Continuous records of the greenhouse gas data (CO_2 , CH_4 , N_2O) and their radiative forcing since the penultimate glacial maximum

Peter Köhler¹, Christoph Nehrbass-Ahles², Jochen Schmitt², Thomas F. Stocker², and Hubertus Fischer²

1: Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung (AWI), 27515 Bremerhaven, Germany

2: Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Switzerland

Motivation

Summary

Continuous records of the atmospheric greenhouse gases (GHGs) CO2, CH₄, and N₂O are necessary input data for transient climate simulations and their related radiative forcing important components in analyses of climate sensitivity and feedbacks. Since the available data from ice cores are discontinuous and partly ambiguous a well-documented decision process during data compilation followed by some interpolating postprocessing are necessary to obtain those desired time series. Here we document our best-guess data compilation of published ice core records and recent measurements on firn air and atmospheric samples covering the time window from the penultimate glacial maximum (~156 kyr BP) to the beginning of year 2016 CE. A smoothing spline method is applied to translate the discrete and irregularly spaced data points into continuous time series. These splines are assumed to represent the evolution of the atmospheric mixing ratios for the three GHGs.

Figure 1. CO₂ spline covering all data: 2016 CE - 156,307 BP. WDC data have been adjusted to reduce offsets, see text for details. The right axis contains the resulting radiative forcing $\Delta R_{[CC2]} = 5.35 \cdot ln(CO2 / (278 pm))W m^{-2}$ calculated after Wyhre et al. (1998).

Figure 2. CH₈ spline covering all data: 2016 CE - 156,211 BP. Details on plotted data are explained in the text. The right axis contains the resulting radiative forcing approximated with ΔR_{iCH4} – 1.4 \cdot 0.036 \cdot (J_{i} (CH₄/ppb) – J_{i} 2V2) W m⁻² based on Myhre et al. (1998), but neglecting interacting effects of CH₄ and N₂O₄ and considering indirect effects of CH₄ and N₂O₄ and considering indirect effects of CH₄ and N₂O₄ and considering under the data is indicated by NH and SH, implying northern and southern hemisphere, respectively.

References. Enting et al., JGR-A, 92, 10977-10984, 1987. Enting et al., Tellus 58B, 305-309, 2006. Bruno and Joos, GBC, 11, 111-124, 1997. Hansen et al., JGR-A 110, D18104, 2005. Köhler et al., QSR, 29, 129-145, 2010. Myhre et al., GRL, 25, 2715-2718, 1998. Oc. Ahn and Brook, Nature Com., 5, 3723, 2014. Ahn et al., GBC, 26, GB2027, 2012. Bauska at al., Nature Geos., 8, 383-387, 2015. Bereiter et al., PNAS, 109, 9755-9760, 2012. Diugokencky et al., 2016b. ftp://aftp.cmdl.noaa.gov/products/ trends/co2/co2_mm_mlo.txt. Lourantou et al., OSR, 29, 1983-1992, 2010a. MacFailing-Meure et al., GRL, 33, L14810, 2006. Marcott et al., Nature, 514, 616-619, 2014. Monnin et al., Science, 291, 112-114, 2001. Monnin et al., EFX, 224, 45-54, 2004. Rubino et al., JGR-A, 118, 8482-8499, 2013. Schneider et al., Climbast, 9, 207–2532, 2015. Marcott et al., Nature, 514, 616-619, 2014. Monnin et al., Science, 291, 112-114, 2001. Monnin et al., EFX, 224, 45-54, 2004. Rubino et al., JGR-A, 118, 4842-8499, 2013. Schneider et al., Climbast, 9, 207–2532, 2015. Marcott et al., Nature, 514, 616-619, 2014. Monnin et al., Science, 342, 964-966, 2013. Mitchell et al., GRL, 33, L14 810, 2006. WAIS Divide Project Members, Nature, 520, 661-665, 2015. Marcott et al., Nature, 514, 616-619, 2014. Buizert et al., ClimPast, 11, 153-173, 2015. Mitchell et al., Science, 342, 964-966, 2013. Mitchell et al., JGR-A 116, G02007, 2011. Sigl et al., ClimPast, 12, 769-786, 2016. Loulergue et al., Wature, 453, 383-386, 2008. MgQ: Nitrous Oxide data from the NOAA/ESRL halocarbons in situ program. Itp://ftp.cmdl.noaa.gov/hats/n2c/instituGCs/CATS/global/ institu_global_M2Otxt. RTS Mitrous Oxide data from MtoAA/ESRL halocarbons rag and/mats/n2c/instituGCs/RTS/global/N2Otxt. RTS. Flickiegr et al., GBC, 16, 10.1029/2001GB001417, 2002. Flickiegr et al., GBC, 18, GB1020, 2004. MacFarling-Meure et al., GRL, 33, L14 810, 2006. Schilt et al., EFSL, 300, 33 - 43, 2010b. Schilt et al., GRL, 40, 1888-1893, 2013. Schilt et al., Jature, 516, 234-237, 2014.

🜈 HELMHOLTZ

ASSOCIATION

5th Open Science Meeting Global Challenges for our Common Pat

Abstract No PAGES17-01851 in Session 22 Understanding past variations in atmospheric greenhouse gases to constrain future feedbacks in the Earth System

Figure 3. N₂O spline covering all data: 2016 CE - 134,519 BP. Details on plotted data are explained in the text. The right axis contains the resulting radiative forcing approximated with $\Delta R_{WOI} = 0.12 \cdot (I(N_2O/ppb) - J(272)) W m^2$ after Myhre et al. (1998), neglecting interacting effects of CH₄ and N₂O. Filled symbols: data taken for spline.

Figure 4. Calculated radiative forcing of CO₂, CH₄, N₂O, and of their sum (ΔR_{GHG}). The calculations are based on the Eqns. given in the captions to Figures 1-3 (following Myhre et al., 1998), Sub-panels focus on specific time windows: (A) Anthropogenic rise since 1750 CE; (B) Termination I; (C) 20-90 kyr BP including the abrupt changes during D/O event; (D) Full record from 2016 CE to 156 kyr BP, here N₂O was kept constant beyond 134 kyr BP.

Federal Ministry of Education and Research

GERMAN CLIMATE MODELING INITIATIVE

MOD

recent years. The data sets describe seamlessly the GHG evolution on orbital and millennial time scales for glacial and glacial-interglacial variations and on centennial and decadal time scales for anthropogenic times. Submitted to "Earth System Science Data", doi:10.5194/essd-2017-6, in review, 2017.

Data connected with this paper, including raw data and final splines, are available at https://doi.pangaea.de/10.1594/PANGAEA.871273.

b UNIVERSITÄT