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ABSTRACT
The recently-proposed nonlinear ensemble transform filter (NETF) is extended to a fixed-lag smoother. The NETF
approximates Bayes’ theorem by applying a square root update. The smoother (NETS) is derived and formulated in
a joint framework with the filter. The new smoother method is evaluated using the low-dimensional, highly nonlinear
Lorenz-96 model and a square-box configuration of the NEMO ocean model, which is nonlinear and has a higher
dimensionality. The new smoother is evaluated within the same assimilation framework against the local error subspace
transform Kalman filter (LESTKF) and its smoother extension (LESTKS), which are state-of-the-art ensemble square-
root Kalman techniques. In the case of the Lorenz-96 model, both the filter NETF and its smoother extension NETS
provide lower errors than the LESTKF and LESTKS for sufficiently large ensembles. In addition, the NETS shows a
distinct dependence on the smoother lag, which results in a stronger error increase beyond the optimal lag of minimum
error. For the experiment using NEMO, the smoothing in the NETS effectively reduces the errors in the state estimates,
compared to the filter. For different state variables very similar optimal smoothing lags are found, which allows for a
simultaneous tuning of the lag. In comparison to the LESTKS, the smoothing with the NETS yields a smaller relative
error reduction with respect to the filter result, and the optimal lag of the NETS is shorter in both experiments. This
is explained by the distinct update mechanisms of both filters. The comparison of both experiments shows that the
NETS can provide better state estimates with similar smoother lags if the model exhibits a sufficiently high degree of
nonlinearity or if the observations are not restricted to be Gaussian with a linear observation operator.

Keywords: Nonlinear filtering, data assimilation, Lorenz-96, NEMO

1. Introduction

Ensemble Kalman filters (EnKFs) are robust and well established
methods to improve model estimates by assimilating observa-
tions (see e.g. Kalnay, 2002; Evensen, 2006). By definition, a
filter estimate valid at any time only accounts for past obser-
vations. Thus, only the estimate at the end of an assimilation
window contains all observational information. While this is
sufficient for forecasting problems, other applications, such as
reanalyses, ask for optimal state estimates at intermediate times
as well (see e.g. Sakov et al., 2012). Smoothers (see e.g. van
Leeuwen and Evensen, 1996) transfer observational information
backwards in time. In a probabilistic sense, smoothers solve for
state distributions that are conditioned on all observations within
a time window (Cosme et al., 2012).

EnKFs can be easily extended to smoothers that add only
little additional cost to obtain the smoothed trajectory. Several

∗Corresponding author. e-mail: lars.nerger@awi.de

variants of smoothers based on EnKFs have been proposed (see
Evensen and van Leeuwen, 2000; Cosme et al., 2010; Kalnay and
Yang, 2010; Nerger et al., 2014). They all have in common that
the transform matrix of the filter at the current time step is used
to smooth the analysis ensembles at previous assimilation time
steps. In Khare et al. (2008), it was shown that the additional
use of localisation further reduces the errors in the smoother
estimate. This is also confirmed in Nerger et al. (2014), where in
addition, the effect of nonlinearity on the smoother performance
was investigated. They demonstrated that the smoother perfor-
mance was optimal when the smoothing was performed from the
filter result in which the inflation factor and localisation radius
were tuned so that the filter also yielded the best performance.
Even though localisation reduces the errors in the analysis, it
also limits the smoothing lag. Due to the Gaussian assumption
inherent to all EnKFs, smoothers based on these filters behave
sub-optimally in nonlinear systems (Nerger et al., 2014). Fully
nonlinear non-Gaussian smoothers based on the particle filter
exist (Gordon et al., 1993), but require ensemble sizes that are
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computationally not feasible for data assimilation applications
with high-dimensional models (see e.g. van Leeuwen, 2009).

The nonlinear ensemble transform filter (NETF, Tödter and
Ahrens, 2015) produces an analysis ensemble with mean and
covariance derived from Bayes’ theorem and without assuming
Gaussianity. Similar to the EnKFs, the NETF applies a transfor-
mation of the ensemble at analysis time. But while the EnKFs
compute a mean and covariance matrix according to the equa-
tions of the Kalman Filter, which is based on a Gaussian assump-
tion for the prior ensemble, the transformation in the NETF is
designed to exactly match the first two moments of the proba-
bility resulting from applying Bayes’ theorem.

Tödter and Ahrens (2015) applied the NETF to different non-
linear models. They found that the NETF provided smaller es-
timation errors than an EnKF when applied to the Lorenz-96
model with sufficiently large ensembles. Using a primitive equa-
tion ocean model, Tödter et al. (2016) demonstrated that the
NETF is also applicable to high-dimensional assimilation prob-
lems with an ensemble size that is computationally feasible.

To evaluate the performance of smoothers in data assimi-
lation applications, different models were applied in previous
studies. In Khare et al. (2008) the behaviour of an ensemble
Kalman smoother was investigated using the Lorenz-96 model
(Lorenz, 1996) and a general atmospheric circulation model.
Nerger et al. (2014) used the Lorenz-96 model and performed
twin experiments with a global ocean model. It was found that
the results from the Lorenz-96 model were transferable to more
complex models and a much larger state dimension. In this work,
the smoother is examined using the NEMO ocean model (Madec,
2012) using the same configuration as in Tödter et al. (2016). A
slightly different setup of the NEMO model was also applied in
Cosme et al. (2010) to assess an ensemble Kalman smoother. The
model configuration used here exhibits an intermediate degree
of nonlinearity and is appropriate to demonstrate the applicabil-
ity of the newly derived smoother in a system with high state
dimension. As is typically done in EnKFs, localisation and
inflation are applied in both the filter and the smoother to opti-
mise the performance with respect to the analysis errors.

The main focus of this work is to show how the NETF can be
extended to a smoother and that it can be successfully applied
with a general circulation model. The paper is organised as
follows. Section 2 reviews the NETF algorithm and formulates
the Nonlinear Ensemble Transform Smoother (NETS) as a se-
quential particle smoother based on the NETF and discusses
some practical issues regarding its implementation. In Section 3,
the application of the NETS to the small highly nonlinear Lorenz-
96 model is discussed. The results from applying the smoother
in the high-dimensional NEMO ocean model are presented and
compared to the results obtained from the Local Error Subspace
Transform Kalman Smoother (LESTKS, Nerger et al., 2014) in
Section 4. Finally, Section 5 draws the conclusions and finishes
with an outlook.

2. The NETF and its smoother extension

2.1. The nonlinear ensemble transform filter (NETF)

The purpose of this work is to extend the nonlinear ensem-
ble transform filter (NETF) by a smoother such that the state
estimates resulting from the data assimilation take also future
observations into account. First, the NETF is reviewed here
following Tödter and Ahrens (2015). In the following, the state
vector xk represents the prognostic model variables of a dynam-
ical system M at time tk . An ensemble consists of m model
states, which are stored in the columns of the matrix Xk =[
x(1)

k , . . . , x(m)
k

]
, where the superscript (i) denotes the ensemble

index. The ensemble filters considered here alternate forecast
and analysis steps. The forecast corresponds to an ensemble
integration with M. The analysis step transforms the forecast
ensemble X f

k into an analysis ensemble Xa
k that accounts for the

current observations. The observations at time tk are denoted
by the vector yk of size p and the observation operator Hk(xk)

maps any model state xk into observation space.
The ensemble mean at time tk is computed as xk = 1

m Xk1,
using the vector 1 = (1, . . . , 1)T of length m. Thus, defining the
matrix

Xk =
[
xk , . . . , xk

]
= 1

m
Xk11T , (1)

the ensemble perturbation matrix X′
k is given by

X′
k = Xk − Xk = XkS (2)

with

S = Im − 1

m
11T (3)

where Im denotes the m × m identity matrix.
The NETF transforms the forecast ensemble into an analysis

ensemble by applying a weight vector and a transform matrix to
the forecast mean and the ensemble perturbations, respectively.
As most particle filters, the NETF uses the likelihood weights
that derive from Bayes’ theorem, instead of a transformation
purely based on covariance matrices as in EnKFs. For normally
distributed observation errors with covariance matrix Rk , the
weight of each ensemble member is given by

w
(i)
k ∝ N

(
yk |H

(
x f (i)

k

)
, Rk

)
(4)

∝ exp

[
−1

2

(
y − y f (i)

k

)T
R−1

k

(
y − y f (i)

k

)]
, (5)
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where y f (i)
k = Hk(x f (i)

k ). As usual in particle filters, the
weights are normalised so that they sum up to one. To increase
the filter stability, the ensemble perturbations should be inflated
by an inflation factor γ > 1 before the weights are computed. As
in EnKFs, γ needs to be tuned for optimal assimilation results.

The weight vector and transform matrix of the NETF are
computed from these weights by

wk = (w
(1)
k , . . . , w

(m)
k )T , (6)

Tk = √
m

[
Diag(wk) − wkwT

k

]1/2
. (7)

Here, Diag(wk) is a diagonal matrix that contains the weights
w(i) on the diagonal. The analysis ensemble is given by

Xa
k = X

a
k + Xa′

k (8)

where the analysis perturbations are computed as

Xa′
k = X f ′

k Tk� (9)

where � is an orthogonal matrix. Here, we use a random matrix
(see Pham, 2001; Hoteit et al., 2002).As an alternative, de Wiljes
et al. (2016) recently proposed a deterministic choice for �,
which is not explored here. In addition, the mean is updated via

X
a
k = X

f
k + X f ′

k wk1T . (10)

For the smoother formulation introduced below, Equation (8)
is rewritten as a product of the forecast ensemble and a matrix
Gk . Following Nerger et al. (2014), where the ESTKF was
extended to a smoother, the combination of Equations (8)–(10)
gives

Xa
k = X

f
k + X f ′

k wk1T + X f ′
k Tk�

= 1

m
X f

k 11T + X f
k S

(
wk1T + Tk�

)

= X f
k Gk (11)

with

Gk = 1

m
11T + S

(
wk1T + Tk�

)
. (12)

Computationally, the algorithm is very similar to the ensemble
transform Kalman filter (ETKF, Bishop et al., 2001) and the ES-
TKF (Nerger et al., 2012). The nonlinearity of the NETF results

from the use of the particle weights (Equation 4) to update the en-
semble mean and to transform the ensemble perturbations. Thus,
the correction is a nonlinear function of y − y f (i)

k . The weights
in the NETF are computed directly from Bayes’ theorem, and
are not derived via assumptions of Gaussianity as in the Kalman
filter and its variants. With its explicit ensemble transformation,
the NETF can be classified as a second-order accurate particle
transform filter (de Wiljes et al., 2016). Accordingly, the NETF
is expected to provide better state estimates for sufficiently large
ensembles than EnKFs in cases where model nonlinearity results
in non-Gaussian state error distributions.

More details on the derivation and implementation of the
NETF can be found in Tödter and Ahrens (2015) and Tödter
et al. (2016).

2.2. The nonlinear ensemble transform smoother (NETS)

As the NETF itself, the NETS is formulated as a sequential
method. Here, it is shown how the NETS results from the general
formulation of a sequential particle smoother.

The aim of smoothing is to compute an estimate of the tra-
jectory of states x0:k by assimilating all observations inside the
interval [t0, tk ], where the notation x0:k denotes all states x j with
j ∈ {0, k}. In probabilistic terms, one computes an estimate of
the probability density function (pdf) p(x0:k |y1:k) of the state
trajectory x0:k given all observations y1:k up to the current time
tk . In contrast to filters, the observations at some time tk are
also used to estimate the state at times t j < tk . Without loss of
generality, it is assumed, that the first observation is available
at time t1. It is further assumed that the process is a first-order
Markov process and that the observations y j at some time t j
only depend on the specific state x j at the time. Using Bayes’
theorem on p(x0:k |y1:k), the equations for a sequential smoother
can be derived (see, e.g. Evensen and van Leeuwen, 2000) as

p(x0:1|y1) = p(x0)p(x1|x0)p(y1|x1)

p(y1)
, (13)

p(x0:2|y1:2) = p(x0:1|y1)p(x2|x1)p(y2|x2)

p(y2|y1)
, (14)

...

p(x0:k |y1:k) = p(x0:k−1|y1:k−1)p(xk |xk−1)p(yk |xk)

p(yk |y1:k−1)
. (15)

General particle smoothers, which represent the pdfs by an
ensemble of particles have been discussed, e.g. by van Leeuwen
and Evensen (1996), Kitagawa (1996), and Godsill et al. (2004) .
Writing p(x0:k−1|y1:k−1)p(xk |xk−1) = p(x0:k |y1:k−1), Equa-
tion (15) can be formulated as

p(x0:k |y1:k) =p(x0:k |y1:k−1)
p(yk |xk)

p(yk |y1:k−1)
(16)
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where the rightmost term will provide the particle weights.
In the particle representation it is

p
(
x0:k−1|y1:k−1

) ≈ 1

m

m∑
i=1

δ
(

x(i)
0:k|k−1 − x0:k|k−1

)
. (17)

Here, the notation for the particles follows Cosme et al. (2010).
The time index is replaced by a double subscript ki |k j , where ki
denotes the time represented by the state vector and k j is the lat-
est time from which observations are considered. An augmented
particle holding the state information from different times is
denoted by an interval in ki like ‘0 : k’. Thus, x(i)

0:k|k−1 denotes
the i−th ensemble member extended with the forecast of the
state at the last time step [x(i)

0:k−1|k−1, M(x(i)
k−1|k−1)], where

M is the numerical model. The equal weight m−1 for each
member results here from the resampling in particle filters or
the ensemble transformation performed in the NETF. Applying
Equation (15) results in modified weights of the particles, thus

p(x0:k |y1:k) ≈
N∑

i=1

w
(i)
k δ(x(i)

0:k|k−1 − x0:k|k−1) (18)

with analysis weights w
(i)
k given by

w
(i)
k = p(yk |x(i)

k )

p(yk |y1:k−1)
. (19)

Here, only the likelihood p(yk |xk) needs to be computed as in
the NETF while the denominator only serves to normalise the
weights so that their sum is one. In a similar way, a fixed-lag
particle smoother can be derived, in which the observations are
only used to smooth the previous L time steps (see, e.g. van
Leeuwen and Evensen, 1996; Khare et al., 2008).

In extended notation by Cosme et al. (2010), the forecast and
analysis ensembles at time k are denoted as X f

k ≡ Xk|k−1 and
Xa

k ≡ Xk|k , respectively. Likewise, the state at time t j having
assimilated all observation up to time tk is denoted X j |k . For
clarity, the superscripts f and a are still used below, even though
they are redundant.

For the smoother formulation, it is important to note that the
correction of particles at earlier times t j < tk is computed using

the same weights w
(i)
k as for the filter correction at time t . For the

NETS this means that the update matrix Gk in Equation (12) is
applied to the ensembles at earlier times to perform the smooth-
ing. Thus, the filter is extended to the smoother by updating the
whole trajectory instead of only the ensemble at the current time
step with the observations at this latest time step.

In the extended notation, the NETF update Equation (11) is

Xa
k|k = X f

k|k−1Gk (20)

with Gk given by Equation (12).
The smoother is now applied iteratively by using at each filter

analysis step, the matrix Gk to smooth the previous ensembles.
The solution at some time k − l, which includes all observations
up to time k, is hence given by the multiplication

Xa
k−l|k = Xa

k−l|k−1Gk . (21)

At time k − l, the smoothed ensemble Xa
k−l|k contains the in-

formation from all observations up to l time steps in the future.
Here, l denotes the so-called smoothing lag, which defines how
far into the past observations influence the smoother estimate.

For a linear model, using an infinite lag in a smoother ex-
tension of a Kalman filter, i.e. using all observations within the
assimilation window and not using localisation, should yield
the minimal error (see e.g. Cohn et al., 1994). However, for
higher dimensional and nonlinear systems, two factors limit the
optimal lag of the filter. First, as mentioned by Cosme et al.
(2010), due to the nonlinearity in the model dynamics, a finite
lag will usually provide smaller errors in the estimate. This
results in an optimal lag as was shown in Nerger et al. (2014).
Second, localisation is usually required for the application of
the ensemble filters and smoother to high-dimensional systems.
However, the elimination of longer range spatial correlations
also limits the usable lag (Khare et al., 2008; Nerger et al., 2014).

The commonly used method of covariance inflation also needs
to be taken into account in the smoothing. Ensemble filters
usually inflate the ensemble spread to account for the lack of
model error, to compensate for effects of nonlinearity (see, e.g.
Szunyogh, 2014, Sec. 4.2.7.), and because of sampling errors
caused by the finite ensemble size. As derived in Cosme et al.
(2010), in ensemble smoothers, the covariance inflation should
only affect the covariance at the analysis time. Here, this ap-
proach is also used for the NETS, to avoid that the inflation
factor is re-applied each time the analysis is smoothed, which
would lead to an overinflated ensemble.

In ensemble Kalman smoothers, it is common to multiply
the matrix Gk by the inverse inflation factor (see Nerger et al.,
2014, for details) to remove the inflation. Unfortunately, this
simple approach cannot be used in the NETS since its transform
matrix depends nonlinearly on the forecast perturbations (see
Equation 7). Therefore, the NETS computes two different trans-
form matrices at each analysis time. The first one is computed
with prior inflation and is applied in the filter analysis (Equation
12). The second transform matrix is computed without inflating
the prior ensemble. This matrix is used to smooth the previous
ensembles using Equation (21). The additional computational
effort to compute the second transform matrix is small com-
pared to the multiplication of the ensembles with Gk if the
state dimension is much larger than the ensemble size and the
number of observations. An alternative would be to apply
the inflation to the analysis ensemble. In this case, the transform
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matrix is computed without inflation and can be used directly
in the smoother. This posterior inflation, however, resulted in
larger errors in the experiments described below and is hence
not further discussed.

2.3. Localization

In Tödter and Ahrens (2015), a localised variant of the NETF
was introduced to reduce the required ensemble size. The intro-
duction of localisation reduced the errors in the state estimates
considerably and also maintained the physical consistency of
state realisations in an ocean circulation model (Tödter et al.,
2016).

The use of localisation in the smoothing context was previ-
ously discussed in Khare et al. (2008) and Nerger et al. (2014)
for ensemble square-root methods. The studies showed that,
for atmospheric and oceanic data assimilation, the application
of a localised smoother strongly reduced the error of the state
estimates of the localized filter. Moreover, despite the fact that
localisation limits the length of the smoother lag, a large lag
of over 50 days was optimal in the assimilation of sea surface
height into a global ocean model (Nerger et al., 2014).

As for the localised ESTKS, the NETS is the local smoother
extension of the localised filter using the same localisation ra-
dius. Thus, Equation (21) is applied locally using the matrices
Gk , which are computed for each local domain.

3. Smoother behaviour with the Lorenz-96 model

3.1. Data assimilation setup

To assess the behaviour of the proposed nonlinear ensemble
smoother NETS, twin experiments with the low-dimensional
Lorenz-96 (Lorenz, 1996) model are performed. The NETS is
compared to the Local Error Subspace Kalman Filter (LESTKF)
and Smoother (LESTKS). The LESTKF is a state-of-the-art
ensemble square-root Kalman filter that was used in different
studies (Nerger et al., 2012; Nerger, 2015; Kirchgessner et al.,
2014). For the same forecast ensemble, the LESTKF yields the
same analysis ensemble as the LETKF (Hunt et al., 2007), but
computes the update directly in the error-subspace spanned by
the ensemble rather than using the ensemble perturbations and
is computationally slightly more efficient than the LETKF. The
LESTKS was introduced in Nerger et al. (2014) and investigated
using the Lorenz-96 model (Lorenz, 1996) and the finite element
general circulation ocean model FESOM (Danilov et al., 2004).
The performance of the NETF when applied to the Lorenz-96
model was discussed in Tödter and Ahrens (2015). They showed
that the filter is able to successfully reduce the errors in the
analysis, and it outperformed both the LETKF and the nonlinear
ensemble adjustment Kalman filter (NLEAF, Lei and Bickel,
2011).

The Lorenz-96 model is a low-dimensional nonlinear model
that is frequently used to study the behaviour of data assimilation
methods (e.g.Anderson, 2001;Whitaker and Hamill, 2002; Sakov
and Oke, 2008; Janjić et al., 2011; Lei and Bickel, 2011). Follow-
ing Tödter and Ahrens (2015), the Lorenz-96 model is applied
here with a state dimension of 80 grid points. The forcing pa-
rameter is set to F = 8.0 and the time stepping is computed
using the Runge–Kutta 4th-order time stepping scheme with a
dimensionless time step size of 0.05. As in Tödter and Ahrens
(2015), double-exponential observation errors are applied to in-
crease the nonlinearity of the data assimilation experiment. A
long forward model run over 11000 time steps represents the
truth. Observations at each second grid point are generated by
adding random noise with double-exponential distribution and a
standard deviation of one to the truth run. The observations start
at time step 2000 of the truth-run to avoid the spin-up period of
the model. The observations are assimilated after each 8 time
steps over a period of 5000 time steps. Ensembles with sizes
between 20 and 70 states are initialised by random drawing of
model states from the true model trajectory omitting the model
spin-up phase of 2000 time steps. The chosen experimental setup
represents a difficult configuration for data assimilation (see (Lei
and Bickel, 2011)) and the errors of the state estimate are larger
than the prescribed observation errors.

Localisation is applied for both the NETF and the LESTKF
and their smoother extensions. For the chosen configuration
of the data assimilation experiment, the LESTKF shows the
smallest RMS errors for a localisation radius between 7 grid
points for m = 20 and 12 grid points for m = 70. The optimal
localisation radius for the NETF varied between 6 and 7 grid
points. For both filters, the inflation is individually tuned to
obtain minimum analysis errors and ranged between 5 and 18%.
For each filter, the assimilation experiments are repeated ten
times which different initial ensembles. Below, the root mean
square error (RMSE) averaged over these ten experiments as
well as its standard deviation is discussed.

The computations were performed using the Parallel Data
Assimilation Framework (PDAF, Nerger and Hiller, 2013). In
PDAF, both the NETF and LESTKF are implemented in an
efficient way. Due to the identical smoothing methodology, the
same smoother routines are applicable for both methods.

3.2. Results

The time-averaged RMSE (MRMSE) in dependence of the
smoother lag is shown for m = 60 for both filters and smoothers
in Fig. 1. A lag of zero represents the filter solution. The figure
shows the MRMSE for the optimal localisation radius and infla-
tion for each method. Averaged over the ten experiments with
different initial ensembles, the NETF yields an MRMSE of 1.20,
while it is 1.40 for the LESTKF. The smoothing further reduces
the RMSE up to an optimal lag of 16 time steps (2 analysis cycles)
for both smoothers. At the optimal lag, the MRMSE from NETS
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Fig. 1. The time-averaged RMS error of the state estimate in the
Lorenz-96 model as a function of the smoother lag for the two smoothers
NETS and LESTKS in the optimal configuration for an ensemble size
of 60. The NETS uses a localisation radius of 7 grid points, while the
LESTKS uses 12 grid points. The grey lines show a range of one standard
deviation of the variability over 10 experiments. A lag of zero shows the
MRMSE of the filters.

is 1.05 while it is 1.18 for the LESTKS. Thus, the NETF and
NETS provide smaller errors not only in the case of filtering,
but also for smoothing. However, the smoothing has a stronger
effect in the LESTKS than in the NETS.

If the lag is increased beyond the optimal lag, the MRMSE
of both smoothers grows. For the LESTKS, the MRMSE grows
slowly and approaches an asymptotic value in which the
smoother provides a lower MRMSE than the filter. As explained
in Nerger et al. (2014), this increase in MRMSE is caused by the
model nonlinearity, while the different analysis times decorrelate
for long lags without increasing the MRMSE in the case of a
linear model. In comparison to the LESTKS, the MRMSE of the
NETS grows faster. The MRMSE also approaches an asymptotic
value for very long lags beyond the shown maximum lag of
200 time steps. However, for a lag of more than 72 time steps,
the MRMSE of the smoother exceeds the MRMSE of the filter.
Thus, for too long lags, the smoothing in the NETS deteriorates
the filter estimate.

The difference in the dependences of the smoother perfor-
mance on the lag in LESTKS and NETS is caused by the distinct
update mechanisms of the analysis steps in both smoothers. In
the LESTKF, the analysis covariance is determined from the
forecast and observation error covariances, while the values of
the observations themselves are only relevant for the update
of the state estimate, i.e. the ensemble mean (Posselt et al.,
2014).As described in Cosme et al. (2010), the ensemble Kalman
smoothers then use the cross-covariance matrices between the
current and past times. In contrast, the NETF updates both
the ensemble mean and the ensemble perturbations using the

Fig. 2. The time-averaged RMS error as a function of the ensemble
size. Shown are the LESTKF (black solid), LESTKS (blue solid), NETF
(black dashed), and NETS (blue dashed). For the smoothers the MRMSE
for the optimal smoothing lag is show.

observation values via their likelihoods (see Equation 4). Due
to the observation errors the likelihoods can vary highly (van
Leeuwen, 2009). This causes the NETF updates to be more noisy
than the LESTKF updates. Thus, the direct use of the observa-
tions for filtering and smoothing limits the improvement to states
at times close to the current assimilation time. Furthermore, due
to the larger variability in the observations, spurious correlations
over longer time spans than in the LESTKS can persist. These
spurious correlations lead to the stronger increase of the RMSEs
for longer lags in the NETS.

The performances of the NETF and NETS depend strongly
on the ensemble size, while the dependence is weaker for the
LESTKF and LESTKS. Fig. 2 shows the MRMSE for different
ensemble sizes between 20 and 70. For m = 20, the MRMSE
of both the NETF and NETS are higher than the MRMSE of the
LESTKF and LESTKS. For m = 30 the MRMSE of both filters
are almost identical, but the LESTKS yields a lower error than
the NETS. Both the NETF and NETS outperform the LESTKF
and LETKS, respectively, for m = 40 and larger. For m =
70, the filtering in the NETF already yields a smaller MRMSE
than the smoothing in LESTKS, while the NETS reduces the
MRMSE below the observation error. This dependence on the
ensemble size is consistent with that shown in Tödter andAhrens
(2015).1 Comparing the differences of the MRMSE between the
smoother and filter of each method it is visible that the impact
of the smoother in the LESTKS grows by a very small amount
with the ensemble size. In contrast, the impact of the smoother
grows significantly with the ensemble size in case of the NETS
in particular for ensembles with m ≤ 40. This indicates again
the important effect of sampling errors in the NETS, because the
sampling errors shrink for growing ensembles.
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4. Smoother behavior with NEMO

4.1. Data assimilation setup

To demonstrate that the introduced smoother is applicable to
a realistic assimilation problem and to assess the behaviour of
the NETS in a multivariate assimilation case, twin experiments
with the ocean circulation model NEMO (Nucleus for European
Modelling of the Ocean, Madec, 2012) are performed. As for the
Lorenz-96 experiments, the NETS is compared to the square-
root filter LESTKF and the smoother LESTKS. In Tödter et al.
(2016) the NETF was applied to the same model configuration
as used here. The computations use the same implementation
of the filters and smoothers provided by PDAF (Nerger and
Hiller, 2013) as used for the Lorenz-96 model. Here, only a short
summary of the data assimilation setup and model configuration
is presented. Additional details can be found in Tödter et al.
(2016) and Yan et al. (2014).

In the experiments, a double gyre configuration of NEMO is
utilised. This configuration was previously used for data assim-
ilation experiments in several studies (Cosme et al., 2010; Yan
et al., 2014; Tödter et al., 2016). In this model, the full primitive
equations are solved on a regular square Arakawa C grid, using
the free surface formulation. The domain extends from 24◦ to
44◦ in latitude, −60◦ to −30◦ in longitude and to a depth of
5054m. The configuration has 1/4◦ horizontal resolution and 11
vertical layers. The model was configured such that the observed
physical features are in good agreement to what is observed in
the Gulf Stream or Kuroshio. Salinity is globally constant, so the
relevant prognostic variables consist of a two-dimensional sea
surface hight (SSH) fied, and the three three-dimensional fields
for the horizontal velocities (U, V) and the temperature (T). For
the assimilation, all variables are collected in the state vector x
within PDAF.

The data assimilation was initialised from a 74-year model
spin-up run. The following two years were used as the truth
for the assimilation experiments. Assimilated were synthetic
observations of temperature profiles and SSH. The tempera-
ture observations were generated by adding Gaussian random
noise with a standard deviation of 0.3◦C to the true state. The
observation availability mimicked that of ARGO floats (Carval
et al., 2015).As a simplification compared to the real distribution
of ARGO floats, the observations were taken on a regular grid
with a horizontal resolution of 3◦. Only the upper 2000m were
observed. To simulate the motion of the floats, the observation
grid was shifted by two degrees in the horizontal plane between
the analysis steps. To generate the SSH observations, a random
error with standard deviation of 0.06m was added to the true
SSH field. This is in the same order as the error of satellite
observations from Jason-1 or Envisat (see e.g. Durrant et al.,
2009). The observation grid simulated satellite tracks to which
the SSH from the true model trajectory was interpolated. Both
SSH and T were assimilated every second day. In the second

year of the experiments, the observation layout from the first
year was repeated. As is typical for ocean data assimilation
applications, the observations are sparse. On average, 145 SSH
observations and 3128 temperature observations are assimilated
at each analysis time (Tödter et al., 2016).

The initial ensemble of 120 states was generated from years
51 to 74 of the spin-up run using second-order exact sampling
(Pham, 2001). The inflation factor and localisation radius were
tuned to yield the minimal RMSE in the filter state estimate. All
filters and smoothers were used with a horizontal localisation
radius of 2.5◦ (≈ 250 km). In addition, the observations were
weighted by a fifth-order polynomial correlation function (Eq.
(4.10) of Gaspari and Cohn, 1999) depending on their distance
from the analysis grid point. Inflation factors of γ = 1.02
for the NETF/NETS and γ = 1.01 for the LESTKF/LESTKS
were used. In the experiments, both smoothers used the same
observations and initial ensemble. The smoothing lag was varied
between 0 (i.e. the filter) and 120 days, which results in at most
60 applications of the smoothing algorithm.

4.2. Results and discussion

Figure 3 shows the RMSE for the SSH field for the filter and
the smoother with a lag of 30 days. The RMSE of both the filter
and the smoother shrinks during a spin-up phase of about 240
days. After this time, the RMSE remains constant with some
short-time variability, but no trend. The NETS clearly reduces
the RMSE compared to the NETF. In the first few assimilation
cycles, the reduction in the error is not very large, but it increases
in the following steps. After 10 analysis steps, the RMSE for the
NETS is consistently smaller than for the NETF. This, shows
that the spin-up phase of the smoother relative to the filter is
very short compared to the filter spin-up time of about 240 days.
For the other model fields, the behaviour is similar (not shown).

In Cosme et al. (2010), it was shown that smoothing in the
Kalman filter context does not only reduce the RMSE when
compared to the filter, but also smoothes the trajectory such that
the error remains almost constant over the whole trajectory. To
this end, in Cosme et al. (2010) the measure of roughness

Ro =
∫ tend

t0+lag

(
dRMSE

dt

)2
dt (22)

was introduced. A higher value of Ro indicates a higher vari-
ability in the error evolution and vice versa. Figure 4 shows the
roughness of the error trajectory for all prognostic variables in
dependence on the lag. The filter analysis corresponds to a lag of
zero. Similar to ensemble Kalman smoother discussed by Cosme
et al. (2010), the NETS reduces the roughness of the RMSE. Up
to a lag of 12 days, the roughness is reduced by more than two
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Fig. 3. The RMS error in the SSH at each assimilation time step over
the assimilation time. Over the whole assimilation window, the errors
in the smoother estimate (black) are lower than the errors of the filter
estimate (green).

Fig. 4. Roughness of the assimilated and smoothed error-trajectories
in semi logarithmic scale in dependence of the lag. The smoothing
strongly reduces the roughness of the error-trajectory. Up to a lag of
12 days, the reduction is of about two orders of magnitude. For longer
lags, the roughness stays almost constant for all fields.

orders of magnitude. However, a lag larger than 12 days slightly
increases the roughness again, which is likely caused by the noise
in the ensemble updates.

To further assess the effectiveness of the smoothing in depen-
dence of the lag, the relative improvement (Ri) is computed for
all lags from 0 to 120 days according to.

Rilag = 100 ·
(

1 − MRMSEsmoother

MRMSE f ilter

)
(23)

Here, the MRMSE denotes the mean RMSE over the first
600 model days. Figure 5 shows that the smoother reduces the
MRMSE in the smoothed ensemble for all four fields. Up to a
lag of about 30 days, increasing the lag also improves the state
estimate up to 11% in SSH, 9% in T and 7% in the velocities.
The reduction is strongest for the observed model fields SSH and
T, but the unobserved velocities are also improved. The optimal
lag is about the same if one considers the whole experimental
period or if one omits the filter spin-up phase of 240 days. The
relative improvement for the SSH also remains approximately
unchanged with 11.1%. However, after the spin up phase, the
smoothing is less effective for the temperature with an Ri of
only 7.7% and a bit more effective for the velocities for which
the Ri is about 8.4%.

As for the Lorenz-96 experiments, there is a lag for which
the smoother yields the largest improvements. If the smoothing
lag is larger than about 40 days, the Ri decreases but remains
positive. Thus, the long lags do not deteriorate the filter state
estimates as in the Lorenz-96 experiment. The optimal lags vary
slightly for the different fields. The range of optimal lags, which
is defined here as all lags whose minimal error is not more than
0.5% larger than the minimum, is given in Table 1. For the NETS,
the common range of optimal lags for all fields is between 24
and 36 days.

The optimal lag is significantly longer than the lag of eight
days reported by Cosme et al. (2010), who used a very
similar model configuration to the one assessed here. In Nerger
et al. (2014), where a global ocean model with lower resolution
was used, optimal lags between 40 and 170 days were found,
depending on the physical fields. The long optimal lags were
contributed to the low resolution of the ocean model, so that
nonlinearities are weaker than in the model that was used here.
In Nerger et al. (2014), the optimal lag did also vary significantly
for the different fields, and hence, it was suggested to optimise
the smoothing lag independently for the different model fields.
This approach is not necessary here since a common optimal lag
can be chosen for all fields in our experiments.

A major difference between our experiments and the experi-
ments in Nerger et al. (2014) consists in the additional assimila-
tion of temperature profiles. Because of these observations, the
velocities in the ocean are also improved between 7–8%. This is

Table 1. Minimal error, maximal relative improvement and range of
optimal lags for all four variables for the NETS. For all variables, a
common range of optimal lags exists.

Field Min. MRMSE Error reduction (%) Optimal Lag

SSH 0.012m 11.4 [22 40] days
T 0.025°C 9.1 [24 46] days
U 0.012m/s 7.2 [18 40] days
V 0.013m/s 7.5 [20 36] days
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very close to the reduction of 5–8% that was observed in Cosme
et al. (2010), but is three to four times higher than in Nerger et al.
(2014). The additional use of the temperature observations might
be the reason why the optimal lags of the different physical fields
highly overlap here in contrast to what was observed in Nerger
et al. (2014).

4.3. Comparison to an ensemble Kalman smoother

To compare the results of the NETS with an EnKF-based
smoother, experiments with the same setup were performed with
the LESTKS. In the same model configuration as used here, the
filtering performance of the LETKF and NETF were already
discussed in (Tödter et al., 2016). It was shown, that the NETF
produced very similar results to the LETKF in terms of RMSE
and continuous ranked probability score (CRPS, Gneiting et al.,
2007).

Figure 6 shows the RMSE for the LESTKF and the LESTKS
with a lag of 30 days. The data assimilation shows a spin-up
like the NETF in Fig. 3. However, the asymptotic error level
is already reached after about 120 days. This shorter spin-up
time was already discussed in Tödter et al. (2016). After the
spin-up phase, both filters perform similarly well in the anal-
ysis. Similar to the NETS in Fig. 3, the LESTKS achieved
smaller RMSEs for SSH and the other variables compared to
the LESTKF. The smoother spin-up time is again only about 20
days.

The relative improvement Ri for the LESTKS is shown in
Fig. 7 in analogy to Fig. 5 for the NETS. In contrast to the NETS,
where all fields were improved with a similar dependence on the
lag, the LESTKS exhibits a distinct behaviour for the tempera-
ture field. The Ri for SSH , U and V is reduced after smoothing

Fig. 5. Relative improvement of the NETS compared to the NETF.
Increasing the smoothing lag too much reduces the relative improvement
of the filter.

Fig. 6. The RMSE in the SSH over the assimilation time computed
with the LESTKF and LESTKS. As for the NETF/NETS, the RMSE of
the smoother estimate (black) is lower than in the filter estimate (green).

Fig. 7. The LESTKS reduces the error in each variable between 9
and 13 per cent. The improvement is largest in the observed fields SSH
and T .

for about 40 days. However, the Ri for the temperature field
grows up to the maximum lag of 120 days. As mentioned above,
the temperature observations also induce a positive impact for
the estimation of the velocities. For the LESTKS, the impact is
about 2 to 3 per cent points higher than what can be achieved by
the NETS.

The reduced sensitivity to the smoother lag in the LESTKS
compared to the NETS can be attributed to the different update
mechanisms in the underlying filters. As explained in Section 3,
the update weights used in the filtering and smoothing in the
NETF and NETS are directly computed from the likelihoods
of the observations. These can vary strongly and can hence
have less relevance for longer time spans and can even result
in spurious temporal correlations.
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Table 2. Minimal error, maximal relative improvement and range of
optimal lags for all four variables for the LESTKS. For all variables, a
common range of optimal lags exists.

Field Min. MRMSE Error reduction (%) Optimal Lag

SSH 0.009m 12.3 [30 58] days
T 0.019°C 12.2 [52 120] days
U 0.0095m/s 9.9 [34 80] days
V 0.0097m/s 10.5 [32 66] days

Table 2 summarises the minimal values of the MRMSE and
error reductions for the different fields. The error reductions for
SSH in the NETS and LESTKS are very similar. Yet, the error
reduction for T is larger for the LESTKS than the NETS. This
also has a positive impact on the velocities. In comparison to the
NETS, the minimal MRMSEs of the velocities (see Table 2) are
slightly smaller for the LESTKS. This is mostly due to the faster
spin-up phase in the beginning of the assimilation window but
also because of the higher error reduction due to the smoothing.
If one omits the filter spin-up phase of 120 days, the optimal lag is
about the same as for the whole experiment. The error-reduction
for the SSH also is a bit larger with 13.7%. As in the case of the
NETS, and the smoothing is less effective for the temperature
with an error reduction of only 11.2%. For the velocities, the
error reductions are 9.7% for U and 11.0% for V.

The common optimal lag for the LESTKS is between 52 and
58 days. This is almost twice as long as for the NETS, which
can also be attributed to the distinct update mechanisms.

5. Summary and conclusions

This works extends the nonlinear ensemble transform filter
(NETF) to a smoother, denoted NETS. The NETS is a smoother
extension of a nonlinear ensemble filter that is only based on
the likelihood weights and makes no parametric assumption
about the state distribution. The equations of the NETF use an
ensemble transform matrix so that the method closely resembles
the ESTKF or ETKF. This formal similarity, which also holds
in case of smoothing, allows one to implement the smoother
in analogy to the smoother extension of the ESTKF. Hence,
the extension for smoothing requires only little effort in terms
of implementation and computational expenses. In principle,
multiplying a past ensemble with the transform matrix computed
for the filter at the current time provides the smoothing with
the current observation. A localised analysis can be performed
by applying the smoothing for each local domain, analogous
to the smoother extensions of the ensemble-square root Kalman
smoothers. In addition, multiplicative ensemble inflation is used.
To consistently account for the inflation in the NETS, the NETF
algorithm was slightly modified so that the transform matrix
with inflation is only used for the filter, while the smoother uses
a transform matrix computed without inflation.

To show that the new smoother is effective, twin experiments
using the Lorenz-96 model are performed in a difficult data
assimilation setup using the smoothers NETS and the LESTKS.
In the chosen configuration, the filtering in the NETF yields
smaller estimation errors than the ESTKF if the ensemble has a
size larger than 30. Both smoothers reduce the error relative to
the filter estimate. The relative error reduction by the smoothing
with respect to the filter solution is, however, larger for the
ESTKS than for the NETS. The experiments show that there
is an optimal smoother lag where the errors are minimal. For
larger lags, the errors increase, which can be attributed to the
effect of nonlinearities and, especially in case of the NETS,
to the influence of sampling noise. This error growth is larger
for the NETS than for the ESTKS. If the smoothing lag is too
large, the NETS can deteriorate the results, while the application
of the smoothing in the ESTKS yields smaller errors than the
filter ESTKF even for very long lags. The stronger dependence of
the smoothing on the lag in the NETS is due to the direct use of the
observations in the correction of the states. This introduces more
sampling noise to the analysis steps and can result in spurious
correlations of the ensemble at subsequent times.

The NETS was further applied to a square box configuration of
the NEMO ocean model to assess the smoother effects in a high-
dimensional configuration with considerable nonlinearity and
multivariate assimilation. Assimilated are synthetic temperature
and sea surface height observations resembling a realistic and
sparse observation scenario. Using the NETS, the estimation
error is reduced compared to the filter for all model fields. The
error reduction is larger for the observed than for the unobserved
model fields. In addition, the range of optimal lags for the differ-
ent variables strongly overlap, and hence a common smoothing
lag can be chosen for all variables.

The filters LESTKF and NETF perform equally well with the
NEMO model. The effect of additional smoothing is slightly
different for the two methods. The relative improvement in the
NETS with increasing lag is very similar for all model fields.
For small smoothing lags, the errors are reduced with respect to
the filter. In case of the NEMO model, the NETS behaves more
stable than in the case of the Lorenz-96 model. In particular,
increasing the lag above an optimal value increases the errors
only slightly and the smoother estimates still remain better than
the filter estimates. In the LESTKS, there is an optimal lag for the
sea surface height and the velocity fields, which is almost twice
as large in comparison to the NETS. The errors in the temperature
field are monotonically reduced with increasing smoothing lag
up to the maximal tested lag of 120 days.

Overall, the NETS improves the filter-estimates in both ex-
periments. However, the actual improvement achieved by the
smoother depends on the model and assimilation setup, as
demonstrated in the experiments. While the NETS yields smaller
errors than the LESTKS in the experiments with the Lorenz-
96 model, the LESTKS provides a slightly better performance
than the NETS in the NEMO model. With the NEMO model,
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the LESTKS has a shorter spin-up phase and can use a longer
smoothing lag than the NETS, which results in smaller
time-averaged errors of the LESTKS than the NETS. This
difference in the filter performance can be related to the dif-
ferent update mechanisms of both methods: In the LESTKS,
the cross-covariances of different time steps are used to correct
the previous ensembles, whereas in the NETS, the likelihood
of the observations is used directly in the particle weights.

Whether the NETF and NETS outperform EnKFs depends
on the model and the observing system, as shown here using
the Lorenz-96 and NEMO models. Furthermore, it was recently
emphasised that nonlinear filters reveal particular advantages in
the presence of non-Gaussian observation errors and nonlinear
observation operators (see Poterjoy, 2016 and Tödter, 2015, Ch.
5.6.2). Therefore, the application of the newly derived NETS to
distinct assimilation problems should constitute a primary path
of future research.
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Note
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required for the NETF/NETS to yield smaller MRMSE than the
LETSKF/LESTKS.
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