International Ocean Discovery Program
Expedition 370 Preliminary Report

Temperature Limit of the Deep Biosphere
off Muroto

10 September–23 November 2016

Verena B. Heuer, Fumio Inagaki, Yuki Morono, Yusuke Kubo, Lena Maeda, and the Expedition 370 Scientists
Publisher’s notes

Core samples and the wider set of data from the science program covered in this report are under moratorium and accessible only to Science Party members until 23 November 2017.

This publication was prepared by the D/V Chikyu Science Operator, the Center for Deep Earth Exploration (CDEX), at the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and the JOIDES Resolution Science Operator (JRSO) at Texas A&M University (TAMU) as an account of work performed under the International Ocean Discovery Program (IODP). Funding for IODP is provided by the following international partners:

National Science Foundation (NSF), United States
Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
European Consortium for Ocean Research Drilling (ECORD)
Ministry of Science and Technology (MOST), People’s Republic of China
Korea Institute of Geoscience and Mineral Resources (KIGAM)
Australia-New Zealand IODP Consortium (ANZIC)
Ministry of Earth Sciences (MoES), India
Coordination for Improvement of Higher Education Personnel (CAPES), Brazil

Portions of this work may have been published in whole or in part in other IODP documents or publications.

Disclaimer
Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the participating agencies, TAMU, or Texas A&M Research Foundation.

Copyright
Except where otherwise noted, this work is licensed under a Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/deed.en_US). Unrestricted use, distribution, and reproduction are permitted, provided the original author and source are credited.

Citation

ISSN
World Wide Web: 2372-9562
Expedition 370 participants

Expedition 370 scientists

Verena Heuer*
Co-Chief Scientist
MARUM-Center for Marine Environmental Sciences
University of Bremen
Leobener Strasse 8
28359 Bremen
Germany
vheuer@uni-bremen.de

Fumio Inagaki*
Co-Chief Scientist
Research and Development Center for Ocean Drilling Science
Kochi Institute for Core Sample Research
Japan Agency for Marine-Earth Science and Technology
3173-25 Showa-machi
Kanazawa-ku, Yokohama
Kanagawa 236-0001
Japan
inagaki@jamstec.go.jp

Yuki Morono†
Co-Chief Scientist
Kochi Institute for Core Sample Research
Japan Agency for Marine-Earth Science and Technology
Monobe B200, Nankoku
Kochi 783-8502
Japan
morono@jamstec.go.jp

Yusuke Kubo*
Lead Expedition Project Manager
Center for Deep Earth Exploration
Japan Agency for Marine-Earth Science and Technology
3173-25 Showa-machi
Kanazawa-ku, Yokohama
Kanagawa 236-0001
Japan
kuboy@jamstec.go.jp

Lena Maeda†
Expedition Project Manager
Center for Deep Earth Exploration
Japan Agency for Marine-Earth Science and Technology
3173-25 Showa-machi
Kanazawa-ku, Yokohama
Kanagawa 236-0001
Japan
maedal@jamstec.go.jp

Stephen Bowden*
Sedimentologist
Department of Geology and Petroleum Geology
School of Geosciences
University of Aberdeen
Aberdeen AB2A 3UE
United Kingdom
s.a.bowden@abdn.ac.uk

Margaret Cramm†
Microbiologist
Department of Biological Sciences
University of Calgary
2500 University Drive Northwest
Calgary AB T2N 1N4
Canada
macramm@ucalgary.ca

Susann Henkel*
Inorganic Geochemist
Alfred Wegener Institute
Helmholtz Centre for Polar and Marine Research
Am Handelshafen 12
27570 Bremerhaven
Germany
susann.henkel@awi.de
shenkel@marum.de

Takehiro Hirose*
Physical Properties Specialist
Kochi Institute for Core Sample Research
Japan Agency for Marine-Earth Science and Technology
Monobe B200, Nankoku
Kochi 783-8502
Japan
hiroset@jamstec.go.jp

Kira Homola*
Inorganic Geochemist
Graduate School of Oceanography
University of Rhode Island
215 South Ferry Road
Narragansett RI 02882
USA
khomola@uri.edu

*Participated in shipboard operations (12 September–11 November 2016).
†Participated in shore-based operations (23 September–23 November 2016).
‡Participated in shipboard operations (12 September–25 October 2016).
**Participated in shipboard operations (20 October–11 November 2016).
††Participated in shipboard operations (31 October–8 November 2016).
V.B. Heuer et al. Expedition 370 Preliminary Report

Florence Schubotz*
Organic Geochemist
MARUM-Center for Marine Environmental Sciences
University of Bremen
Leobener Strasse 8
28359 Bremen
Germany
schubotz@uni-bremen.de

Arthur Spivack*
Inorganic Geochemist
Graduate School of Oceanography
University of Rhode Island
215 South Ferry Road
Narragansett RI 02882
USA
spivack@uri.edu

Satoshi Tonai*
Sedimentologist
Kochi University
Department of Natural Science
2-5-1 Akebono-cho
Kochi 780-8520
Japan
s-tonai@kochi-u.ac.jp

Tina Treude**
Microbiologist/Biogeochemist
Department of Earth, Planetary, and Space Sciences
Department of Atmospheric and Oceanic Sciences
University of California, Los Angeles (UCLA)
595 Charles E. Young Drive East
3806 Geology Building
Los Angeles CA 90095-1567
USA
ttreude@g.ucla.edu

Man-Yin Tsang*
Sedimentologist
University of Toronto
22 Russell Street
Toronto ON M5S 3B1
Canada
my.tsang@mail.utoronto.ca

Bernhard Viehweger*
Organic Geochemist
MARUM-Center for Marine Environmental Sciences
University of Bremen
Leobener Strasse 8
28359 Bremen
Germany
bviehweger@marum.de

Videographers (Science Media)

Dan Brinkhuis
Stationsweg 18
3641 RG Mijdrecht
The Netherlands
dan@sciencemedia.nl

David T. Wang*
Organic Geochemist
Department of Earth, Atmospheric and Planetary Sciences
Massachusetts Institute of Technology
45 Carleton Street, Building E25-645
Cambridge MA 02142
USA
dtw@mit.edu

Emily Whitaker†
Microbiologist
Department of Oceanography
Texas A&M University
797 Lamar Street
College Station TX 77840
USA
whit1667@tamu.edu

Yuzuru Yamamoto*
Sedimentologist
Department of Mathematical Science and Advanced Technology (MAT)
Japan Agency for Marine-Earth Science and Technology
3173-25 Showa-machi
Kanazawa-ku, Yokohama
Kanagawa 236-0001
Japan
yuzuru-y@jamstec.go.jp

Kiho Yang*
Sedimentologist
Yonsei University
Department of Earth System Sciences
237 Science-Hall Sinchon-dong
Seodaemun-gu
Seoul 120-749
Republic of Korea
khyang@yonsei.ac.kr

Masataka Kinoshita††
PCT liaison
University of Tokyo
Earthquake Research Institute
1-1-1 Yayoi, Bunkyo-ku
Tokyo 113-0032
Japan
masa@eri.u-tokyo.ac.jp

Dick Peterse
Stationsweg 18
3641 RG Mijdrecht
The Netherlands
dick@sciencemedia.nl
T-Limit Project Coordination Team

Nobuhisa Eguchi
Center for Deep Earth Exploration
Japan Agency for Marine-Earth Science and Technology
3173-25 Showa-machi
Kanazawa-ku, Yokohama
Kanagawa 236-0001
Japan
neguchi@jamstec.go.jp

Verena Heuer
MARUM-Center for Marine Environmental Sciences
University of Bremen
Leobener Strasse 8
28359 Bremen
Germany
vheuer@uni-bremen.de

Kai-Uwe Hinrichs
MARUM-Center for Marine Environmental Sciences
University of Bremen
Leobener Strasse 8
28359 Bremen
Germany
khinrichs@uni-bremen.de

Fumio Inagaki
Research and Development Center for Ocean Drilling Science
Japan Agency for Marine-Earth Science and Technology
3173-25 Showa-machi
Kanazawa-ku, Yokohama
Kanagawa 236-0001
Japan
inagaki@jamstec.go.jp

Masataka Kinoshita
University of Tokyo
Earthquake Research Institute
1-1-1 Yayoi, Bunkyo-ku
Tokyo 113-0032
Japan
masa@eri.u-tokyo.ac.jp

Masanori Kyo
Center for Deep Earth Exploration
Japan Agency for Marine-Earth Science and Technology
3173-25 Showa-machi
Kanazawa-ku, Yokohama
Kanagawa 236-0001
Japan
kyom@jamstec.go.jp

Ikuo Sawada
Center for Deep Earth Exploration
Japan Agency for Marine-Earth Science and Technology
3173-25 Showa-machi
Kanazawa-ku, Yokohama
Kanagawa 236-0001
Japan
sawada@jamstec.go.jp

Shipboard personnel and technical representatives

Operations Superintendents (CDEX)
Terumichi Ikawa
Tomokazu Saruhashi

Drilling Engineers (CDEX)
Noriaki Sakurai
Tao Shiotani
Takahiro Yokoyama

Operation Geologist (CDEX)
Kan Aoike
Takamitsu Sugihara

Technical Engineers (CDEX)
Keita Akiyama
Junya Ishiwata
Nori Kyo
Yasuhiro Namba

Coring Specialist (CDEX)
Yuichi Shinmoto

Captains (Mantle Quest Japan)
Yukio Dowaki
Takemasa Kobayashi

Offshore Installation Managers (Mantle Quest Japan)
Masayuki Kawasaki
Teruyuki Koyama

Laboratory Officer (Marine Works Japan)
Satoshi Hirano
Tomoyuki Tanaka

Assistant Laboratory Officers (Marine Works Japan)
Toru Fujiki
Jun Matsuoka
Soichi Moriya

Curators (Marine Works Japan)
Shigako Nigi
Masaru Yasunaga
Laboratory Technicians (Marine Works Japan)
Nobuhiro Anraku
Masatoshi Edo
Akihiko Fujihara
Yuichi Hanada*
Noritaka Hanamura
Takehiro Higashi
Yuya Hitomi
Hiroshi Hoshino
Takeshi Izumi
Kentaro Kamimura
Daiki Kawata
Yoshiki Kido
Ryo Kobayashi
Yu Kodama*
Susumu Konno
Kohei Masaoka
Nagisa Nakao
Rui Nitahara
Atsushi Ohashi
Yasusei Sato
Ritsuko Sawada
Yu Shimazaki
Yuta Shinomiya

Tatsuya Sugiyama
Takahiro Suzuki
Yuta Tahara
Sonoka Tahihara
Kazuma Takahashi
Keisuke Takeda
Takeshi Terada*
Kosuke Tsutsumi
Mika Yamaguchi
Hideki Yamamoto*
Hiroya Yamazaki
Yui Yanagitani
Sho Yatsuka
Kanako Yoshida
Kazuhiro Yoshida

Assistant Operation Geologists (Marine Works Japan)
Atsushi Kurasawa
Masumi Sakaguchi

Publications Specialists (Marine Works Japan)
Akiko Fuse
Yoko Okamoto*
Mika Saido

Assisted mainly with shore-based operations.
Abstract

International Ocean Discovery Program (IODP) Expedition 370 aimed to explore the limits of life in the deep subseafloor biosphere at a location where temperature increases with depth at an intermediate rate and exceeds the known temperature maximum of microbial life (~120°C) at the sediment/basement interface ~1.2 km below the seafloor. Drilling Site C0023 is located in the vicinity of Ocean Drilling Program (ODP) Sites 808 and 1174 at the protothrust zone in the Nankai Trough off Cape Muroto at a water depth of 4776 m. ODP Leg 190 in 2000, revealed the presence of microbial cells at Site 1174 to a depth of ~600 meters below seafloor (mbsf), which corresponds to an estimated temperature of ~70°C, and reliably identified a single zone of higher cell concentrations just above the décollement at around 800 mbsf, where temperature presumably reached 90°C; no cell count data was reported for other sediment layers in the 70°–120°C range, because the limit of manual cell count for low-biomass samples was not high enough. With the establishment of Site C0023, we aimed to detect and investigate the presence or absence of life and biological processes at the biotic–abiotic transition with unprecedented analytical sensitivity and precision. Expedition 370 was the first expedition dedicated to subseafloor microbiology that achieved time-critical processing and analyses of deep biosphere samples by simultaneous shipboard and shore-based investigations.

Our primary objectives during Expedition 370 were to study the relationship between the deep subseafloor biosphere and temperature. We aimed to comprehensively study the factors that control biomass, activity, and diversity of microbial communities in a subseafloor environment where temperatures increase from ~2°C at the seafloor to ~120°C at the sediment/basement interface and thus likely encompasses the biotic–abiotic transition zone. We also aimed to determine geochemical, geophysical, and hydrogeological characteristics in sediment and the underlying basaltic basement and elucidate if the supply of fluids containing thermogenic and/or geogenic nutrient and energy substrates may support subseafloor microbial communities in the Nankai accretionary complex.

To address these primary scientific objectives and questions, we penetrated 1180 m and recovered 112 cores across the sediment/basalt interface. More than 13,000 samples were collected, and selected samples were transferred to the Kochi Core Center by helicopter for simultaneous microbiological sampling and analysis in laboratories with a super-clean environment. Following the coring operations, a temperature observatory with 13 thermistor sensors was installed in the borehole to 863 mbsf.

Introduction

In the course of nearly 50 years of scientific ocean drilling, microbial cells have been found everywhere, even in sediments of Cretaceous age (Roussel et al., 2008), in extremely nutrient poor sediments below the ocean gyres (D’Hondt et al., 2009, 2015; Roy et al., 2012), in the so far-deepest sampled coal-bearing sediments retrieved from ~2500 meters below seafloor (mbsf) (Inagaki et al., 2015; Glombitza et al., 2016; Liu et al., in press), and in basement rocks (Orcutt et al., 2011; Lever et al., 2013). Metabolic activities of deep subseafloor microbes are extraordinary low (D’Hondt et al., 2002, 2004), but most deeply buried microbial cells are physiologically active (Morono et al., 2011; Imachi et al., 2011; Inagaki et al., 2015) or quiescent as dormant phase or spore (Lomstein et al., 2012; Langerhuus et al., 2012). Presumably, the subseafloor contains as many microbial cells as all the water in the global oceans; however, the exact size of the subseafloor biosphere is still a matter of debate (Parkes et al., 1994, 2000; Whitman et al., 1998; Lipp et al., 2008; Kallmeyer et al., 2012; Hinrichs and Inagaki, 2012). To date, the bottom of the deep subseafloor biosphere has not been located, the biosphere–geosphere interactions at this important boundary have not been explored, and it remains to be resolved which factors pose ultimate limits to life in the subseafloor environmental setting. By addressing these scientific challenges, the International Ocean Discovery Program (IODP) aims to shed light on one of the largest continuous ecosystems on Earth (IODP Science Plan, Challenge 6 [http://www.iodp.org/about-iodp/iodp-science-plan-2013-2023]).

Several Integrated Ocean Drilling Program expeditions have addressed so far environmental factors that potentially limit life in the subseafloor, such as temperature, pH, salinity, availability of potential metabolic energy and nutrients, fluid movement, and pore space. For example, Integrated Ocean Drilling Program Expedition 329 studied the influence of energy limitation on subseafloor microbial communities in the South Pacific Gyre, where very low concentrations of sedimentary organic matter and its refractory nature strongly limit microbial life and result in aerobic subseafloor sedimentary ecosystems with low cell densities at 10⁵–10⁶ cells/cm³ throughout the sediment column (D’Hondt, Inagaki, Alvarez Zarikian, and the Expedition 329 Scientists, 2011; D’Hondt et al., 2015). Integrated Ocean Drilling Program Expeditions 317 (Canterbury Basin) and 337 (Shimokita Coalbed Biosphere) studied microbial communities in extremely deeply buried sediment at depths to 2000 and 2500 mbsf, respectively (Clobau et al., 2014; Inagaki et al., 2015). Whereas both expeditions presented strong evidence for the presence of microbial life throughout the cored sedimentary sequence, Expedition 337 documented an abrupt decrease in microbial cell concentration at subseafloor depths deeper than ~1500 mbsf to levels that are drastically lower than predicted by extrapolation of the global regression line (Inagaki et al., 2015; cf. Parkes et al., 2000, 2014). In spite of the great depths, in situ temperatures did not exceed 60°C.

Temperature is commonly used as the variable defining the deepest boundary of the deep biosphere in estimates of its size (Whitman et al., 1998; Parkes et al., 2000; Lipp et al., 2008; Hebling et al., 2010; Kallmeyer et al., 2012; Parkes et al., 2014). The currently known upper temperature limit of life for microorganisms inhabiting comparatively energy rich hydrothermal vent environments is at around 120°C (Blöchl et al., 1997; Kashefi and Lovley, 2003; Takai et al., 2008). However, studies of petroleum biodegradation in deeply buried basins suggest that sterilization takes place at formation temperatures between 80° and 90°C (Head et al., 2003; Wöllhms et al., 2001), and this finding might be more relevant for the energy-limited deep subseafloor biosphere. The lower temperature limit in subsurface settings relative to hydrothermal settings is possibly linked to the enhanced requirement of metabolic energy at elevated temperatures for the repair of degraded biomolecules (cf. Head et al., 2003; Hoehler and Jørgensen, 2013; Lever et al., 2015), the potential supply of metabolic energy is low in sedimentary settings that tend to be lean in electron acceptors and/or donors compared to hydrothermal vents, at which reduced fluids are mixed with oxygenated seawater. Experimental studies with surface sediment demonstrated a nonlinear effect of temperature on biogeochemistry and prokaryotes, with rapid changes occurring over small temperature intervals, and revealed that substrate addition and increase of metabolic energy result in stimulation of microbial activities at elevated temperatures (Roussel et al., 2015). The influ-
ence of temperature on microbial communities was one of the central questions during Integrated Ocean Drilling Program Expedition 331 at the Iheya North hydrothermal field in the Okinawa Trough, but this task was severely complicated by extremely high geothermal gradients of 0.6°–7.0°C/m. Consequently, microbial life seemed to cease within a few tens of meters below the seafloor, and strongly condensed temperature zones prevented in-depth examination of critical depth intervals (Takai, Mottl, Nielsen, and the Expedition 331 Scientists, 2011; Yanagawa et al., 2014, 2016).

Aiming to study the influence of temperature on the amount, activity, and taxonomic composition of deep subsurface sedimentary biomass, IODP Expedition 370 revisited an already well-characterized geological setting with high heat flow: the Muroto Transect in the Nankai Trough off Japan. Expedition 370 established Site C0023 in the vicinity of Ocean Drilling Program (ODP) Sites 1173, 1174, and 808 (Moore et al., 1991; Moore, Taira, Klaus, et al., 2001) about 125 km offshore Kochi Prefecture, 180 km from Cape Muroto, Japan (Figure F1). In this area, heat flow is exceptionally high and results in temperatures of ~110°–130°C at the sediment/basement interface (Moore et al., 1991; Moore and Saffer, 2001). This particular geological setting enables in-depth examination of the putative temperature-dependent biotic–abiotic transition zone with high temperature resolution: the increase of temperature with depth is still gradual enough for the establishment of distinct depth horizons with suitable conditions for psychrophilic (optimal growth temperature range <20°C), mesophilic (20°–43°C), thermophilic (43°–80°C), and hyperthermophilic (>80°C) microorganisms.

The data sets resulting from ODP Legs 131, 190, and 196 and lessons learned from previous drilling operations guided the scientific and operational approach of Expedition 370. During Leg 190 in 2000, depth profiles of microbial cell concentrations were obtained for Site 1174 by manual microscopic cell counting on board the R/V Joides Resolution. Because this method has a minimum quantification limit (MQL) of ~10^6 cells/cm^3, cell concentrations appeared to reach nondetectable levels at sediment depths around 600 mbsf, where estimated in situ temperatures exceed 85°–90°C (Figure F2; Shipboard Scientific Party, 2001a). During Expedition 370 we aimed to closely examine the presence of low-biomass microbial communities in the deep and hot sedimentary environment.

Since Leg 190, drastic advances in cell separation and enumeration technologies for sediment core samples have lowered the MQL by a factor of ~10,000 (e.g., Kallmeyer, 2011; Morono et al., 2009, 2013, 2014; Morono and Inagaki, 2010). Likewise, the new capacities offered in the “omics” era for elucidation of taxonomic composition (e.g., Inagaki et al., 2006; Sogin et al., 2006), metabolic activity, and function at single-cell to community levels (e.g., Biddle et al., 2008; Lloyd et al., 2013; Orsi et al., 2013), as well as new molecular-isotopic techniques that link biomass to substrate pools (e.g., Biddle et al., 2006; Morono et al., 2011; Wegener et al., 2012) and central metabolic intermediates to distinct geomicrobiological processes (e.g., Heuer et al., 2006, 2009; Zhuang et al., 2014; Wang et al., 2015), allow entirely new approaches to study microbial life close to the limit of the deep biosphere. Recent advances in analytical capabilities provide a tool kit for rigorously examining the unique geo-biosphere interactions in geothermally heated sediment that involve the release of microbially utilisable substrates by thermal decomposition of refractory kergens that otherwise appear resistant to microbial consumption. Thermodynamic modeling can then reveal the actual amounts of energy available and necessary to maintain microbial metabolism (e.g., Hoehler, 2004; Wang et al., 2010; Bethke et al., 2011). The advancement of scientific technologies over the past 15 years has already been shown in part by Expedition 337, which revealed the presence of indigenous microbial cells with concentrations ranging from <10 to ~10^4 cells/cm^3 at depths to ~2500 mbsf in the northwestern Pacific off the Shimokita Peninsula, Japan (Inagaki et al., 2015).

Driven by the recent technological progress in the deep biosphere exploration, Expedition 370 aimed to

- Study the factors that control biomass, activity, and diversity of microbial communities in a subsurface environment where temperatures increase from ~2°C at the sediment/water interface to ~110°–130°C at the sediment/basement interface and thus likely encompasses the biotic–abiotic transition zone, and
- Determine geochemical, geophysical, and hydrogeological characteristics in sediments and the underlying basaltic basement and elucidate if the supply of fluids containing thermogenic and/or geogenic nutrient and energy substrates may support subsurface microbial communities in the Nankai accretionary complex.

Previous drilling operations have proven the geological formation along the Muroto Transect challenging for penetration. Therefore, Expedition 370 employed a conservative drilling approach that allowed for the installation of multiple casings in order to create stable hole conditions for reaching the basement and establishing a long-term temperature observatory.

The operational plan was guided by three major objectives:

1. Recovery of high-quality cores from critical temperature intervals of the sedimentary sequence accompanied by monitoring of drilling-induced contamination and quality assurance/quality control (QA/QC) during laboratory procedures. High sample quality and careful contamination controls are prerequisites for investigating the presence (or absence) of life at the lower boundary of the subsurface biosphere.
2. Recovery of basement core samples to investigate heat and fluid flow in the subducting oceanic crust and thus the potential introduction of basement-derived microbes, nutrients, and electron acceptors into the overlying sediment column.
3. Precise and accurate measurement of in situ temperatures. Temperature information is essential not only for delineating the impact of temperature on subsurface life but also for characterizing the heat and fluid flow regime within the Nankai Trough subduction zone. Therefore, in situ temperatures were determined by downhole measurements during drilling as well as by completion of the borehole as an observatory and deployment of thermistor arrays, which are planned to record temperatures in critical temperature intervals for a long time.

Elucidating the temperature limit of the deep subsurface biosphere requires the highest possible sensitivity for the detection of microbial life. In order to fully exploit the technological potential available to date, the scientific work program on board the D/ V Chikyu was complemented by simultaneous work at the Kochi Core Center (KCC), which is located within reach of a helicopter shuttle for transportation of freshly cored samples. The investigation of microbial communities and processes close to the limits of both subsurface life and the biosphere benefited in particular from super-clean facilities, aseptic core sampling techniques, and the state-of-the-art analytical infrastructure at KCC. Scientists on board the Chikyu and at KCC processed samples, shared data, and reported
results together as one team of “the IODP Expedition 370 Scientists” according to IODP policies.

Background
Geological setting

Located east of Japan between the Shikoku Basin and the Southwest Japan arc, the Nankai Trough marks the subduction boundary between the young, hot Philippine Sea plate and the Eurasian plate (Figure F1). Subduction of the Shikoku Basin occurs at a current rate of ~2–4 cm/yr (Seno et al., 1993). With a maximum water depth of 4900 m, the Nankai Trough is relatively shallow, mainly because a thick sediment pile consisting of turbidite layers on top of hemipelagic basin sediment accumulated on the young (~16 Ma) basaltic basement (Taira, Hill, Firth, et al., 1991; Moore, Taira, Klaus, et al., 2001; Mikada, Becker, Moore, Klaus, et al., 2002). Because of the high flux of terrigenous sediment from the arc to the trench, the Nankai Trough has formed a thick, clastic-dominated accretionary prism over the last ~180 years during historic times (Ando, 1975).

The Nankai Trough has been investigated intensively throughout the history of scientific ocean drilling. Deep Sea Drilling Project (DSDP) Legs 31 and 87 were drilled off Cape Ashizuri to better understand initial mountain building processes (Figure F1) (Shipboard Scientific Party, 1975a, 1975b; Coubourn, 1986). Legs 131, 190, and 196 continued these studies with a stronger emphasis on the role of dewatering and fluid flow in the consolidation and deformation of sediment off Cape Muroto where the fault and décollement zone at <1000 mbsf are within reach of riserless drilling technology. Six sites were established along the Muroto Transect (Figure F1), covering undeformed to highly deformed zones of the accretionary prism (Taira, Hill, Firth, et al., 1991; Moore, Taira, Klaus, et al., 2001; Mikada, Becker, Moore, Klaus, et al., 2002). During the past decade, the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) has investigated this subduction zone with a multidisciplinary and multiphase drilling, sampling, and monitoring program to better understand the plate boundary fault system that has historically produced gigantic earthquakes and tsunamis. About 200 km north of the Muroto Transect, NanTroSEIZE established 13 drilling sites along the Kumanosan Frontal Thrust, where the plate boundary fault system is within reach of the Chikyu’s riser drilling technology. In the course of numerous seismic and bathymetric surveys, the structure of the Nankai Trough off Shikoku was imaged extensively (e.g., Aoki et al., 1982; Ashi and Taira, 1992; Costa Pisani et al., 2005; Karig, 1986; Kodaira et al., 2000; Le Pichon et al., 1987; Moore et al., 1990, 1991; Okino and Kato, 1995; Park et al., 1999, 2000; Stoffa et al., 1992; Taira and Ashi, 1993). A large volume of 3-D seismic reflection data was acquired in 1999 (R/V Ewing Cruise 9907/8) in an effort to image the décollement from the trench into the seismogenic zone (e.g., Bangs et al., 1999, 2004; Bangs and Gulick 2005; Gulick et al., 2004).

For elucidating the temperature limit of the deep subseafloor biosphere, the Muroto Transect is more suitable than the Kumano Transect, as the deeply buried sediment is exposed to higher temperatures. Expedition 370 established Site C0023 in the vicinity of Sites 808 and 1174 (Figures F3, F4) in the protothrust zone of the accretionary prism (Figure F5), where ~16 m basaltic basement is covered with the following series of sediment (Figure F6): volcani-clastic facies, lower Shikoku Basin facies (hemipelagic mudstone), upper Shikoku Basin facies (hemipelagic mudstone with abundant volcanic ash layers), basin-to-trench transition, and outer and axial trench wedge facies, on top of which, finally, slope apron facies have been deposited (Shipboard Scientific Party, 2001b, 2001c). Site 1174 subsided at a moderate rate of ~50 m/my during the Miocene and the Pliocene, before rates changed dramatically in the Quaternary. The rate of subsidence rose 12-fold to ~600 m/my and resulted in a high heating rate of up to 130 K/my (Horsfield et al., 2006). Deformation bands have developed deeper than 218 mbsf, and at 808–840 mbsf a distinct 32 m thick décollement zone separates the protolith domain with fractured and steepened bedding (<807.6 mbsf) from a relatively little deformed underthrust section (>840.2 mbsf) (Shipboard Scientific Party, 2001c).

Heat and fluid flow

There is compelling evidence for hydrothermal circulation in the subducting oceanic crust, which leads to elevated heat flux at the deformation front (Figure F1). Specifically, thermal and geochemical models suggest that advective heat and fluid flow in the subducting oceanic crust are crucial for extracting and redistributing heat (Harris et al., 2013; Spinelli and Wang, 2008), whereas the accreted sediment expels fluids mainly by upward diffusive flow through a large portion of the accretionary prism (Taira, Hill, Firth, et al., 1991; Taira et al., 1992). Pore water profiles did not clearly indicate active fluid flow along the décollement or along the frontal thrust, and fractures within the décollement zone were found to be not mineralized (Taira, Hill, Firth, et al., 1991; Maltman et al., 1992; Moore, Taira, Klaus, et al., 2001); however, at >400–500 mbsf, pore water freshening is detectable at Cl− concentrations that are lower than seawater values (cf. Kastner et al., 1993). The observed freshening is partly explained by in situ diagenesis (i.e., compaction and thermally driven smectite dehydration) but also suggests some episodic lateral fluid flow along one or more sediment horizons (Moore, Taira, Klaus, et al., 2001; Saffer and Bekins, 1998; Underwood et al., 1993).

Sites 1174 and C0023 are located in a zone of high heat flow that encompasses the trench and the lowermost part of the prism (Figure F1). The surface heat flux consistently exceeds 100 mW/m² in this region and amounts to ~180 mW/m² at Site 1174 but steeply declines landward of the deformation front to values of ~60 mW/m² and scatters largely around 82 mW/m² seaward in the Shikoku Basin (Yamano et al., 1984; Kinoshita and Yamano, 1986; Shipboard Scientific Party, 1991, 2001b, 2001c; Spinelli and Underwood, 2005; Harris et al., 2013; Yamano et al., 1992). Based on available heat flow data, the heat flow was expected to be 156 mW/m² at Site C0023, and in situ temperatures were estimated to reach ~110–130°C at the sediment/base interface (Hinrichs et al., 2016).

Physical properties

Measurements of physical properties in sediment and basement rock, particularly their variations with depth, are a major target in studies of rock mechanics and fault zone seismogenesis. With increasing temperature and pressure, physicochemical interactions are facilitated and cause lithification and diagenesis of the sediment (Moore and Saffer, 2001). These processes modify the composition of the fault gouge and result in authigenic growth of clay minerals (e.g., Chester et al., 1993; Wintsch et al., 1995), which are known to have profound effects on fault strength and potential instability (e.g., Byerlee and Summers, 1975; Ikari et al., 2009). In particular, the smectite-to-illite reaction, which is typically observed at 60–
150°C (i.e., temperatures typical of the updip seismicity limit [Vrolijk, 1990]), releases fluids and silica into the pore space. Released silica acts as a cementing agent (Towe, 1962; Spinielli et al., 2007) and thus strengthens the frictional properties of the materials (e.g., Mair and Marone, 1999) while lowering their effective porosity (Spinielli et al., 2007). At the same time, the release of mineral-derived water from desorption and clay mineral transformation reactions into an environment in which precipitation has decreased porosity may cause high pore pressure and subsequent hydrofracturing of the rock (Behrmann, 1991). Elevated pressures and temperatures typical of upper seismogenic zones are also known to enhance porosity loss in sediment (Hüpers and Kopf, 2009) and are associated with decreases in permeability. The result is a dense, cemented rock that differs substantially from homogeneous sediment and may thus impose additional limits on the deep biosphere.

Microbiology and geochemistry

Whereas previous investigations focused on the dynamics of deformation and fluid flow processes in the accretionary prism, the abundance of microbial cells in sediment was determined by shipboard cell counting (Figure F2), and the geochemistry of sediment and its interstitial water were characterized as well (Moore, Taira, Klaus, et al., 2001). At Site 1174, cell concentrations were in a range typical for continental margin sediment but decreased to levels below the MQL deeper than ~600 mbsf, where the estimated in situ temperature exceeds ~70°C. Interestingly, counts exceeded the MQL again in deeper sediment just above the décollement around 800 mbsf where temperatures reached 90°C; no cell detection was reported deeper.

At Site 1174, organic carbon contents ranged from 0.03% to 0.84% and overall decreased with depth (Moore, Taira, Klaus, et al., 2001). In particular, the transition from upper to lower Shikoku Basin facies corresponded to a drop in total organic carbon (TOC) content. Carbon/nitrogen ratios <10 indicated predominantly marine organic matter sources. Pore water sulfate was consumed rapidly in surface sediments and a shallow sulfate–methane transition zone (SMTZ) was found at 3–6 mbsf, but sulfate concentrations increased again throughout the ~490 m thick lower Shikoku Basin sediment and linear concentration gradients were consistent with diffusive flux of sulfate from the oceanic basement into the overlying sediment (Shipboard Scientific Party, 2001b, 2001c; Horsfield et al., 2006). Methane concentrations were highest at 300–660 mbsf (~60–100°C) and remained relatively high in the presence of sulfate deeper than 660 mbsf (Shipboard Scientific Party, 2001c). Ethane concentrations increased with depth and pointed to thermogenic sources deeper than 900 mbsf (Shipboard Scientific Party, 2001b, 2001c; Horsfield et al., 2006). This observation agrees well with findings at adjacent Site 808, where the stable carbon and hydrogen isotopic composition of methane points to microbial CO₂ reduction as the major methane source in sediment between 20 and 1000 mbsf and to an increasing contribution of thermogenic methane at greater depth (Berner and Faber, 1993). Results of Rock-Eval pyrolysis revealed significant thermal transformation of organic matter deeper than 500 mbsf, suggesting in situ production of hydrocarbon gases, hydrogen, and oxygenated low–molecular weight compounds (Horsfield et al., 2006). Yet, the interplay of thermogenic and biogenic processes and their relevance for the supply of metabolic energy remain to be explored.

Scientific objectives and hypotheses

Expedition 370 was motivated by Challenge 6 in the IODP Science Plan (http://www.iodp.org/about-iodp/iodp-science-plan-2013-2023) "What are the limits of life in the subseafloor?" and by Challenge 5 "What are the origin, composition, and global significance of subseafloor communities?" The overarching scientific objectives of Expedition 370 were as follows.

1. **Study subseafloor sedimentary microbial communities situated in temperature ranges that cover the putative temperature limit of microbial life in anoxic sedimentary systems.**

 We aimed to test the hypothesis that temperature increase with depth is accompanied by substantial changes in the composition, function, and activity of microbial communities and that their population density decreases gradually rather than abruptly as suggested by previous examination of Site 1174. Using state-of-the-art microbiological and geochemical techniques, samples obtained during Expedition 370 can provide a far more comprehensive view of the relationship between microbial communities and temperature than was possible during Leg 190.

2. **Characterize the chemical and physical environment in sediment and basement rock at the limit of the deep subseafloor biosphere.**

 We aimed to test the hypothesis that the cored sections harbor biotic–abiotic transition zones and that unique geochemical and microbial signatures can be identified within the sedimentary, rock, and fluid matrix that differentiate the biotic and abiotic realms and/or their transition. Samples obtained during Expedition 370 will be investigated in detail with respect to (bio)chemical, isotopic, mineralogical, and physical properties and changes thereof.

3. **Examine the relationship between thermogenic release of potential substrates and microbial life.**

 Expedition 370 aimed to obtain samples to test existing hypotheses (Horsfield et al., 2006; Parkes et al., 2007) that predict stimulation of microbial activity by thermal decomposition of organic matter. To that end, we will conduct studies of genes, their expression, cultivation-dependent and -independent assays, biogeochemical activity measurements, and advanced organic geochemical analyses that specifically target potential substrates for microbial life, as well as document structural modifications of macromolecular organic matter induced by their release.

Expedition 370 retrieved samples to specifically address the following questions:

- Do subseafloor sedimentary microbial communities populate sediments that lie within the temperature range close to the putative limit of microbial life?
- Is the temperature increase with depth accompanied by substantial changes in the composition, function, and activity of microbial communities?
- Does the population density of microbial communities decrease gradually or abruptly with increasing temperature? And do features like porosity or fluid movement and the introduction of electron acceptors influence the location of the limit to life such that it “flickers out” over a certain depth range rather than “blinks out abruptly” at a specific depth? For example, is microbial activity stimulated by fluid flow along the décollement?
• Are microbial spores abundant in sediment, and do they germinate when temperatures increase with sediment burial?
• Which microorganisms and processes occur in the deep and hot SMTZ?
• What is the virus distribution in sediments? Are there any host-free viruses in the lifeless (i.e., no prokaryotic cells) zone? And what is the functional role of viruses with regard to the genetic evolution of subsurface microbial ecosystems?

Characterizing the chemical and physical environment in sediment and basement rock at the limit of the deep subsurface biosphere will allow us to address questions such as
• Which mechanisms guide the selection of microorganisms at elevated temperatures?
• Are there other adaptations evident in cells present at the bottom of the deep biosphere besides tolerance to high temperatures?
• Do pairs of electron acceptors and donors accumulate that would normally be consumed by biologically mediated redox reactions?
• Is there a measurable impact of smectite–illite transition on subsurface microbial communities?
• Does the presumed availability of electron acceptor–rich seawater in the basement stimulate microbial activity in the overlying sediment? If there are active (or survived) microbial communities in the high-temperature basaltic habitat, is there evidence for the inoculation of overlying sediment with basement-derived microbes?
• What is the extent and distribution of hydrothermal veining and crustal alteration related to circulation of seawater? How much of this alteration may be related to microbial activity? How large are heat and fluid flow in the subducting oceanic crust?

Elucidating the temperature limit of the deep subsurface biosphere and biogeochemical processes occurring at the biotic–abiotic transition zone(s) require the highest possible sensitivity for the reliable detection of indigenous life. Therefore, QA and QC were key objectives throughout drilling operations and all subsequent sample handling procedures in the laboratory. Moreover, precise and accurate information on in situ temperatures is essential not only for delineating the impact of temperature on subsurface life but also for characterizing the heat and fluid flow regime within the Nankai Trough subduction zone. Therefore, measurements of formation temperatures in situ and of thermal conductivity of the cored material were crucial objectives of Expedition 370. An initial set of in situ temperature data was obtained by downhole measurements during drilling. In addition, we aimed to prepare the borehole for its future use as long-term observatory by installing casing, a remotely operated vehicle (ROV) landing platform, and a CORK head, as well as temperature sensors.

Site C0023 summary

Site C0023 (32°22.00′N, 134°57.98′E; 4776 m water depth) was established on 17 September 2016 in the vicinity of Sites 1174 and 808 (Figure F4). After stabilizing Hole C0023A with a 20 inch drilling in casing to 181 mbsf, 83 cores were taken from 189 to 871 mbsf. A spot-coring approach employing a short advance modified hydraulic piston coring system (S-HPCs) equipped with an advanced piston corer temperature tool (APCT-3) for in situ temperature measurements was successfully used for the first time to 410.5 mbsf.

Deeper, continuous rotary core barrel (RCB) coring followed. Due to deteriorating borehole conditions, a second casing (13½ inch) was considered necessary on 11 October and installed to 858 mbsf. RCB coring resumed on 25 October and continued until basement was reached on 3 November. Coring terminated with the recovery of Core 112R from a total drilling depth of 1180 mbsf. Recovery was 75.9% on average and yielded altogether 577.85 m of core (Tables T1, T2). During the expedition, more than 13,000 samples were taken from these cores and preserved for shipboard and shore-based analyses as well as for postcruise research of more than 90 individual scientists who requested samples from Site C0023.

To ensure the best sample quality, we employed a multistep procedure to remove the potentially contaminated part of the cores. All samples for time-, oxygen-, and contamination-sensitive microbiological and biogeochemical investigations were taken in the form of whole-round cores (WRCs) from the most undisturbed parts of freshly retrieved core sections, which were identified by careful visual inspection and X-ray computed tomography (CT) image scan. Core intervals with obvious fractures or drilling disturbances were strictly avoided, as such structures might provide pathways for the introduction of contamination into the interior of the core. The outer layer of the WRCs was removed immediately after retrieval to avoid potential intrusion of contaminants from drilling fluid. Whole-round sampling was completed as soon as possible, usually within a few hours after a core had arrived on deck. Samples for oxygen-sensitive analyses were processed under anaerobic conditions. For microbiological samples, a super-clean and anaerobic working environment was established by installing a table-top air filtration unit and ionizer (i.e., static eliminator) inside an anaerobic chamber, preventing potential sample contamination by laboratory air. In order to avoid alteration of samples and loss of information during storage, in-depth investigations were started as soon as possible after core recovery. To this end, the carefully cleaned and anaerobically packed samples were transported to shore by helicopter shuttle, where they were processed without delay by the shore-based team of expedition scientists at KCC. A total of 92 boxes with high-priority samples were transferred to shore by helicopter on an almost daily basis. At KCC, pre-cleaned core samples were carefully treated under super-clean conditions in a timely manner for further removal of potentially contaminated surface at either a dust-free super-clean room that meets International Organization for Standardization (ISO) Class 1 clean room standards, an all-air exhaust clean bench, or a tabletop air filtration system—equipped anaerobic chamber with monitoring for airborne particles and microbial cells.

On-site operations were completed on 9 November 2016 with the installation of a borehole observatory for long-term in situ temperature measurements to 863 mbsf. The observatory was equipped with an ROV landing platform and a CORK head and was instrumented with thermistor arrays to 863 mbsf. Thermistors monitor temperature mainly inside the cased borehole at 13 depth horizons (Table T3), and data are recorded continuously by data loggers mounted in the CORK head. Recovery of the data by ROV is planned for March 2018, using the JAMSTEC research vessel Kairei and the ROV Kaiko.

The shore-based research program of Expedition 370 at KCC ended on 23 November 2016. By this time, all samples had been cleaned a second time and prepared for further analyses under super-clean conditions. A first set of analyses was completed on selected samples, including cell counts and taxonomic composition of microbial communities. In addition, incubation experiments under
high-pressure and high-temperature conditions had started to investi-
gate potential microbial activity.

From an operational point of view, Expedition 370 was overall successful. We carried out nearly all planned operations, established a robust temperature model based on downhole measurements, and conducted all sampling and scientific analyses with an unprecedent-
edly high level of QA/QC. With respect to expedition logistics, in particular the smooth operations for the transfer of cored samples from ship to shore, the close collaboration of shipboard and shore-
based expedition scientists, and the successful preparation of Expe-
dition 370 with a short lead time of less than 6 months, are worth mentioning. Shipboard results for Site C0023 indicate a heat flow of 140 mW/m² and temperature of about 120°C at the sediment/base-
ment interface, corroborating the suitability of the environmental setting for addressing research questions as planned. Preliminary cell count data suggest that cell concentrations are notably lower than those previously reported at Site 1174 but at the same time point to the presence of intact microbial cells in low abundance to at least 600 mbsf. Therefore, the obtained samples and data provide an excellent basis for extensive microbiological, biogeochemical, geo-
logical, and geophysical analyses in postcruise research projects that will potentially provide new insights into the effects of tem-
perature on biological, geochemical, and geophysical processes in the deep subseafloor at Site C0023. Achieving our expedition objec-
tives will significantly expand our knowledge on the factors that limit subseafloor microbial ecosystems at the biotic–abiotic transi-
tion zone and ultimately shed more light on the extent and evolu-
tionary nature of the deep subseafloor biosphere on Earth and, more generally speaking, on the habitability of planets.

Although most expedition goals could be reached, some remain unfulfilled for now but could still be reached during a future return to Hole C0023A. Although the basaltic basement was reached with Cores 111R and 112R, recovery was insufficient to address all re-
lated research questions, mainly due to the time constraint. Because of the challenging geological formation, unstable borehole condi-
tions were a major concern throughout the expedition. This fact led us to the decision to set the thermistor array only 5 m deep into the naked hole below the second casing at 858 mbsf. Finally, although thermistor sensor strings with flatpackers were successfully in-
stalled during borehole completion, an additional array of miniature temperature loggers was not properly set in the borehole. The un-
derlying reasons for the unsuccessful installation remain to be clari-
fied as of the writing of this report.

Our study site was selected based on previous observations at Sites 1174 and 808, and Site C0023 was established in the closest possible proximity. We found close similarities as well as distinct differences between the new site and the former. In the following, we will provide principal results according to discipline, followed by a synthesis of currently available information as pertaining to our scientific objectives.

Lithostratigraphy

At Site C0023, we recognize four main lithostratigraphic units (Figure F7) that have been described before in the lithostratigraphic framework for the Nankai Trough (Taira, Hill, Firth, et al., 1991; Moore, Taira, Klaus, et al., 2001). Near-surface sediments constitute facies associated with a trench-style deposition. Lithologies include hemipelagic and pelagic muds and mudstones and turbidite-depos-
ited mud, mudstone, silts, and sands. Within this group, we differ-
entiate Subunit IIA (189–318.5 mbsf) that has a higher proportion of sand (axial trench wedge) and Subunit IIB (353–428 mbsf) that has a higher proportion of mud (outer trench wedge facies). We also recognize the third subunit that is transitional between the trench-
and volcanoclastic basin–style deposition (Subunit IIC; 428–494 mbsf). This transitional unit evidences some deposition of sand and silt from episodic turbidity currents and some deposition of tuffs and volcanoclastic sediments, also typically from currents. However, mixtures of mud and volcanoclastic sand at Site C0023 only occur because of bioturbation mixing the tops of tuff beds into overlying mud. A solely basin-style deposition is found in Unit III (upper Shikoku Basin facies; 494–635 mbsf), and nonvolcanoclastic turbidi-
tes can no longer be identified. Tuffs and tuffaceous sedimentary rocks constitute <8% of the units’ net thickness but have unique petrophysical and geochemical characteristics that are described later. Unit IV (lower Shikoku Basin facies; 635–1112 mbsf) com-
prises volcanoclast-bearing mudstones that are heavily bioturbated. This latter aspect creates heterogeneity by concentrating ash, shelly bioclasts, and silt, leading to a distinct fabric that creates a template that acts as a focus for strata-bound hydrothermal mineralization. Unit V (acidic volcanoclastic facies; 1120–1125 mbsf) is the deepest unit and comprises mudstones and felsic ash, which is less indu-
rated than overlying beds of tuff in Subunit IIC and Unit III. A unit of hyaloclastites forms the lithologic basement for Site C0023. Aver-
age values of X-ray CT density were used to evaluate core quality and density. Values showed easily rationalized increases with depth, which are consistent with downhole trends observed in related physical properties such as grain density.

Structural geology

Seismic cross sections indicate that Site C0023 is located toward the center of a low-amplitude syncline. Therefore, intense deformation and a protothrust zone or other map-scale deformation struc-
ture would not be expected. Bedding planes dip gently, but abrupt changes to steeper dips are observed in the lower Shikoku Basin. Eventually, dip returns back to gentle stratigraphic dips in litho-
stratigraphic Unit V. Several kinds of deformation structures are distributed at particular depths. Most of the core-scale reverse faults are located above and within the décollement zone (~758–796 mbsf; see Décollement below), whereas dense populations of normal faults were identified beneath the décollement zone (i.e., underthrust sediment). Mineral veins composed of calcite, barite, and anhydrite occur beneath the décollement zone, and most of these are located within or closely associated with faults. Core-scale healed faults that mostly represent a normal fault sense are typically present in the upper Shikoku Basin.

Variations in bedding dip and healed fault distribution at Site C0023 are broadly similar to those at Site 1174. On the other hand, the thicknesses of fault zones within the décollement zone and the nature and distribution of deformation structures in the under-
thrust sediments at Site C0023 are totally different from Sites 808 and 1174: At Site C0023, the décollement zone is characterized by a thinner fault zone sandwiched between intact mudrock layers, and a dense population of faults and mineral veins is present in the underthrust interval.

Décollement

The onset of the first major fault at 758.15 mbsf was interpreted to mark the top of the décollement zone. Bedding is slightly steep-
ened in the zone (~30°). Below this décollement zone, the fault zone is underlain by generally intact sediment with gentle dips. Although some fault zones were identified in Cores 65R to 71R, most of the recovered cores represent intact surfaces. Therefore, the décol-

13
ment zone at Site C0023 appears to be composed of alternating intact intervals (~several meters in thickness) and thinner fault zones. Deeper than ~796.395 mbsf, no thrust fault zone was identified, and thus this potentially marks the base of the décollement zone.

Authigenic and hydrothermal mineralization

We recognize five main styles of diagenetic and hydrothermal mineralization at Site C0023. At shallow depths from ~200 to ~700 mbsf, the main authigenic mineralization involves carbonate precipitation and pyritization. This is typically strata bound and can impart significant physical and chemical characteristics to beds (e.g., cementing and causing the early lithification of shallow mudstones, or precipitating porosity reducing cements). Clay mineralization occurs from ~700 to ~1000 mbsf and primarily takes the form of smectite and chlorite mineral phases. Such mineralization is typically strata bound and can involve the precipitation of new mineral phases but typically involves the alteration of host lithology. A notable locus for clay mineralization is the décollement zone and Unit V. Manganese and sulfate mineralization is focused between ~700 and 1100 mbsf. Sulfate mineralization (anhdyrite and barite) is heavily associated with veins but is also strata bound and, when sufficiently pervasive, overprints the existing depositional fabric and is also associated with carbonate mineralization. Manganese mineralization is typically strata bound and largely replacive or pore filling and is typically centered on burrows and takes the form of rhodochrosite. Ferrous iron mineralization is found in both Unit V and the lithologic basement. Temperature limits are hard to constrain at this point, but both the presence of anhydrite, veins of barite and the occurrence of largely stratiform rhodochrosite may indicate temperatures in the 120°–200°C range. Although alteration processes are observed within the décollement zone, overall they are not of greater magnitude than alteration processes observed at other zones and depths.

Physical properties

Shipboard physical property measurements, including moisture and density (MAD), thermal conductivity, electrical resistivity, P-wave velocity, natural gamma radiation, and magnetic susceptibility, were performed on core samples from 204 to 1176 mbsf under room temperature and pressure conditions. Porosities through the wedge facies (Unit II) to the upper Shikoku Basin facies (Unit III) are characterized by high variability and generally decrease with increasing depth (Figure F7). The lower porosity values represent sands and silty sands at the interval from 200 to 300 mbsf in Subunit IIA, whereas the higher values correlate with tuff and tuffaceous sediments in Unit III. A high-velocity interval between 620 and 640 mbsf at the base of Unit III corresponds to tuffaceous sediments, although bulk densities of the sediments are lower than surroundings. Within the lower Shikoku Basin facies (Unit IV), porosities continue to decrease with depth to the top of the décollement zone at ~760 mbsf. However, deeper than ~760 mbsf, they turn to increase gradually by 5%–7% with depth to ~830 mbsf. This porosity increase is accompanied by a decrease in P-wave velocity and apparent formation factor (i.e., electrical resistivity). Deeper than ~830 mbsf, porosities resume a general compaction trend to the base of Unit IV and then rapidly increase within Unit V, where tuffaceous mud becomes the dominant lithology. Basaltic rocks in the basement exhibit a range of porosity between 5.5% and 25%. Similar porosity depth profiles were reported at Sites 808 and 1174 (Taira, Hill, Firth, et al., 1991; Moore, Taira, Klaus, et al., 2001). However, in contrast to these sites, porosities at Site C0023 begin to elevate gradually within the décollement zone.

In situ temperature measurements between 189 and 408 mbsf and laboratory thermal conductivity measurements indicate a heat flow of 140 mW/m². Assuming that the heat flow is purely conductive and steady state, temperatures of 86° and 120°C are projected for the top of the décollement and the bottom of the hole, respectively (Figure F7).

Inorganic geochemistry

An extensive suite of chemical analyses of interstitial water was performed at Site C0023 to identify potential microbial activity. Quantify rates of various metabolic processes, assess the presence of active fluid flow, and complement our understanding of sediment diagenesis in the prothrust zone of the Nankai Trough subduction zone off Muroto. High-precision data is required to constrain the geochemical environment, which is fundamental to our understanding of the microbial habitability of the subseafloor.

To fulfill the expedition’s principal objectives, we generated high-quality and high-resolution profiles of microbial metabolites and other elements involved in geochemical processes through high-precision measurement and careful contamination control. The resulting pore water chemistry data set is of unprecedented quality for samples collected with rotary coring technology. The following chemical species were measured on board: chloride, salinity, sulfate, bromide, total alkalinity (TA), dissolved inorganic carbon (DIC), ammonium, sodium, calcium, magnesium, potassium, lithium, boron, barium, aluminum, strontium, manganese, iron, silica, sulfide, hydrogen, and carbon monoxide.

Sulfate in the upper 600 m of the cored formation is assumed to be below detection in situ (measured values are used to determine the extent of contamination of the samples) (Figure F8) and then generally increases with depth. The SMTZ at Site C0023 occurs relatively deep (between 630 and 750 mbsf). Complementing the sedimentological identification of the décollement, a sulfate offset of 2.5 mM occurs at 770 mbsf. Starting at 970 mbsf, sulfate sharply decreases by 3 mM to a low-concentration interval within the lowermost 100 m of the formation. The deep sulfate maximum could be relict and/or originate from fluid advection: Future work will be required to distinguish between these potential sources.

TA and DIC are similar for the upper 600 m of the cored formation. In contrast to what we would expect if TA was dominated by carbonate alkalinity, TA and DIC diverge at 600 mbsf. TA sharply increases from approximately 4–20 mM, peaking at 670 mbsf, whereas DIC remains low and decreases to a minimum of 0.8 mM at 700 mbsf. An offset in DIC (a 3 mM increase) occurs at 850 mbsf. Following the TA peak at 670 mbsf, alkalinity decreases to the décollement before resuming a similar pattern to DIC and smoothly decreasing to the basement. Based on the lack of similarity between DIC and alkalinity profiles in the 600–800 mbsf interval, we infer that the bulk of the high alkalinity is not derived from the carbonate system but related to the presence of abundant low molecular weight fatty acids.

There are peaks in dissolved Mn and Fe concentrations throughout Units II and III, coinciding with the occurrence of volcanic ash layers. This might indicate the use of Fe and Mn (oxyhydroxides as electron acceptors for microbial organic matter degradation. As these intervals are considered sulfate- and sulfide-free, dissolution of Fe and Mn oxides due to anoxic sulfide oxidation seems unlikely. Dissolved sulfide is at low levels (<2 μM) in Unit IV, especially around the décollement and at ~930 mbsf. There is no
indication for dissolved sulfide in the center of the SMTZ. However, its absence in pore water could potentially be due to a balance between dissolved Fe and sulfide production, which would result in the reaction of these components to solid phase iron sulfides. High manganese concentrations in Unit IV indicate an input by hydrothermal fluids or relict microbial manganese reduction.

Organic geochemistry

Overall concentrations of calcium carbonate (CaCO$_3$), TOC, nitrogen, and sulfur at Site C0023 are low in all lithostratigraphic units. The CaCO$_3$ profile exhibits a large degree of scatter (ranging from 0.07 to 22 wt%) from 430 mbsf to the basement (1176.6 mbsf), apart from a carbonate-poor interval between 830 and 945 mbsf (middle of Unit IV), in which CaCO$_3$ contents are tightly clustered around 0.61 ± 0.41 wt% (mean ± standard deviation [SD]). The heterogeneity in the CaCO$_3$ data reflects variations in calcite cementation and the presence of calcite veins in the basalt. Low amounts of calcite cementation observed in the carbonate-poor interval are likely responsible for the low CaCO$_3$ contents there. TOC monotonically decreases from the top of the cored interval (Subunit IIA, 190 mbsf, 0.5 wt%) to the décollement (~760 mbsf, ~0.2 wt%). Between the décollement and the lower part of Unit IV (1050 mbsf), TOC is roughly constant at 0.25 ± 0.04 wt% before decreasing sharply to minimum values below 0.02 wt% within Unit V. Total nitrogen and sulfur contents are very low throughout Hole C0023A with average values of 0.05 ± 0.01 wt% and 0.15 ± 0.11 wt%, respectively. Low TOC/N ratios of 5.8 ± 2.1 on average are consistent with a predominantly marine source of the organic material.

Dissolved hydrocarbon gases were analyzed from whole-round sections situated adjacent or in close proximity to samples taken for interstitial water analysis. Methane (C$_1$), ethane (C$_2$), propane (C$_3$), n-butane (n-C$_4$), and i-butane (i-C$_4$) were detected within all lithostratigraphic units with varying abundances. Methane concentrations show a large scatter in Subunits IIA–IIC, ranging between 0.5 and 11.8 mM and reaching the highest average values of 7 ± 2 mM within Unit III (Figure F9). This apparent peak in methane within Subunit IIC and Unit III coincides with elevated concentrations of propane and i-butane relative to the other C$_1$–C$_4$ hydrocarbons. In this interval, molar concentrations of C$_1$ and C$_4$ are higher than those of C$_2$ and n-C$_4$, respectively. High molar ratios of methane over ethane (C$_1$/C$_2$ > 105) within Subunits IIA–IIC and Unit III are consistent with a dominance of microbially generated methane occurring in these depths. Concentrations of methane decline below Unit III to minimum values of ~0.3 mM within the décollement. This decrease in methane is accompanied by a steady decrease of C$_1$/C$_2$ to values around 105 within the décollement. The decline in methane between 660 and 758 mbsf is negatively correlated with concentrations of sulfate, suggesting the presence of an SMTZ within the upper part of Unit IV above the décollement. The C$_3$ hydrocarbon gases also exhibit low concentrations shortly above and within the décollement. Elevated concentrations of C$_2$ hydrocarbon gases in the lower part of Unit IV, together with low C$_1$/C$_2$ ratios, indicate a zone of thermogenic production of these hydrocarbon gases and/or its fluid/gas flow. Below this zone, all hydrocarbon gases, except for methane, decrease in concentration.

Microbiology

Ensuring minimal contamination of potentially extremely low biomass core samples was of highest priority for the microbiological research objectives of Expedition 370. Therefore, rigorous QA/QC efforts and super-clean technologies were implemented, including helicopter transport of freshly taken core samples to the onshore super-clean room facility at KCC. During the expedition, the analyses of cell counts, DNA-based microbial community fingerprinting, and setting up incubations for probing microbial activity at high pressure and high-temperature conditions were conducted.

Airborne particle data showed that QC of sample processing and the analytical environment was successful thanks to the use of super-clean technologies. In order to create clean sample handling environments, a tabletop air filtration unit (KOACH T 500-E; KOKEN Ltd., Tokyo) was installed in an anaerobic chamber located both on the Chikyu and at KCC, and a clean bench on the Chikyu. At KCC, all of the analytical work for microbiology was done in a super-clean room. Ionizers were also installed inside the anaerobic chamber on the Chikyu and all sample handling environments at KCC to avoid particle contamination by neutralizing static electricity. The number of airborne particles (0.3–1.0 μm in particle size) in the air of the shipboard working environment was routinely monitored and confirmed to be 0 to 2.2 × 104 particles/m3 in the clean bench and 0 to 1.8 × 105 particles/m3 in the anaerobic glove box, whereas the laboratory air on the Chikyu contained 1.12 × 104 ± 9.46 × 105 particles/m3 (mean ± SD). At KCC, the vicinity of the work area of the super-clean room was consistently below the detection limit of the particle counter (i.e., <1 particle/ft3). In the anaerobic chamber with a KOACH air filtration system, counts for particles with a diameter of 0.3–2.5 μm ranged from 0 particles/m3 prior to sample processing to a maximum of 102 to 105 particles/m3 within 5 min after sample processing.

During Expedition 370, numerous WRC sections and individual samples were collected for microbiological and molecular biological analyses. WRCs for not only expedition analyses but also various postexpedition analyses (e.g., cultivation, activity measurements, and environmental genomics) were initially processed in a clean anaerobic chamber on the Chikyu to remove the exteriors of core samples, which came into contact with drilling fluid. After transferring microbiological WRCs to KCC, the sample outside was further scraped prior to subsampling. This two-step cleaning procedure was important to avoid possible secondary contamination that might occur during sample processing and bring up the level of QC for subsequent microbiological analyses.

To assess the potential of drilling fluid intrusion into the core samples during RCB coring and sample processing, perfluorocarbon (PFC) tracer was added to the drilling fluid stream (Figure F10). The presence of the PFC tracer was tracked within cores and core liner fluid. PFC tracer monitoring during the expedition indicated that the majority of core interiors contained little to undetectable drilling fluid contamination (i.e., for 51 of 117 RCB cores, the interior PFC concentrations were less than the detection limit). Samples of drilling fluid and drilling fluid components (i.e., seawater, gel, etc.) were stored for cell and virus enumeration as well as postexpedition identification of contaminants by molecular biological analysis. The potential of drilling fluid contamination will be carefully assessed by multiple QAs of contamination tracing.

Preliminary results of cell detection and enumeration show that microbial cell concentrations were distinctly lower than those observed at Site 1174 but at the same time suggest that intact microbial cells are present in low abundance to at least 600 mbsf, at which the estimated temperature is around 60°C (Figure F11). The complete cell count profile to the sediment/basement interface will be published after on-going cell enumeration and its validation of data quality. In addition, Expedition 370 provided for the first time morphological views of deep subsurface microbial cells in a low-
mass sediment sample using transmission electron microscopy (TEM) at KCC (Figure F12). Taxonomic compositions of microbial communities were also analyzed by sequencing PCR-amplified 16S rRNA genes using a Miseq platform at KCC. The preliminary data showed that, even with such an intensive effort to avoid contamination, the produced data appeared not free of signals from potential experimental contaminants; this means that more careful efforts on additional molecular analyses (e.g., at single cell to community levels in comparison to data from multiple control samples) will be necessary for low-biomass samples at Site C0023.

To more fully address some of the primary scientific objectives, incubation experiments of fresh sediment samples for potential microbial activity using radioactive tracers and high-pressure-temperature incubation systems were initiated both on the Chikyu and at KCC, respectively. In addition, various types of microbiological and biogeochemical samples were prepared for postexpedition studies, which include samples that will be used not only for molecular (DNA/RNA and lipid) analyses but also for stable isotope probing combined with secondary-ion mass spectrometry (SIMS) analysis, quantitative functional gene surveys, bioreactor cultivation experiments, probing protein synthesis activity, population of spore-forming microorganisms, exoenzyme activity measurements, and viruses.

Accomplishments and future prospectus

During Expedition 370, our major operational objectives (cf. Hinrichs et al., 2016) were successfully accomplished through shipboard (Chikyu) and onshore (KCC) activities. A large multidisciplinary team was developed for Expedition 370, including biologists, chemists, and geologists, to meet the scientific goals using the latest knowledge and state-of-the-art analytical technologies. As a result, a total of 112 cores were successfully retrieved by the Chikyu from Hole C0023A to the sediment/basement interface at 1180 mbsf as originally planned, which is the highest number of cores for the Chikyu from a single borehole and covers almost all temperature ranges of life up to ~120°C. All cored samples were processed through X-ray CT image scanning immediately after recovery, and rigorous QA/QC efforts for microbiological and geochemical samples were conducted, using both shipboard and shore-based super-clean facilities for the first time. The high-quality samples obtained during Expedition 370 will be used for various post-expedition research, providing an unprecedented opportunity to fully address important and challenging scientific questions regarding the limits of subseafloor life and the biosphere. The intensive geochemical measurements using high-quality WRC sections as well as geological, sedimentological, and physical property measurements were conducted on board throughout the cored samples at Site C0023. This multidisciplinary data set is crucial because it provides information on environmental conditions that may constrain habitability of subseafloor life and the deep subseafloor biosphere.

After coring operations, we successfully installed thermistor sensor strings into the cased borehole to 863 mbsf. A total of 13 thermistor sensors deployed on a 4 inch tube will monitor temperature above, within, and below the décollement zone, providing a long-term record of borehole temperature equivalent to in situ formation. However, we think that our plan and achievements for the temperature observatory at this particular location are still preliminary and incomplete, and a new implementation of long-term observatory systems, including more sensors and in situ experimental devices for not only geophysics but also geochemistry and microbiology, would provide another grand opportunity for addressing multiple scientific themes and challenges listed in the IODP Science Plan (e.g., biosphere frontiers, Earth connections, and geohazards).

Conclusively, Expedition 370 has been overall successful and provided an excellent opportunity to tackle important scientific issues regarding the limits of life in the deep subseafloor biosphere. The expedition, including shipboard and shore-based activities, was completed on 23 November 2016, but our scientific mission to the limit of the deep subseafloor biosphere has just started and will continue over the years at shore-based laboratories with precious samples and data retrieved from Site C0023.

References

T1. Expedition 370 hole summary. mbsl = meters below sea level.

<table>
<thead>
<tr>
<th>Hole</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Water depth (mbsl)</th>
<th>Cores (N)</th>
<th>Cored (m)</th>
<th>Recovered (m)</th>
<th>Recovery (%)</th>
<th>Drilled (m)</th>
<th>Penetration (m)</th>
<th>Time on site (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0023A</td>
<td>13°45.98′N</td>
<td>134°57.98′E</td>
<td>4775.5</td>
<td>112</td>
<td>761.7</td>
<td>577.85</td>
<td>75.9</td>
<td>418.3</td>
<td>1180</td>
<td>58</td>
</tr>
</tbody>
</table>

T2. Site C0023 core summary. (Continued on next page.)

<table>
<thead>
<tr>
<th>Core</th>
<th>Core on deck date (2016)</th>
<th>Core on deck time (h)</th>
<th>Top depth (mbsf)</th>
<th>Advanced (m)</th>
<th>Recovery (m)</th>
<th>Recovery (%)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>370-C0023A-1F</td>
<td>20 Sep 0810</td>
<td>189.0</td>
<td>1.5</td>
<td>1.77</td>
<td>118.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F</td>
<td>21 Sep 1629</td>
<td>203.0</td>
<td>1.2</td>
<td>1.20</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3F</td>
<td>21 Sep 1942</td>
<td>205.0</td>
<td>2.0</td>
<td>3.60</td>
<td>180.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F</td>
<td>22 Sep 0230</td>
<td>253.0</td>
<td>2.0</td>
<td>2.54</td>
<td>127.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5F</td>
<td>22 Sep 0940</td>
<td>255.0</td>
<td>2.0</td>
<td>3.70</td>
<td>185.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6F</td>
<td>22 Sep 1550</td>
<td>303.0</td>
<td>2.0</td>
<td>1.50</td>
<td>75.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7F</td>
<td>22 Sep 1956</td>
<td>305.0</td>
<td>9.5</td>
<td>6.60</td>
<td>69.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8F</td>
<td>23 Sep 0412</td>
<td>314.5</td>
<td>2.0</td>
<td>0.77</td>
<td>38.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9F</td>
<td>23 Sep 0821</td>
<td>316.5</td>
<td>2.0</td>
<td>3.65</td>
<td>182.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10F</td>
<td>23 Sep 1923</td>
<td>353.0</td>
<td>2.0</td>
<td>1.82</td>
<td>91.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11F</td>
<td>23 Sep 2213</td>
<td>355.0</td>
<td>2.0</td>
<td>1.21</td>
<td>60.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12F</td>
<td>24 Sep 0110</td>
<td>357.0</td>
<td>2.0</td>
<td>1.73</td>
<td>86.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13F</td>
<td>24 Sep 0333</td>
<td>359.0</td>
<td>2.0</td>
<td>1.97</td>
<td>98.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14F</td>
<td>24 Sep 1242</td>
<td>403.0</td>
<td>4.5</td>
<td>3.50</td>
<td>77.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15F</td>
<td>24 Sep 1636</td>
<td>407.5</td>
<td>3.0</td>
<td>0.63</td>
<td>21.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16R</td>
<td>27 Sep 0827</td>
<td>410.5</td>
<td>8.0</td>
<td>8.47</td>
<td>105.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17R</td>
<td>27 Sep 1216</td>
<td>418.5</td>
<td>9.5</td>
<td>3.28</td>
<td>34.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18R</td>
<td>27 Sep 1506</td>
<td>428.0</td>
<td>9.5</td>
<td>8.34</td>
<td>87.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19R</td>
<td>27 Sep 1856</td>
<td>437.5</td>
<td>9.5</td>
<td>9.00</td>
<td>94.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20R</td>
<td>27 Sep 2211</td>
<td>447.0</td>
<td>9.0</td>
<td>6.34</td>
<td>70.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21R</td>
<td>28 Sep 0223</td>
<td>456.0</td>
<td>9.5</td>
<td>6.30</td>
<td>66.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22R</td>
<td>28 Sep 0515</td>
<td>465.5</td>
<td>9.5</td>
<td>8.48</td>
<td>89.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23R</td>
<td>28 Sep 0823</td>
<td>475.0</td>
<td>9.5</td>
<td>6.45</td>
<td>67.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24R</td>
<td>28 Sep 1152</td>
<td>484.5</td>
<td>9.5</td>
<td>10.24</td>
<td>107.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25R</td>
<td>28 Sep 1527</td>
<td>494.0</td>
<td>9.5</td>
<td>8.37</td>
<td>88.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26R</td>
<td>28 Sep 1847</td>
<td>503.5</td>
<td>9.5</td>
<td>8.45</td>
<td>88.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27R</td>
<td>28 Sep 2211</td>
<td>513.0</td>
<td>9.0</td>
<td>2.37</td>
<td>24.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28R</td>
<td>29 Sep 0126</td>
<td>522.5</td>
<td>9.5</td>
<td>0.00</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29R</td>
<td>29 Sep 0734</td>
<td>532.0</td>
<td>4.0</td>
<td>1.90</td>
<td>47.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30R</td>
<td>29 Sep 1156</td>
<td>536.0</td>
<td>5.0</td>
<td>3.55</td>
<td>71.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31R</td>
<td>29 Sep 1436</td>
<td>541.0</td>
<td>9.5</td>
<td>8.20</td>
<td>86.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32R</td>
<td>29 Sep 1820</td>
<td>550.5</td>
<td>9.5</td>
<td>2.82</td>
<td>29.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33R</td>
<td>29 Sep 2223</td>
<td>560.0</td>
<td>9.5</td>
<td>10.52</td>
<td>110.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34R</td>
<td>30 Sep 0152</td>
<td>569.5</td>
<td>4.0</td>
<td>1.98</td>
<td>49.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35R</td>
<td>30 Sep 0518</td>
<td>573.5</td>
<td>9.5</td>
<td>6.76</td>
<td>71.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36R</td>
<td>30 Sep 0813</td>
<td>583.0</td>
<td>9.5</td>
<td>9.15</td>
<td>96.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37R</td>
<td>30 Sep 1156</td>
<td>592.5</td>
<td>9.5</td>
<td>4.28</td>
<td>45.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38R</td>
<td>30 Sep 1558</td>
<td>602.0</td>
<td>9.5</td>
<td>8.05</td>
<td>84.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39R</td>
<td>30 Sep 2036</td>
<td>611.5</td>
<td>9.5</td>
<td>5.86</td>
<td>61.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40R</td>
<td>1 Oct 0051</td>
<td>6210</td>
<td>9.5</td>
<td>9.33</td>
<td>98.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41R</td>
<td>1 Oct 0405</td>
<td>630.5</td>
<td>9.5</td>
<td>10.26</td>
<td>108.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42R</td>
<td>1 Oct 0714</td>
<td>640.0</td>
<td>9.5</td>
<td>6.23</td>
<td>65.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43R</td>
<td>1 Oct 1056</td>
<td>649.5</td>
<td>9.5</td>
<td>10.28</td>
<td>108.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44R</td>
<td>1 Oct 1444</td>
<td>659.0</td>
<td>9.5</td>
<td>10.41</td>
<td>109.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45R</td>
<td>1 Oct 1809</td>
<td>668.5</td>
<td>4.5</td>
<td>3.20</td>
<td>71.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46R</td>
<td>1 Oct 2141</td>
<td>673.0</td>
<td>5.0</td>
<td>5.30</td>
<td>106.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47R</td>
<td>2 Oct 0140</td>
<td>678.0</td>
<td>5.0</td>
<td>5.93</td>
<td>118.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48R</td>
<td>2 Oct 0454</td>
<td>683.0</td>
<td>4.5</td>
<td>4.58</td>
<td>101.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49R</td>
<td>2 Oct 0856</td>
<td>687.5</td>
<td>5.0</td>
<td>3.84</td>
<td>76.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50R</td>
<td>2 Oct 1206</td>
<td>692.5</td>
<td>5.0</td>
<td>5.48</td>
<td>109.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51R</td>
<td>2 Oct 1556</td>
<td>697.5</td>
<td>5.0</td>
<td>4.79</td>
<td>95.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52R</td>
<td>2 Oct 1949</td>
<td>702.5</td>
<td>5.0</td>
<td>2.66</td>
<td>53.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53R</td>
<td>3 Oct 0344</td>
<td>707.5</td>
<td>5.0</td>
<td>0.70</td>
<td>14.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54R</td>
<td>3 Oct 0752</td>
<td>712.5</td>
<td>5.0</td>
<td>1.90</td>
<td>38.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55R</td>
<td>6 Oct 0114</td>
<td>717.5</td>
<td>5.0</td>
<td>4.54</td>
<td>90.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56R</td>
<td>6 Oct 0519</td>
<td>722.5</td>
<td>5.0</td>
<td>5.75</td>
<td>115.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57R</td>
<td>6 Oct 1014</td>
<td>727.5</td>
<td>5.0</td>
<td>3.58</td>
<td>71.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58R</td>
<td>6 Oct 1404</td>
<td>732.5</td>
<td>5.0</td>
<td>2.93</td>
<td>58.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59R</td>
<td>6 Oct 1823</td>
<td>737.5</td>
<td>5.0</td>
<td>5.23</td>
<td>104.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60R</td>
<td>6 Oct 2244</td>
<td>742.5</td>
<td>5.0</td>
<td>3.53</td>
<td>70.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td>Core on deck date (2016)</td>
<td>Core on deck time (h)</td>
<td>Top depth (mbsf)</td>
<td>Advanced (m)</td>
<td>Recovery (m)</td>
<td>Recovery (%)</td>
<td>Comment</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>61R</td>
<td>7 Oct 0253</td>
<td>747.5</td>
<td>5.0</td>
<td>4.78</td>
<td>95.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62R</td>
<td>7 Oct 0708</td>
<td>752.5</td>
<td>5.0</td>
<td>2.85</td>
<td>57.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63R</td>
<td>7 Oct 1108</td>
<td>757.5</td>
<td>5.0</td>
<td>2.53</td>
<td>50.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64R</td>
<td>7 Oct 1518</td>
<td>762.5</td>
<td>4.0</td>
<td>1.74</td>
<td>43.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65R</td>
<td>7 Oct 2024</td>
<td>766.5</td>
<td>5.0</td>
<td>2.90</td>
<td>58.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66R</td>
<td>8 Oct 0115</td>
<td>771.5</td>
<td>3.5</td>
<td>3.79</td>
<td>108.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67R</td>
<td>8 Oct 0545</td>
<td>775.0</td>
<td>5.0</td>
<td>3.51</td>
<td>70.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68R</td>
<td>8 Oct 1002</td>
<td>780.0</td>
<td>5.0</td>
<td>1.45</td>
<td>29.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69R</td>
<td>8 Oct 1356</td>
<td>785.0</td>
<td>3.0</td>
<td>1.84</td>
<td>30.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70R</td>
<td>8 Oct 1801</td>
<td>790.0</td>
<td>3.0</td>
<td>0.28</td>
<td>9.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71R</td>
<td>8 Oct 2154</td>
<td>793.0</td>
<td>5.0</td>
<td>3.55</td>
<td>71.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72R</td>
<td>9 Oct 0138</td>
<td>798.0</td>
<td>6.0</td>
<td>1.45</td>
<td>43.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73R</td>
<td>9 Oct 0527</td>
<td>804.0</td>
<td>5.0</td>
<td>0.22</td>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74R</td>
<td>9 Oct 1306</td>
<td>809.0</td>
<td>3.0</td>
<td>0.27</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75R</td>
<td>9 Oct 1821</td>
<td>812.0</td>
<td>4.0</td>
<td>1.36</td>
<td>34.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76R</td>
<td>10 Oct 0257</td>
<td>816.0</td>
<td>4.0</td>
<td>2.61</td>
<td>65.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77R</td>
<td>10 Oct 0702</td>
<td>820.0</td>
<td>4.0</td>
<td>2.40</td>
<td>60.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78R</td>
<td>10 Oct 1058</td>
<td>824.0</td>
<td>4.0</td>
<td>3.80</td>
<td>95.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79R</td>
<td>10 Oct 1520</td>
<td>828.0</td>
<td>5.0</td>
<td>4.53</td>
<td>90.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80R</td>
<td>10 Oct 2010</td>
<td>833.0</td>
<td>9.5</td>
<td>9.81</td>
<td>103.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81R</td>
<td>11 Oct 1727</td>
<td>842.5</td>
<td>9.5</td>
<td>9.61</td>
<td>101.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82R</td>
<td>11 Oct 2223</td>
<td>852.0</td>
<td>9.5</td>
<td>4.20</td>
<td>44.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83R</td>
<td>12 Oct 0316</td>
<td>861.5</td>
<td>9.5</td>
<td>5.96</td>
<td>62.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84R</td>
<td>26 Oct 0142</td>
<td>871.0</td>
<td>9.5</td>
<td>8.62</td>
<td>90.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85R</td>
<td>26 Oct 0333</td>
<td>880.5</td>
<td>9.5</td>
<td>5.05</td>
<td>53.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86R</td>
<td>26 Oct 1053</td>
<td>890.0</td>
<td>9.5</td>
<td>3.20</td>
<td>33.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87R</td>
<td>26 Oct 1458</td>
<td>899.5</td>
<td>9.5</td>
<td>8.88</td>
<td>93.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88R</td>
<td>26 Oct 2012</td>
<td>909.0</td>
<td>9.5</td>
<td>5.59</td>
<td>58.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89R</td>
<td>27 Oct 0144</td>
<td>918.5</td>
<td>9.5</td>
<td>10.27</td>
<td>108.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90R</td>
<td>27 Oct 0730</td>
<td>928.0</td>
<td>9.5</td>
<td>6.07</td>
<td>63.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91R</td>
<td>27 Oct 1304</td>
<td>937.5</td>
<td>9.5</td>
<td>10.47</td>
<td>110.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92R</td>
<td>27 Oct 1710</td>
<td>947.0</td>
<td>10.0</td>
<td>6.62</td>
<td>66.2</td>
<td>+0.5 m drilling</td>
<td></td>
</tr>
<tr>
<td>93R</td>
<td>27 Oct 2050</td>
<td>957.5</td>
<td>10.0</td>
<td>10.40</td>
<td>104.0</td>
<td>+0.5 m drilling</td>
<td></td>
</tr>
<tr>
<td>94R</td>
<td>28 Oct 0045</td>
<td>968.0</td>
<td>10.0</td>
<td>10.70</td>
<td>107.0</td>
<td>+0.5 m drilling</td>
<td></td>
</tr>
<tr>
<td>95R</td>
<td>28 Oct 0500</td>
<td>978.5</td>
<td>10.0</td>
<td>6.60</td>
<td>66.0</td>
<td>+0.5 m drilling</td>
<td></td>
</tr>
<tr>
<td>96R</td>
<td>28 Oct 1432</td>
<td>989.0</td>
<td>10.0</td>
<td>10.27</td>
<td>102.7</td>
<td>+0.5 m drilling</td>
<td></td>
</tr>
<tr>
<td>97R</td>
<td>28 Oct 1815</td>
<td>999.5</td>
<td>10.0</td>
<td>9.71</td>
<td>97.1</td>
<td>+0.5 m drilling</td>
<td></td>
</tr>
<tr>
<td>98R</td>
<td>28 Oct 2204</td>
<td>1010.0</td>
<td>10.0</td>
<td>10.43</td>
<td>104.3</td>
<td>+0.5 m drilling</td>
<td></td>
</tr>
<tr>
<td>99R</td>
<td>29 Oct 0248</td>
<td>1020.5</td>
<td>10.0</td>
<td>10.23</td>
<td>102.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100R</td>
<td>29 Oct 0726</td>
<td>1030.5</td>
<td>10.0</td>
<td>6.15</td>
<td>61.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101R</td>
<td>29 Oct 1322</td>
<td>1040.5</td>
<td>10.0</td>
<td>10.32</td>
<td>103.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102R</td>
<td>29 Oct 1941</td>
<td>1050.5</td>
<td>10.0</td>
<td>8.84</td>
<td>88.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103R</td>
<td>30 Oct 0035</td>
<td>1060.5</td>
<td>10.0</td>
<td>10.23</td>
<td>102.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104R</td>
<td>30 Oct 0524</td>
<td>1070.5</td>
<td>10.0</td>
<td>7.96</td>
<td>79.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105R</td>
<td>30 Oct 1236</td>
<td>1080.5</td>
<td>10.0</td>
<td>3.62</td>
<td>36.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106R</td>
<td>30 Oct 1908</td>
<td>1090.5</td>
<td>8.0</td>
<td>4.65</td>
<td>58.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107R</td>
<td>31 Oct 0031</td>
<td>1098.5</td>
<td>9.5</td>
<td>5.72</td>
<td>60.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108R</td>
<td>31 Oct 0735</td>
<td>1108.0</td>
<td>10.0</td>
<td>5.03</td>
<td>50.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109R</td>
<td>31 Oct 1336</td>
<td>1118.0</td>
<td>3.0</td>
<td>3.00</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110R</td>
<td>31 Oct 2022</td>
<td>1121.0</td>
<td>8.0</td>
<td>5.89</td>
<td>73.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111R</td>
<td>3 Nov 1807</td>
<td>1173.0</td>
<td>3.5</td>
<td>0.85</td>
<td>24.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112R</td>
<td>3 Nov 2259</td>
<td>1176.5</td>
<td>3.5</td>
<td>0.45</td>
<td>12.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table T3. Final sensor positions of the temperature observatory, Hole C0023A. Thirteen sensors were deployed along three cables.

<table>
<thead>
<tr>
<th>Thermistor cable</th>
<th>Actual depth (mbsf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>299.4</td>
</tr>
<tr>
<td>3</td>
<td>736.8</td>
</tr>
<tr>
<td>3</td>
<td>755.8</td>
</tr>
<tr>
<td>3</td>
<td>774.8</td>
</tr>
<tr>
<td>2</td>
<td>784.3</td>
</tr>
<tr>
<td>3</td>
<td>793.8</td>
</tr>
<tr>
<td>2</td>
<td>803.3</td>
</tr>
<tr>
<td>1</td>
<td>812.0</td>
</tr>
<tr>
<td>3</td>
<td>812.9</td>
</tr>
<tr>
<td>2</td>
<td>822.3</td>
</tr>
<tr>
<td>2</td>
<td>841.4</td>
</tr>
<tr>
<td>1</td>
<td>859.5</td>
</tr>
<tr>
<td>2</td>
<td>860.3</td>
</tr>
</tbody>
</table>
Figure F1. Map showing heat flow data and ODP/Integrated Ocean Drilling Program transects and sites in the Nankai Trough (modified from Harris et al., 2013). Marine probes (circles), boreholes (stars), and bottom-simulating reflectors (BSRs) (small circles) are color coded by heat flow. On land, circles show borehole values of heat flow.

Figure F2. Cell count plots for ODP Site 1174 with depth and temperature axes (Shipboard Scientific Party, 2001b, 2001c). First drop of cell counts below MQL occurs around 550 mbsf, which corresponds to ~65°C. Interestingly, counts exceeded MQL again in deeper sediments just above the décollement at around 800 mbsf, where temperatures presumably reached 90°C; no cell detection was reported deeper.
Figure F3. Regional bathymetry map around Site C0023. Locations of Site C0023 (yellow) and existing nearby ODP drill sites (open white) are shown. Black box = area of 3-D seismic reflection volume along the Muroto Transect (Bangs et al., 2004; Gulick et al., 2004; Moore, Taira, Klaus, et al., 2001). Inset: general tectonic configuration of Japanese Island system.

Figure F4. Close-up bathymetry map around Site C0023. Yellow circle = Site C0023, open white circles = existing nearby ODP drill sites. Red outline = area of 3-D seismic reflection volume of the Muroto Transect, yellow thick dashed lines = cropped seismic sections of In-line (IL) 332 and Cross-line (XL) 781. MCS = multichannel seismic.
Figure F5. Prestack depth migration seismic section of In-line 332 cropped into region of interest. Original data are available at http://www-udc.ig.utexas.edu/sdc/cruise.php?cruiseIn=ew9907. Thick blue line = position of Site C0023 (with a depth scale in meters below seafloor), green arrows = horizons of the top of the décollement zone and oceanic basement. MSL = from mean sea level.

Figure F6. Depth-converted prestack time migration seismic section of In-line 781 cropped into region of interest with geological interpretation. Original data are available at http://www-udc.ig.utexas.edu/sdc/cruise.php?cruiseIn=ew9907. Blue arrow = projected position of Sites 808 and 1174.
Figure F7. Composite figures of lithology, mineralogy, structural geology, and physical properties, Site C0023. XRD = X-ray diffraction.

Figure F8. Geochemical profiles for sulfate, methane, alkalinity, DIC, dissolved ferrous iron, and manganese, Site C0023.
Figure F9. Hydrocarbon gas concentrations, Site C0023. Data plotted are for headspace samples taken from dedicated COMGAS WRC slices (sample Code 370HS). C_1 concentration from headspace analyses of safety gas samples taken in the core cutting area immediately after arrival on the catwalk (sample Code HS) is also shown.

Figure F10. Schematic overview of drilling fluid pumping and contamination sampling procedure used during Expedition 370. (A) Schematic depicting pumping of drilling fluid and (B) injection of PFC tracer into drilling fluid. HPLC = high-pressure liquid chromatography. Sampling plans for (C) drilling fluid contamination test and (D) WRC Sample MBIO2 (used for DNA analysis). CC = core catcher. L = liquid, S = scraping, FAL = Falcon tube. IN = interior, MD = middle, EX = exterior.
Figure F11. Preliminary cell count data obtained during Expedition 370. The full profile will be reported later after completion of the currently ongoing reevaluation of cell counts in light of QC assessments and uncertainty analysis.

Figure F12. Transmission electron micrographs of microorganisms separated and sorted from sediment in C0023A-6F-2 (304 mbsf).