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Abstract. In field studies, somatic product ion of  animals 
is often calculated by means of  the increment summation 
method,  which is based on consecutive samples f rom the 
population.  The main disadvantage of  this method is the 
lack of  any measurement  of  variability, therefore the 
statistical significance of  the calculated product ion value 
is uncertain. This paper  shows that in many  cases a non- 
parametric  statistical approach called the "boo t s t r ap"  
can be used to overcome this problem. By means of  this 
procedure, natural  variability of  product ion and produc- 
tion to biomass ratios can be assessed by 95% confidence 
intervals, s tandard deviation or related parameters  f rom 
a sample of  limited size. 

Introduction 

The somatic product ion of natural  populat ions of  ani- 
mals is an impor tant  parameter  both  in studies on popu-  
lation dynamics of  single species and analysis of  energy 
flow within multi-species ecosystems. In populat ions 
with distinct recruitment and separable cohorts the incre- 
ment  summat ion  method (ISM) of  Crisp (1984) is often 
used to calculate product ion f rom field data (abundance 
and mean individual weight of  age classes). 

Up  to now, it has been impossible to estimate the 
variability of  product ion or product ion/biomass-rat io  
(P/B) within the population.  Because there is natural 
variability in the underlying quantities, abundance,  
biomass and mean individual weight, this is reflected in 
the dispersion among  replicate samples, and must  be de- 
scribed by an adequate parameter.  Efron (1979) intro- 
duced a nonparametr ic  method known as the "boot -  
s t rap"  as a tool to solve complicated statistical problems 
which are intractable by classical methods (Ef/'on 1985, 
Efron and Gong  1983, Hall 1987). The boots t rap has 
been applied to several statistical problems in ecology 
during recent years (Bros and Cowell 1987, Nemec and 
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Brinkhurst 1988, Smith et al. 1986). This paper  describes 
how the boots t rap can be used to estimate variability of  
product ion and related parameters  calculated by ISM. 

Methods 

Increment  summation method (ISM) 

This is briefly described here according to Crips (1984). The data 
required are: (N,) the abundance of a cohort at time t; (W,) the mean 
individual weight in a cohort at time t; where t= 1, 2 . . . .  n; and 
n = number of sampling dates. Production is either estimated from 
growth increments by 

P, = (N + Nt+ 1)/2 -(W,+ 1 -  W,), (1) 

or from mortality increments (elimination) by 

E t = ( W  t -}- V~t + j.)/2 • (No - N t +  1). (2) 

Total production during a longer period is calculated by adding up 
the values of Pt of consecutive sampling intervals, i.e. 

P = Z P,, (3) 

E = Z E,. (4) 

The production of the whole population is equal to the sum of the 
production of all cohorts. The mean biomass is calculated by: 

B = z ( N .  WO/n, (5) 

and the production/biomass-ratio is: 
P/B = (Z P~)/B , (6) 

E/B = (Z E t)/B . (7) 

ISM gives valid estimates of production, provided that the distance 
in time between consecutive sampling dates is not too long in rela- 
tion to growth and mortality rates of the population, and N, and W t 
are valid estimates of average abundance and individual weight at 
time t (Cushman et al. 1978, Lapchin and Neveu 1980). 

Application of boots t rap to ISM 

In most studies on population dynamics, the sample taken at each 
sampling date from the population under investigation consists of a 
number of random sub-samples. These sub-samples are usually 
pooled to form the sample from which abundance N, and mean 
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individual weight W t are calculated. Usually, N t and W t show vari- 
ability among the sub-samples taken at time t, which reflects the 
variability in the population. We are not able to transform this 
information on natural dispersion into an estimate of variability of 
production or related parameters by means of traditional statistical 
approaches, so this information is lost. 

The bootstrap (Efron 1979, 1982, Efron and Gong 1983) is a 
nonparametric estimation of statistical error of any parameter 
from a sample of limited size, consisting of independent and identi- 
cally distributed values. By means of repeated re-sampling of the 
original sample an empirical probability distribution of the param- 
eter in question is established, from which statistical error can be 
computed. 

Let us assume that we sampled a natural population consisting 
of one cohort several times during 1 yr. At each sampling date we 
have taken the same number of independent sub-samples of equal 
sampling-size (i.e., area or volume), which form the sample. Let X 
denote the data matrix representing abundance (Nt,) and mean indi- 
vidual weight (Wt,) of one cohort at time t and in subsample s during 
I y. Then 

? 1 1 ,  X21 . . . . .  Xnl] 
X =[Xts]= lXl2, X22 . . . . .  X.2 ] , (8) 

LXlm, X2ra, ..., Xnm 

where xt~=(Nts+ Wu) and Nts =no. of animals at time t in sub-sam- 
ple s; W,~ = mean ind. weight at time t in sub-sample s; t =  1, 2 . . . . .  n; 
n=number  of sampling dates; s=  1, 2, . . . ,  m; re=number of sub- 
samples; Nt=ZNts/rn; and Wt=Z Wts/rn. This data matrix consists of 
n columns and m rows, corresponding to the number of samples and 
sub-samples, respectively. Within each sample, the m sub-samples 
are assumed to be independent and identically distributed, repre- 
senting the distribution of N t and W t at time t. Subsequent Pt and Et, 
however, are not independent, but may be interpreted as a kind of 
moving average. 

A bootstrap data matrix X* is formed by randomly re-sampling 
the original data matrix X. Each column of the bootstrap matrix X* 
has to be re-sampled from the corresponding column of the original 
matrix X, i.e. from each column m sub-samples are resampled with 
replacement to form the n bootstrap samples. From the bootstrap 
matrix X* we can calculate mean abundance Nff and mean individ- 
ual weight Wt* at time t. The asterisk always denotes data depending 
on a bootstrap sample. Thus, 

N~* -- Z Nff/m (9) 

w,* = ~ W2 /m (10) 

According to Eqs. (1) to (7) we can now compute P*, E*, B*, (P/B)* 
and (E/B)*. 

If we re-sample the matrix X again, we will derive another - 
most likely different - bootstrap matrix X* and estimates of P*, E*, 
B*, (P/B)* and (E/B)*, because N t and W t show variability within the 
samples, i.e. variability between sub-samples. The possible number 
(s b) of bootstrap matrices X*, which differ at least in one sub-sample 
is 

s b = {(2m--l)!/[m!(m--1)!]}" (11) 

For example from a matrix with 12 samples and five sub-samples 
per sample (60 data elements), we can re-sample at most 
1.6012 x 10 zs different bootstrap matrices. 

If all these bootstrap matrices were computed, we would obtain 
the exact probability distribution of P* conditional on the original 
data matrix X, which is due to the sampling variability in the orig- 
inal matrix X. However, in order to get a reasonable estimate of this 
variability, a random selection of a certain number of bootstrap 
matrices will be sufficient to get representative empirical probability 
distributions. These will reflect the impact of the within-sample 
variability of the basic parameters, N t and W, on dependent 
parameters like P* and (P/B)*. If the data matrix X is. representative 
for the natural population dynamics (which depends on sampling 
design) these empirical probability distributions reflect natural vari- 
ability. 
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Table 1. Cardium edule. Data set of cockles of age class 1 + ,  from 
Kiel Bay, FRG. Ten samples (1 to 10), each consisting of five sub- 
samples (I to V) are given where area of one sub-sample=0.1 m 2. 
Symbols are: (Nt~) abundance; (Wt~) mean ind. wt in mg ashfree dry 
wt 

Sam- I II III IV V 
ple 

1 14 19.20 25 20.09 1 1.68 2 
2 23 23.59 4 21.07 5 11.02 9 
3 19 55.34 20 59.11 20 42.95 21 
4 19 94.07 7 116.73 12 93.37 19 
5 34 95.15 33 86.70 14 96.60 9 
6 20 221.33 9 221.76 2 209.10 15 
7 1 157.30 4 270.06 8 247.39 3 
8 3 251.64 4 189.13 3 190.93 0 
9 3 196.95 I 169.72 I 341.56 1 

10 2 195.33 0 0 I 221.86 0 

18.06 2 4.03 
15.44 29 18.77 
45.16 14 57.47 
92.16 20 102.39 
85.78 11 77.52 

195.70 11 230.27 
277.42 7 253.50 

0 4 230.29 
189.79 1 234.25 

0 0 0 

In summary, statistics representing the variability of P*, E*, B*, 
(P/B)* and (E/B)* are calculated according to the following al- 
gorithm: (1) Re-sample the original data matrix X to form the 
bootstrap matrix X* by drawing m sub-samples from each sample 
t (-- 1, 2 . . . . .  n) by means of random selection with replacement. 
(2) Compute mean abundance Nt* and mean individual weight Wt* 
at each time t from the bootstrap matrix X* (Eq. 9). (3) Calculate P*, 
E*, B*, (P/B)* and (E/B)*. (4) Repeat Step 1 and 2 a large number 
of times. (5) Estimate the parameters required from the resulting 
frequency distributions, i.e. the empirical probability distributions of 
P*, E*, (P/B)* and (E/B)* (e.g. average and confidence interval). This 
procedure can be expanded simply to a data matrix with unequal 
number of sub-samples per sampling date and also to cases where 
several age classes are involved. 

Tes t ing  the  b o o t s t r a p  a p p r o a c h  

In order to test the bootstrap approach, this procedure was applied 
to artificial data sets and to one natural data set. The artificial data 
were randomly generated according to the following procedure: 
Average values of N t and Wt for each sample were calculated from 
linear mortality and growth functions: 

Nt--No--(No--Nl.o)'t; 5/o=190;  Nl .o=10 ; 0 < t < 1 . 0  (12) 

Wt~Wo~-(Wx.o-Wo)'t'~ Wo=lO; Wl,o = 110 ; 0--~ t-~ 1.0 (13) 

P = 10000; E = 10 800. 

Nt and Wt at time t had a negative binomial distribution, as is 
common in natural populations. 

(q_p) -k ;  q = l - p ;  m e a n = k - p ;  variance=k.p.q (14) 

The parameter k of the negative binomial distribution was identical 
for all distributions of N t and W~ within one data set, which may be 
interpreted as a "worst case" situation. The actual values of Nts and 
Wts were randomly sampled from these distributions. 

The natural data set represents the age class I + of the cockle 
Cardium edule from a station in Kiel Bay (Western Baltic, Brey 
1986). It consists of ten samples with five sub-samples each (Table 1). 
In contrast to Brey (1986), mean individual weight was calculated 
from length-frequency distributions and length-weight regressions 
in this study. The mean was selected as the estimator of the average 
of the resulting distributions, whereas the 2.5th and 97.5th percen- 
tiles (which approximate the 95% confidence interval) were taken as 
estimates of variability (Efron 1982). The skewness of the resulting 
distributions was estimated by: 

Skewness = 3 - (mean--median)/SD (Sachs 1978) (15) 
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Table 2. The effect of increasing number of replications (n) on the 
reproducibility of the distribution of P* (production). Mortality 
function: N~ = 190 - (190 - 10) • t; 0 < t < 1.0; growth function: W~ = 
10+(110-10) -  t; P calculated by I S M =  10 000. Distribution of N 
and W at time t: negative binomial with k=  1.0; 12 samples (t=0, 
0.08, 0.17 . . . .  ,1.0) and 10 sub-samples/sample; p [2.5], p [97.5] =2.5 
and 97.5th percentile of the distribution. Average: arithmetic mean 
of 10 runs; % Diff. = 100 • (highest v a l u e -  lowest value)/average 

n Mean P* p [2.5] p [97.5] 

Average %Diff. Average %Diff. Average %Diff. 

sub- 
samples 

80 

60 

505 

125 10061 2.19 6 132 9.05 14 813 8.23 
250 9 996 2.21 6083 6.79 14 917 4.08 
500 10 022 1.40 6 095 3.62 14 833 5.75 

I 000 9 975 1.15 6 112 2.11 14 774 2.20 
2 000 10 013 0.47 6 110 2.37 14 859 2.05 

40 

20 

Table 3. The effect of increasing dispersion of the within-sample 
distribution of N t and W~ on the distribution of P*. Mortality-func- 
tion: Nt= 190- (190-10)  • t; 0 < t <  1.0; growth-function: W~= 10+ 
(110-10)-  t; distribution of N~ and W t at time t =negative binomial 
distribution with k = 0.66; k = 0.83; k = 1.00. Average values of 5 runs 
(1000 replications per run), a new data matrix with 8 samples was 
generated for each run 

k p Subsamples 

5 10 20 35 55 80 

0.66 [2.5] 5 539 6 671 7 783 8 395 8 619 8 852 
[97.5] 15 314 13 799 12 472 11 811 11 485 11 262 

0.83 [2.5] 5 354 6 330 7 369 8 019 8 442 8 711 
[97.5] 15 816 14 434 12 926 12 102 11 598 11 421 

1.00 [2.5] 4 296 6 048 7 227 7 877 8 342 8 580 
[97.5] 17 356 14 629 13 237 12 412 11 802 11 552 

Table 4. Distribution of P*, E*, (P/B)* and (E/B)* calculated from 
the data set of Cardium edule (Table 1); one run with 1000 replica- 
tions; p [2.5], p [97.5]=2.5 and 97.5th percentile of distribution; 
95 %-limits = mean _+ 1.96 - SD; skewness = 3 • (mean - median)/SD; 
ISM=corresponding values computed with mean N t and W t. P, 
E = gAFDW m -  2 yr 1; P/B, E/B = y -  1 

Mean p [2.5] p [97.5] 95%-limits Skew- ISM 
hess 

P* 33.3 25.7 42.2 25.3 41.3 0.01 34.7 
E* 33.8 26.3 42.2 25.8 41.9 0.04 35.1 
(P/B)* 3.58 3.16 4.00 3.15 4.01 0.27 3.69 
(E/B)* 3.64 3.21 4.10 3.21 4.07 0.00 3.73 

These data sets were used to test: (1) the number of replicated cal- 
culations required to get a reasonable estimate of the parameters in 
question. An artificial data set with 12 samples and 10 sub-samples 
per sample was used for this experiment. The bootstrap procedure. 
was carried out 10 times each with 125, 250, 500, 1000 and 2000 
replications. The variation of mean, 2.5th and 97.5th percentile 
among the 10 trials with equal number of bootstrap replications was 
computed. (2) The effect of an increasing size of the data matrix on 
the distribution of P*. Fifty four different matrix sizes were ana- 
lyzed. The number of samples were 2, 4, 8, 14, 22, 32, 44, 58 and 74; 
the number of sub-samples per sample 5, 10, 20, 35, 55 and 80. With 
respect to each combination of sub-samples and samples, the boots- 

20 40 60 80 

samples 

Fig. l .  Effect of an increasing number of samples and subsamples 
on the 95% confidence interval of P*, if growth and mortality 
follow linear functions. The plot shows lines of equal confidence 
interval size (range = 0.20 to 1.00). Confidence interval (95%)= 2.5 
to 97.5th percentile, shown here as porportion of mean P (produc- 
tion). N (abundance) and W (weight) at time t are random sampled 
from negative binomial distributions with k =  1.00 

trap procedure was carried out with five different data matrices and 
1000 replications per matrix. (3) The effect of the within-sample 
distribution of N t and W t. The parameter k [=meanZ/(variance - 
mean)] of the negative binomial distribution of N t and W t was 
changed from 0.66 to 1.00 and the corresponding changes in the 
distribution of P* were recorded. The data matrix consisted of eight 
samples and 5 to 80 sub-samples. (4) The Cardium eduIe data set was 
used to test the validity of the bootstrap technique as applied to a 
natural data set characterized by high within-sample variation in 
abundance and mean weight, and by huge differences in distribu- 
tions of these parameters among consecutive samples. 

Results  

N u m b e r  o f  r e p l i c a t e d  c a l c u l a t i o n s  r e q u i r e d  

Tab le  2 shows  t h a t  w i t h  an  i n c r e a s i n g  n u m b e r  o f  rep l ica -  
t ions  the  v a r i a t i o n  m e a n ,  2 .5 th  a n d  97 .5 th  pe r cen t i l e  de-  
c reases  a m o n g  the  t en  tr ials .  A t h o u s a n d  r e p l i c a t i o n s  a re  
su f f i c ien t  to  ge t  r e p r o d u c a b l e  p r o b a b i l i t y  d i s t r i b u t i o n s  o f  
P*  w i t h i n  3 %  prec i s ion .  

Ef fec t  o f  a n  i n c r e a s i n g  m a t r i x  size 

F i g u r e  1 s h o w s  t h e  e f fec t  o f  an  i n c r e a s i n g  n u m b e r  o f  s a m -  
ples  a n d  s u b - s a m p l e s  on  the  9 5 %  c o n f i d e n c e  i n t e r v a l  o f  
P*.  I t  is e v i d e n t  f r o m  Fig .  I t h a t  the  9 5 %  i n t e r v a l  be-  
c o m e s  sma l l e r  i f  the  n u m b e r  o f  s u b - s a m p l e s  is i n c r e a s e d  
a n d  the  n u m b e r  o f  s amp le s  is h e l d  c o n s t a n t ,  i.e. the  2.5 
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Fig. 2. Cardium edule. Distribution of (A) production (P*), (B) elimination (E*), (C) production-biomass ratio (P/B), and (D) elimination- 
biomass ratio (E/B*) with the natural data set of the cockle. One bootstrap trial with 1000 replicates 

and 97.5th percentile are shifted towards the mean. If  the 
number of sub-samples is held constant and the number 
of samples is increased, the 95% interval decreases 
sharply first and then increases slowly again. 

Effect of the within-sample distribution of Nt and W t 

Table 3 shows the results derived from three data sets 
which differ only in the variability o f N  t and Wt. The 95% 
interval of P* increases down each column of Table 3 
(increasing k), i.e. with increasing variability of N~ and 
w,. 

Natural Cardium edule data set 

In Table 4, the bootstrap estimates of P*, E*, (P/B)* and 
(E/B)* are compared to the values calculated with mean 
N t and mean W t. The distributions are almost symmetric 
(Fig. 2) and do not differ significantly from normal distri- 
butions (e=0.05). Therefore the parametric 95%-limits 
(mean + 1.96 • SD) are close to the 2.5 and 97.5th percen- 
tiles. Annual production and P/B-ratio are estimated to 
33.2 g ashfree dry weight (AFDW)m-2 (4_ 8.0) and 3.58 
(+0.43), respectively. The mean values of the bootstrap 
distributions are somewhat (2 to 4%) below the ISM 
estimates. This suggests that the latter may be systematic 
overestimations of the true average values. 

Discussion 

The results presented here do not prove the validity of the 
application of the bootstrap from a purely mathematical 
point of view, because the testing of this approach is 
limited to a few examples. However, my aim is to demon- 
strate that there may be a simple way to overcome the 
serious statistical problems related to production calcula- 
tions. The present results and other potential applications 
of the bootstrap in production studies will be discussed. 

Interpretation of variability estimate 

I will mention the 95% confidence interval only, because 
this is a robust nonparametric measure, which is valid for 
many types of distributions. The 95% interval of the 
bootstrap distribution is a dispersion parameter, which 
depends on both the underlying distributions and the 
number of data taken from this distribution. Generally 
we should expect that an increase in the size of the data 
matrix will lead to an inqrease in precision of the results. 
This is indeed the case if the number of sub-samples is 
increased. An increase in the number of samples, however, 
does not lead to a continuous decrease in variability, the 
95% range increases again above a certain number of 
samples (Fig. 1). This pattern results from the formula for 
production calculation (Eq. 1). The calculation depends 
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on the differences in Nt and W~ - which are mean values 
per sample between consecutive samples. The more 
samples are taken during a period of time, the smaller are 
the differences in subsequent values of N~ and W~, and the 
smaller these differeces are, the more statistical power we 
need to detect them, i.e. the more sub-samples per sample. 
Therefore, when the number of samples increases above a 
certain limit, the variability of the production estimate 
increases again. These observations have serious implica- 
tions for sampling strategy (see below). 

If the matrix size is constant, an increase in the vari- 
ability of the underlying data is followed by an increase of 
the 95% limits (Table 3), therefore the distribution of P* 
indeed reflects the natural variability in N t and W t. 

The estimate of variability presented here does not 
allow for quantitative information on the real spatial dis- 
persion of production in the natural population under 
investigation, because the field samples are taken at 
random from this population. We do not know the spatial 
relationships between sub-samples taken at subsequent 
sampling dates. However, the estimate of variability is an 
expression of variation in space, which may be due to 
stationary animals under spacially different conditions or 
to migrating animals. If sampling design is comparable, 
the bootstrap estimates of variability could also be used 
to compare directly the spatial component of dispersion 
in production among different populations, as shown in 
Table 2. 

sub- 
samples 

80 

507 

50 

40 

20 

20 40 60 80 
samples 

Fig. 3. Effect of an increasing number of samples and subsamples 
on the skewness of the distribution of P* (production). The plot 
shows lines of equal skewness (range=0.05 to 0.4). Skewness 
= 3. (mean--median)/SD. N (abundance) and W (weight) at time 
t are random sampled from negative binomial distributions with 
k = 1.00 

Existence of a central limit theorem 

One interesting result of the present study is that the 
resulting distributions of P*, E*, B*, (P/B)* and (E/B)* 
seem to tend towards normality with increasing matrix 
size, independently of the type of the underlying within- 
sample distributions of N~ and W t (see Figs. 2 and 3). If this 
assumption is verified by a more extensive investigation, 
it suggests the existence of a central limit theorem for the 
bootstrap application on the ISM. A central limit theo- 
rem states that the distribution of a parameter derived by 
random selection from various distributions tends to- 
wards normality with an increasing number of underlying 
distributions. Some central limit theorems are valid for 
moving average processes (Anderson 1971), which are to 
some extent related to the ISM procedure. However, no 
single theorem corresponds exactly to the present situa- 
tion, where the parameter in question is a function of two 
random variables drawn from non-stochastic, unknown 
distributions. 

Implications for sampling strategy 

The results of the present study have also important im- 
plications on the sampling strategy in field studies on 
production. Fig. I shows that in order to get a 95% con- 
fidence of mean P* interval which is, let us say, smaller 
than 0.5 • mean P*, one can take either 5 samples with 40 
sub-samples each (=230 sub-samples), or 20 samples 
with 19 sub-samples each (= 380 sub-samples). It is evi- 

dent from these values that the number of sub-samples 
should be increased preferably in order to get a more 
precise estimate of production. However, the data shown 
in Fig. 1 depend on linear growth and mortality func- 
tions. In most natural populations, growth and mortality 
follow nonlinear functions, but ISM is always a linear 
interpolation between two consecutive samples. There- 
fore, reducing the number of samples results in increasing 
a systematic error in the production calculations. In order 
to overcome this problem, the time interval between con- 
secutive samples should be related to the rates of change 
in N, and W t over time. The distance may be larger for 
populations with lower growth and mortality rates and 
smhller for populations with higher rates. Within the in- 
vestigation of a single age-class, unequal time steps be- 
tween samples may be the most efficient strategy. The step 
should be small if N t and W~ change fast - usually in the 
first part of a cohort's life - and become larger with de- 
creasing changes in these parameters. However, in popu- 
lations consisting of several age-classes the sampling 
strategy has to be a compromise. 

Limitations, advantages and potential applications 

The only serious limitation of the bootstrap is the number 
of sub-samples per sample. With respect to the assymp- 
totic efficiency of the bootstrap which is not discussed 
here, i.e. the relation between the number of data and the 
statistical power, this number should not be to small. It is 
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always more  efficient to take many  small samples than 
few large ones. 

The applicat ion of the boots t rap  to p roduc t ion  stud- 
ies has at least two advantages:  (1) informat ion  abou t  
natural  variability, which is h idden in the data,  can be 
expressed as an estimate of var ia t ion (s tandard deviat ion 
or confidence limits) wi thout  addit ional  sampling effort; 
(2) differences in the p roduc t ion  of  different popula t ions  
or  during different years can be tested statistically. 

N o t  only the I S M  but  all techniques of  p roduc t ion  
calculation applied to data  sets consisting of several 
r a n d o m  sub-samples per sample m a y  be improved  by 
the boots t rap  e.g. the size-frequency me thod  (Hynes and 
Co leman  1968, Menzie 1980) or  methods  based on 
weight-specific g rowth  rates (see Crisp 1984). 

Acknowledgements. I thank B. Efron and M. Martin, both from 
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