

21 March 2017 ASOF meeting @ IOPAN

The Arctic Ocean volume, heat and freshwater transports during 2004-2010

ARCGATE: Maximizing the potential of Arctic Ocean Gateway array

Takamasa Tsubouchi Wilken-Jon von Appen Ursula Schauer

Arctic boundary observation

Fig. Mooring array during 2008-09, modified from Dickson et al. [2009]

The heat budget in the Arctic Ocean

Little is known about oceanic heat temporal variability

The pan-Arctic approach: progress so far

- Quasi-synoptic estimate in summer 2005 [Tsubouchi et al., 2012].
- First seasonal cycle during 2005-06 [Tsubouchi et al. under review].

Tsubouchi et al. [2012, JGR]

Objective of this study

Quantify "observation based" multi-year monthly volume, heat, FW transports during 2004-10.

Focus period: Oct. 2004 - May 2010 (68 months)

Data during 2004-2010

- ~I,000 moored instruments: microCAT (T, S: blue), RCM (T, (S), V: red), ADCP (V: green).
- 37 Repeat CTD sections in south of BSO.
- PIOMAS sea ice thickness & velocity data [Zhang and Rothrock, 2003]

Fig. Mooring array in the Arctic four main gates

Filtering and Gridding

- De-tided and smoothed with Butterworth filter (27 days cutoff).
- Data gaps (> 30days) are filled by its mean annual cycle.
- Linear interpolation is applied vertically and horizontally.

Daily de-tided (black) Daily smoothed (green) Monthly mean (red)

Monthly Temperature fields

- Captures major water mass distributions & variabilities
 - AW in WSC and BSO, Polar water, large variability in Bering Strait.

Monthly initial volume transport imbalance

- Initial imbalances is -3.0±2.2 Sv.
- Of which, below 1,500m accounts for -2.4±0.9 Sv.

Inverse model: unknowns & constraints

Obtain volume and salt conserved monthly velocity field for consecutive 68 months.

- 1287 unknowns are derived from 12 constraints.
 - Bottom vel (639), Sea ice (639), FW input (1), Diapycnal (8)
 - Volume & Salt: 5 layers and whole layer

Results

P-E 65

Cape

f'wate

(mSv

flux

AR

40

Bes

76

pan-Arctic volume, heat & FW boundary transports

Mean velocity field during 2004-2010

- Captures major current system.
 - Polar water outflow, AW inflow, PW inflow.

Table: volume transport comparison

(Sv)	This study	reference
Davis	-1.9±1.0	-1.6±0.5(*ı)
Fram	-1.4±1.2	-2.0±2.7 (*2)
BSO	2.2±1.0	2.0 (*3)
Bering	1.0±0.5	0.8 (*4)
Net	-0.10±0.06	-0.8

Fig. (top) mean volume & salt closed velocity field. (Bottom) cumulative full depth volume transport.

*I Curry et al., 2014, *2 Schauer et al., 2008, *3 Smerdsrud et al., 2010, *4 Woodgate et al., 2005

Volume transports: each gateway

- Net transport is almost zero in each month.
- Seasonality.
 - Strong BSO inflow in winter.
 - Strong Bering inflow in summer.

(Sv)	long term	JFM	JAS
Davis	-1.9±1.0	-1.8	-2.4
Fram	-1.4±1.2	-2.0	-1.2
BSO	2.2±1.0	+2.9	+2.2
Bering	1.0±0.5	+0.8	+1.4

 $imes 10^{6}$

Volume transports: water mass

- Double cell overturning structure.
- AW inflow: strong in winter, weak in summer.
- DW outflow (-1.4±0.8 Sv) may be too strong.

(Sv)	mean	JFM	JAS
SURF+UAW	-1.0	-1.8	-0.3
AW	+4.5	+6.0	+3.2
IW+DW	-3.5	-4.3	-2.9

The Heat transports

- The heat transport is 180±57 TW (68 monthly ave & std).
- Seasonality: ~250TW in Nov, ~100TW in May.
- Inter-annual variability: 196±56 TW in 2004-05, 165±71 TW in 2007-08.

*12 monthly ave & std from Oct to following Sep.

The FW transports

- The FW transport is 156±91 mSv (68 monthly ave & std).
- Seasonality: ~250 mSv in Nov-Mar, ~50 mSv in Jun-Aug.
- Inter-annual variability: 163±79 mSv in 2004-05, 121±103 mSv in 2007-08.

*12 monthly ave & std from Oct to following Sep.

Putting into a big picture

- Heat budget
 - 180±57 TW ~ 15.9±5.0 Wm⁻²
 - MERRA has the best agreement.

Long-term air-sea heat fluxes north of 70°N (Wm⁻²)

NRA	ERA40	JRA25	MERRA
5		14	19

Porter et al. [2010], Cullather & Bosilovich [2012]

Note that 10W/m² is equivalent to 1m sea ice melt in a year.

$$\dot{E} = \dot{E_o} + \dot{E_\iota} = \nabla \boldsymbol{B}_E^{oi} + Q$$

Putting into a big picture

- FW budget
 - Boundary: I56±91 mSv
 - Surface: ~214 mSv. Haine et al. [2015]
 - FW content: ~25 mSv. Rabe et al. [2014]
 - Imbalance of ~33 mSv significant?

What changes by changing T_{ref}?

- Total heat transport DOES NOT change.
- Temperature transport in each piece of section DOES change.
 - e.g.WSC: 33±14 TW-eq (1.01±0.18°C), 113±34 TW-eq (-1.8°C).

Fig. Accumulative full depth heat transport along sections.

What changes by changing S_{ref}?

- Total FW transport DOES NOT change (almost).
- FW transport in each piece of section DOES change.
 - e.g. EGC: -4±11 mSv-eq (34.70±0.02), 95±21 mSv-eq (35.2).

Fig. Accumulative full depth FW transport along sections.

Take home message

- Mass & salt conserved velocity field is crucial to calculate heat & FW transport.
- Choice of reference value is arbitrary.
 - For heat, any value is possible.
 - For FW, sensible values (34.7-35.2) only introduce error of ~1%.
- Recognise the impact of choice of reference values.
 - Total heat & FW DOES NOT change (For FW, almost).
 - Partial sectional values DOES change.

Data on PANGAEA

- One year data is available.
 - Search Tsubouchi, then you will find it.
- 68 month data will be available in this summer.

$\bullet \bullet \bullet \checkmark \blacksquare$	iii doi.pangaea.de C	0 1 +
	PANGAEA. Data Publisher for Earth & Environmental Science	Not logged in • •) SEARCH SUBMIT ABOUT CONTACT
Citation:	Tsubouchi, Takamasa; Bacon, Sheldon; Naveira Garabato, Alberto C; Aksenov, Yevgeny; Schauer, Ursula; Beszczynska-Möller, Agnieszka; Hansen, Edmond H; de Steur, Laura; Lee, Craig; Curry, Beth; Ingvaldsen, Randi (2017): Pan-Arctic Oceanic volume, heat and freshwater transport time series during 2005 to 2006, link to model results in NetCDF Format. doi:10.1594/PANGAEA.870607, Supplement to: Tsubouchi, T et al. (in prep.): The Arctic Ocean seasonal cycle: an observation- based inverse estimate. Journal of Geophysical Research-Oceans * Always quote above citation when using data! You can download the citation in several formats below. Rts Citation Text Citation C Twitter C Googlet Show Map Googlet Earth	17 Imagery ©2017 NASA, TerraMetrica 100 km Terras of Use
Abstract:	This paper presents first seasonal cycle of oceanic and sea ice net heat and fresh water (FW) fluxes across four Arctic gateways (Davis Strait, Bering Strait). The oceanic transports are estimated primary based on 138 moored instruments during September 2005 - August 2006. Sea data. Monthly volume and salt conserved velocity fields are obtained applying box inverse model. The results show that the oceanic and sea sea ice net FW flux is 204±85 mSv. We find that oceanic net heat transport variability is driven temperature variability in surface layer and vo On the other hand, oceanic net FW transport variability is dominated by Bering Strait velocity variability. In terms of water mass transformat cool the inflows by 0.65±0.22 in salinity and 3.68±0.73°C in temperature, respectively, and to decrease density by 0.26±0.19 kg/m**3. The volume	Fram Strait, Barents Sea Opening (BSO) and ice transports are estimated based on PIOMAS a ice net heat flux is 175±48 TW. The oceanic and olume transport variability in Atlantic Water layer. tion, the net effect of the Arctic is to freshen and olume transport into the Arctic of waters

associated with the water mass transformation is 11.0±1.1 Sv (1 Sv = 10**6 m**3/s), and the export (similarly) is -11.2±1.1 Sv. The obtained net boundary heat flux and FW flux time series

ASOF's role to promote this study

- Endorsement
- Gateway to the PANGAEA web link
- Present the time series as scientific deliverable

What is next break though?

- Include Greenland-Scotland Ridge section in the box inverse model.
 - Two boxes Arctic Ocean & Nordic Seas.
 - Initial focus period would be 2004-2010 (same as this study).

Summary

- Oceanic volume, heat & FW transports under mass and salt constraints during Oct 2004 - May 2010.
- Volume tra. has Seasonality in each gateway and water masses.
- Double cell over-turning structure and its seasonality.
- Heat transport is 180±57 TW ~ 15.9±5.0 Wm⁻²
- FW transport is 156±91 mSv.
- The seasonal & interannual variability in the Heat & FW transports
- I am looking for a job. ideally related work.

Acknowledgement

- The Arctic main gateways have been measured by six research institutes in the world: UW for Davis Strait and for the US side of Bering Strait; NPI and AWI for Fram Strait; IMR for BSO; UAF and AARI for the Russian side of Bering Strait.
- The pan-Arctic approach is developed under two UK NERC projects, ASBO and TEA-COSI.
- This work is supported by EU Marie Curie project, ARCGATE.