015). Both techniques provide considerably high spatially
resolved analysis up to 250 nm, allowing for the identifica-
tion of individual structural units at micrometer and nanome-
ter scale (Cusack et al., 2008; Karney et al., 2012). CRM
offers important advantages supporting a broader applica-
tion of this methodology in the biomineralization research
field. For instance, samples do not require any pre-treatment.
Unlike EBSD, there is no need for preparing thin sections
(∼ 150 µm thick) or etching the shell surface (Griesshaber
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et al., 2010; Hahn et al., 2012). Therefore, further structural
and geochemical analyses can be easily performed on the
same sections (Nehrke et al., 2012). In addition, the size of
CRM scans can be remarkably large (∼ 7–8 mm2) without
compromising the achievable resolution. By overlapping ad-
jacent scans, it is possible to produce stitched scans allowing
one to further increase the region of interest on the shell sur-
face. On the other side, EBSD provides a relevant advantage
to take into consideration. It allows for absolute measures of
the crystallographic orientation of the carbonate structures.
The CRM, instead, determines the relative change in the ori-
entation between the single units without providing absolute
values.

SEM has previously been demonstrated to provide a con-
venient approach for the identification of individual struc-
tural units and the quantification of potential changes oc-
curring within them (Milano et al., 2017, 2016b). However,
SEM exclusively provides information about the morpho-
metric characteristics of the microstructural units. As high-
lighted by the present study, to achieve an exhaustive exam-
ination, it is suggested to combine SEM with techniques as-
sessing crystallographic properties of the biomaterials. For
instance, our results show that the effect of water tempera-
ture is detectable in crystallographic orientation but not in
morphometric features of the biomineral units.

4.3 Environmental influence on shell growth

Numerous previous studies demonstrated that the growth rate
of A. islandica is linked to environmental variables (e.g., Wit-
baard et al., 1997, 1999; Schöne et al., 2004; Butler et al.,
2010; Mette et al., 2016). However, the relative importance of
the main factors, temperature and food supply/quality driving
shell formation are still not well understood. Positive cor-
relations between shell growth and water temperature have
been identified (i.e., Schöne et al., 2005; Wanamaker et al.,
2009; Marali et al., 2015), but the relationship between shell
growth and environment is more complex (Marchitto et al.,
2010; Stott et al., 2010; Schöne et al., 2013) and likely de-
pendent on the synergic effect of food availability and wa-
ter temperature (Butler et al., 2013; Lohmann and Schöne,
2013; Mette et al., 2016). Tank experiments were run in order
to precisely identify the role of these two parameters on the
shell growth of A. islandica (Witbaard et al., 1997; Hieben-
thal et al., 2012). A 10-fold increase in instantaneous growth
rate was observed between 1 and 12 ◦C, with the greatest
variation occurring below 6 ◦C (Witbaard et al., 1997). On
the contrary, a temperature increase between 4 and 16 ◦C was
shown to produce a slowdown of shell production (Hieben-
thal et al., 2012). Our results are in agreement with the latter
study and show a decrease in the instantaneous growth rate
between 10 and 15 ◦C. High temperatures are often associ-
ated with an increase of free radical production (Abele et al.,
2002). A large amount of energy then has to be allocated to
limit oxidative cellular damage (Abele and Puntarulo, 2004).

This translates into a higher accumulation of lipofuscin and
slower shell production rate (Hiebenthal et al., 2013). The
contrasting results of previous studies may be explained by
individual differences in the tolerance toward temperature
change (Marchitto et al., 2000).

Along with water temperature, food availability was also
shown to influence A. islandica shell growth (Witbaard et
al., 1997). At high algal cell densities, the siphon activity
increased. This, in turn, was positively correlated to shell
growth. Previous experiments used different combinations
of algae, such as Isochrysis galbana and Dunaliella marina
(Witbaard et al., 1997), or Nannochloropsis oculata, Phaeo-
dactylum tricornutum and Chlorella sp. (Hiebenthal et al.,
2012) to grow the clams. However, there are still uncertain-
ties about the composition of the primary food source for
this species (Butler et al., 2010). Even though it is challeng-
ing to determine the preferred algal species, our results show
that the use of a mixture of different algal species results
in significantly faster shell growth than the used of just one
algal species. In the natural environment, suspension feed-
ers such as A. islandica preferentially ingest certain particle
sizes (Rubenstein and Koehl, 1977; Jorgensen, 1996; Baker
et al., 1998). The exposure to a limited algal size range, as
in the case of food type 2, may affect shell growth. Further-
more, multispecific solutions contain a higher variability of
biochemical components that better meet the nutritional re-
quirements of the animal (Widdows, 1991). Our results are
in good agreement with previous findings. For instance, it
has been shown by Strömgren and Cary (1984) that Mytilus
edulis shell growth increased as a result of a diet based on
three different algal species. Furthermore, Epifanio (1979)
tested the differences on the growth of Crasssostrea virginica
and Mercenaria mercenaria of a mixed diet composed by
Isochrysis galbana and Thalassiosira pseudonana and diets
consisting of the single species. Faster growth was measured
in the mixed diet treatment, indicating a synergic effect of the
relative food composition (Epifanio, 1979). Likely, Mytilus
edulis grew faster when reared with different types of mixed
diets as opposed to monospecific diets (Galley et al., 2010).

5 Conclusions

Arctica islandica shell growth and biomineral orientation
vary with changes in seawater temperature. However, ex-
posure to different food sources affect shell deposition rate
but do not influence the organization of the biomineral units.
Given the exclusive sensitivity to one environmental variable,
the orientation of biomineral units may represent a promising
new temperature proxy for paleoenvironmental reconstruc-
tions. However, additional studies are needed to further ex-
plore the subject. In particular, intra-individual variability in-
fluence on the results needs to be assessed. In the present
study, a variation in the orientation between individuals was
well visible and the risks associated have to be taken in ac-
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count when considering further application of the possible
proxy. Furthermore, the effect of other environmental vari-
ables such as salinity needs to be tested.

The innovative application of CRM for microstructural
orientation and proxy development proved that the technique
has large potential in this research direction. More studies are
needed to validate its suitability in paleoclimatology experi-
mental works.
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