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Abstract 
 

Herschel Island is the remnant of an ice-push moraine, formed during the farthest advance of 

the Laurentide Ice Sheet in the late Wisconsin. The island is located in the Canadian Beaufort 

Sea, in the northwestern part of the Yukon Territory. A marine depression (Herschel Basin), 

southeastern adjacent to Herschel Island, acts as a sink of organic matter (OM) derived from 

various sources.  

 

The main objective of this master thesis was to determine the amount of OM, derived from 

Herschel Island, in the deposits of Herschel Basin. Rapidly increasing mean annual air 

temperatures (MAAT) in high latitude areas raise awareness of a changing Arctic climate and 

consequences for the Arctic carbon cycle.  

 

Biomarker analyses of soil and sediment samples from various study sites on and around 

Herschel Island show that sediments in Herschel Basin are of prevailing terrigenous origin. 

Approximately 60 % of the OM in the surface sediments of Herschel Basin and the adjacent 

nearshore area can be assigned to eroded material from Herschel Island. Investigations on a 

sediment core from the centre of the basin suggest enhanced erosion rates and increased supply 

by OM from Herschel Island in the upper section of the core.  

 

Results of biomarker analyses of this thesis corroborate a progressing change of the Arctic 

climate, amplified by positive carbon feedback mechanisms.  

  



 

 VI 

Statement of authorship 
 

 

 

______________________________ 
Name 

 

 

 

Declaration acc.to § 10 Paragraph 11 Common Part of the Master Examination 

Regulations 

 

I hereby declare that I wrote this master thesis independently and that I did not use other sources 

and auxiliary means than the ones indicated.  

 

This master thesis has not been submitted in another examining procedure.  

 

I further declare that the master thesis will not be made available to the public in this version.  

 

 

 

 

 

Place/Date: ______________________________ 

 

 

Signature: ______________________________ 



 

 1 

1. Introduction 

1.1. Permafrost erosion in nearshore Arctic areas 

 

Permafrost regions of the high latitudes contain about 50 % of the global soil organic carbon 

pool (SOC; about 1700 Pg; Tarnocai et al., 2009). Most of this huge carbon pool, of which the 

majority accumulated in the Holocene and the Pleistocene (Streletskiy et al., 2014), occurs in 

perennially frozen permafrost deposits. Decreased decomposition rates as consequence of poor 

drainage and low temperatures (Davidson and Janssens, 2006) protect these deposits from large 

involvement in the Arctic carbon cycle.  

Permafrost refers to all earth material, whether it is ice or organic material, that remains at or 

below 0 °C for at least two consecutive years (Brown and Kupsch, 1974; Van Everdingen, 

1998). Excluding Antarctica, 17 % of the surface of the earth are affected by permafrost 

(Gruber, 2012). Most of the permafrost is situated in the high latitudes with only minor 

occurrence in alpine regions (see Fig. 1.1). According to Lantuit et al. (2012a) 34 % of the 

world’s coastlines are affected by permafrost.  

Fig. 1.1: Permafrost distribution of the circumpolar Arctic (International Permafrost Association, 

1998) 
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Previously frozen organic carbon (OC), stored in permafrost-affected soils, can be mobilised 

and released into the Arctic Ocean by thawing of permafrost. Mobilised OC, now integrated in 

biogeochemical cycles, can be mineralised and intensify global warming by releasing 

greenhouse gases into the atmosphere (Gruber et al., 2004; Schuur et al., 2015). This positive 

carbon feedback can be attenuated by biosphere uptake of carbon (Schuur et al., 2008; Tarnocai 

et al., 2009), or reburial in the nearshore coastal area or off-shelf in deeper areas (Vonk and 

Gustafsson, 2013). The decisive question is, to what extent this carbon feedback will affect 

climate change (Schuur et al., 2015; Vonk and Gustafsson, 2013).  

Fig. 1.2: Change of the mean air temperature (1961 – 1990, °C) recorded from land-based weather 

stations in the Arctic (modified after AMAP (2012)) 

 

 

The Arctic region is extremely sensitive to climate change. Increasing mean annual air 

temperatures (MAAT; Fig. 1.2) and sea temperatures will have the strongest effect in Arctic 

regions (Kattsov and Källén, 2005) and on its permafrost coastlines. Likewise, sea level rise in 

the Arctic Ocean is above average (Meehl et al., 2007).  

Increasing temperatures in the Arctic result in thinning of the Arctic sea ice, earlier ice break-

up and as a result lengthening of the open water season (Anisimov et al., 2007). Rising sea 

levels and lengthened open water seasons are expected to aggravate the intensity and frequency 

of storm surges, resulting in increased permafrost erosion in coastal areas (IPCC, 2007). 

Decrease of ground stability in permafrost regions is affecting ecosystems (IPCC, 2007), as 

well as industrial and municipal infrastructure in the Arctic (Fritz et al., 2017).  
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The most distinct temperature change occurs in the southern Beaufort Sea (Fig. 1.3). Within 

the last century, the MAAT increased by 2.6 °C at Herschel Island. Between 1899 and 1905 a 

MAAT of -12.2 °C was recorded. From 1999 to 2005 the MAAT increased to -9.6 °C (Burn 

and Zhang, 2009).  

Herschel Island is located along the Yukon Coastal Plain (YCP; Fig. 1.3). The area is controlled 

by low MAAT temperatures throughout the year, resulting in formation of continuous 

permafrost and seasonal sea-ice for about nine months of the year (Harper, 1990). The usual 

thickness of permafrost on the Yukon Coastal Plain (YCP) is around 300 m (de Krom, 1990). 

However, permafrost thickness can exceed 600 m along the YCP (Smith and Burgess, 2000). 

Canadian Beaufort Sea coastlines are characterised by high average coastal erosion rates of 

1.12 m/a (Lantuit et al., 2012a). The average coastline retreat on Herschel Island amounts 0.68 

m/a (Obu et al., 2016). Average coastal erosion rates refer to combined aggradation and erosion 

(Lantuit et al., 2012a).  

Fig. 1.3: 1957 – 2006 temperature change in the Arctic (modified after AMAP (2012)). The white 

rectangle depicts the location of the Yukon Coast along the southern Beaufort Sea 

 

 

Coastal permafrost erosion on Herschel Island has been subject to a large number of studies 

(Lantuit and Pollard, 2008; Olynyk, 2008; Radosavljevic et al., 2015), concerning OC release 

and sediment flux in the southern Beaufort Sea, as well as threats to coastal near infrastructure 

in the Arctic. Yet, the fate of mobilised OC eroded from coastal deposits on Herschel Island 

remains widely unknown. For further understanding of the carbon complexities in the southern 

Beaufort Sea, investigations on possible depositional environments are necessary.  
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1.2. Thesis objectives 

 

The aim of this master thesis is to distinguish between different sediment sources which 

influence the sedimentation in Herschel Basin. Herschel Basin is a marine depression in the 

southeast of Herschel Island. Furthermore, an attempt is made to quantify organic matter (OM) 

derived from Herschel Island in the sediments of Herschel Basin.  

Sediments of Herschel Basin act as climate archives, in which changes in composition and 

derivation of OM is recorded. The OM associated with these deposits contains a complex 

mixture of biomarkers derived from a variety of aquatic and terrigenous sources (Winterfeld et 

al., 2015).  

To distinguish between potential sources of OC, various geochemical biomarkers will be 

combined and compared with literature data. Consulted biomarkers are briefly summarised in 

paragraph 1.3. “Biomarker outline”.  

Prior to analyses of this thesis the following questions were developed:  

 

1.  Do potential sources of sediment input in Herschel Basin feature specific 

biomarker signatures?  

 

2.  Can different sources of terrestrial OC input into Herschel Basin be 

spatially distinguished and quantified?  

 

3.  How did coastal permafrost erosion on Herschel Island change in the past 

4 ka BP?  
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1.3. Biomarker outline 

1.3.1. Hopanes 

 

Hopanes (C27 – C35) are widely occurring pentacyclic triterpenes (Requejo and Halpern, 1989) 

synthesised from bacteriohopanetetrol. Bacteriohopanetetrol is commonly found in cell 

membranes of prokaryotic organisms (Requejo and Halpern, 1989). Hopanes consist of three 

stereoisometric series, the 17β,21β-, 17β,21α- and 17α,21β(H) configuration (Peters et al., 

2005). The α and β notation indicates whether the hydrogen atoms, which are bound to the 

carbon skeleton of the hopanoids, are located below or above the pentacyclic ring structure 

(Fig. 1.4; Peters et al., 2005).  

As the stereochemical arrangement of bacteriohopanetetrol is thermally labile, diagenesis and 

catagenesis result in transformation of the stereoisometric series as presented in Fig. 1.4.  

Hopanes with the 17α,21β(H) configuration have a higher thermodynamic stability as the 

precedent 17β,21β(H) configuration and are therefore commonly occurring in petroleum 

reservoirs (Peters et al., 2005).  

Fig. 1.4: Schematic view of the diagenetic succession of hopanes from bacteriohopanetetrol (Peters 

et al., 2005). The isomerization during diagenesis and catagenesis proceeds from 1 to 5 as indicated 

 

 

22S and 22R homologues, as presented in Fig. 1.4 are the result of an additional asymmetric 

centre at the C-22 position only found in homohopanes (Peters et al., 2005). Homohopanes is 

the common term for hopanes with more than 30 carbon atoms.  

22S and 22R configurations can be applied for assessing the biomarker maturity in oils and 

shales. The relative amount of the 22R configuration, found in bacteriohopanetetrol (compare 

Fig. 1.4), decreases with increasing burial depth up to a terminal ratio of both homologues 

(Abbott et al., 2001).  
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1.3.2. n-alkanes 

 

Saturated n-alkanes (normal alkanes; Chibnall et al., 1934) are straight-chain, particularly 

robust (Eglinton and Logan, 1991) easily identifiable hydrocarbons. 

n-alkanes occur in parts of the epicuticular leaf wax structure of terrestrial plants (Albert et al., 

1934; Bush and McInerney, 2013) or are produced by microbial communities (Choi and Lee, 

2013). n-alkanes can also occur in a variety of different settings which have been investigated 

in numerous studies.  

The chain length of the homologue n-alkanes depends on the source organism and is 

characteristic for different environments (Castañeda and Schouten, 2011). Long-chain n-

alkanes (n-C21 to n-C37) are dominant in the epicuticular leaf wax of terrestrial plants with a 

typical distribution of odd numbered over even numbered alkanes (Eglinton and Hamilton, 

1967; Bush and McInerney, 2013). In Bird et al. (1995) stable carbon isotope compositions of 

n-alkanes were used to define between different vegetation types (C3 – C4 plants). Nott et al. 

(2000) and Pancost et al. (2002) reported the occurrence of more intermediate n-alkane chain 

lengths observed in Sphagnum species from bog vegetation. In particular C23 and also C25 n-

alkanes are reported to be characteristic for Sphagnum species (Nott et al., 2000; Nichols et al., 

2006; Vonk and Gustafsson, 2009).  

Aquatic origin of n-alkanes has been reported in several studies (Cranwell et al., 1987; Sachse 

et al., 2004). Lichtfouse et al. (1994) discusses a possible algal contribution in n-C25 to n-C35 

alkanes. According to Ficken et al. (2000) n-C21 to n-C32 alkanes, produced by aquatic 

macrophytes, contribute to OM in lacustrine settings (see also Mead et al., 2005). Carbon 

Preference Index (CPI) values studied by Schefuß et al. (2003) indicate a marine derivation of 

the C24 alkane.  

The chemical composition of these biomarkers is altered by biodegradation (Bost et al., 2001; 

Requejo and Halpern, 1989; Volkman et al., 1983) which has been mostly studied in crude oil 

(Bailey et al., 1973; Reed, 1977; Seifert and Moldowan, 1978; Wardroper et al., 1984) but also 

occurs in mature soils and sediments (Abbott et al., 2001; Peters et al., 2005).  

Biodegradation occurs at temperatures up to 77 °C (Philippi, 1977) and often results in 

formation of unresolved complex mixtures (UCM; Fig. 1.5) (Gough et al., 1992; Nievas et al., 

2008). These UCM’s develop by sequential removal of n-alkanes and other hydrocarbons (e.g. 

Wenger and Isaksen (2002)).  
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Fig. 1.5: Saturate fraction chromatogram of sample PG 2303-7/1-2, showing a distinct UCM 

 

 

1.3.3. GDGT’s 

 

Glycerol dialkyl glycerol tetraether (GDGT) lipids (Schouten et al., 2000; Schouten et al., 2013) 

are ubiquitously occurring membrane lipids synthesised by various archaeal and bacterial 

communities. Due to their occurrence in diverse environments (e.g. De Rosa and Gambacorta, 

1988; Powers et al., 2004; Schouten et al., 2007b) and good preservation in immature 

sediments, GDGT’s are commonly used to calculate paleo sea-surface temperatures (SST) 

(Schouten et al., 2002; Kim et al., 2012; Mollenhauer et al., 2015) and quantify terrigenous 

sediment input in aquatic systems (Hopmans et al., 2004).  

Fig. 1.6: Isoprenoidal (left) and branched (right) skeleton structures of GDGT’s modified after 

Schouten et al. (2013) 
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GDGT’s can be structurally divided into two groups. Isoprenoid GDGT’s, for example 

crenarchaeol (see Fig. 1.6), consist of an isoprenoidal skeleton structure that is built from 

isopentyl pyrophosphate (Schouten et al., 2013). 

Branched GDGT’s (e.g. Fig. 1.6) (Sinninghe Damsté et al., 2000; Weijers et al., 2006b) are 

synthesised by bacteria and archaea and are mainly occurring in peat bogs and soils (Schouten 

et al., 2000; Weijers et al., 2006a). Alkyl moieties of branched GDGT’s are composed of 

branched carbon chains instead of isoprenoid units.  

 

2. Study area 

2.1. Genesis and geological setting of Herschel Island 

 

Fig. 2.1: Overview of the study area with major currents, sediment inflows (indicated by orange 

arrows (Pelletier et al., 1984)) and sample locations after Yunker et al. (1992). The white line 

(dashed and solid) indicates the farthest extent of the LIS. The YCP left of Herschel Island 

remained unglaciated 

 

 

The study area of this thesis comprises the area around Herschel Island (69°36´N, 139°04´W) 

(Fig. 2.1) in the southern Canadian Beaufort Sea. Herschel Island is a remnant of the Laurentide 

Ice Sheet (LIS) in the eastern periphery of Beringia, marking its maximum northwestern extent 

in the late Wisconsin between 23 – 18 cal ka BP (Dyke and Prest, 1987; Fritz et al., 2012; 
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Mackay, 1959). Herschel Island has a surface area of 108 km2 and a maximum elevation of 183 

m a.s.l. (Bouchard, 1974; de Krom, 1990; Lantuit & Pollard, 2008). The island remained 

connected to the Yukon Coastal Plain (YCP) until it became an island approximately within the 

last 1.6 cal ka BP (Rampton, 1982; Burn, 2009), through sea-level changes in the Canadian 

Beaufort Sea (Hill et al., 1985). On present day, Herschel Island is connected to the YCP by 

the shallow, three kilometre wide “Workboat Passage”. Westwards of Herschel Island, between 

Firth and Malcolm River, the YCP remained unglaciated. Mackay (1959) firstly proposed the 

theory that Herschel Island consists of deposits derived from Herschel Basin which origin is 

directly related to the ice-thrust of the LIS. This theory is supported by volumetric comparison 

between Herschel Island and Herschel Basin, which are of similar size. Herschel Basin is 

located adjacent to the southeast of Herschel Island. The basin has a maximum depth of about 

70 mbsl (Fig. 2.2). Its oval shape extents in a southeast stretch parallel to the YCP and is 

separated by the Herschel Sill from the Mackenzie Trough (O’Connor, 1984).  

Fig. 2.2: Bathymetry of Herschel Basin with coring locations (Sc = short core; Lc = long core) 

along transect A and B, as well as outcrops on Herschel Island. The gap between two isobaths 

represents five metres  
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As the LIS advanced towards the YCP, it presumably thrusted over the subaerial exposed 

continental shelf (Mackay, 1959) and agglomerated various deposits (Bouchard, 1974). 

Deposits on Herschel Island indicate preglacial, glacial and postglacial origin (Fritz et al., 2012; 

Bouchard, 1974). Preglacial deposits are of terrestrial and marine origin and most common on 

Herschel Island. Through ice-thrusting during the Wisconsin glaciation, these deposits have 

undergone deformation and redeposition. Glacial deposits combine erratic boulders and gravel 

which can be found on the surface of Herschel Island. Some of these gravel deposits could be 

of fluvioglacial origin (Bouchard, 1974). Postglacial deposits such as peat and soil summarise 

sediments accumulated during pedogenesis, as well as alluvial accumulations (Bouchard, 

1974).  

The literature about ground-ice content on Herschel Island concludes in several statements. 

Pollard (1990) mentions a massive ground-ice content of up to 70 % in the upper 10 – 15 m of 

the permafrost deposits. Mackay (1971) states a ground-ice content of up to 50 % in the near-

surface permafrost. Most of the ground-ice on Herschel Island occurs as massive segregated ice 

lenses within the disturbed Pleistocene deposits (Mackay, 1971).  

Massive ground-ice content in permafrost soils on Herschel Island leads to intense thermokarst 

activities (Lantuit and Pollard, 2005). Often initiated by coastal erosion, vast ground-ice bodies 

result in development of retrogressive thaw slumps (RTS) (Pollard, 1990; Lantuit & Pollard, 

2008; Lantz and Kokelj, 2008). These bowl-shaped structures (Fig.2.3) show fast inland erosion 

and mobilization of soil in the prevailing unlithified permafrost deposits on Herschel Island 

(Lantuit et al., 2012b; Lantuit & Pollard, 2008; Obu et al., 2016). RTS are abundantly occurring 

on the southeast and northeast coast of Herschel Island (Bouchard, 1974). 

Fig. 2.3: Bowl-shaped extent of thaw slump D located at the east coast of Herschel Island (Obu et 

al., 2016) 
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2.2. Potential sources of sediment 

 

Approximately 130 km eastwards of Herschel Island, the Mackenzie River issues into the 

Beaufort Sea. With a drainage area of 1.78 x 106 km2 and an annual water discharge of 316 

km3/a (Holmes et al., 2012), it is the 4th largest of the Arctic rivers. Each year the Mackenzie 

River discharges 2.1 Mt/a of terrestrial particulate organic carbon (POC) and 1.3 Mt/a of 

terrestrial dissolved organic carbon (DOC) into the Mackenzie Delta and the adjacent nearshore 

area (Carrie et al., 2009; Couture, 2010; Macdonald et al., 1998). Annually discharging 128 Mt 

of sediments (investigated from 1974 to 1994) the Mackenzie River is the largest contributor 

of suspended particulate matter (SPM) in the Arctic Ocean (Forbes, 1981; Hill et al., 1991; 

Holmes et al., 2012; Vonk et al., 2015). 124 Mt of the annual sediment flux consists of silty 

sediments or particles of smaller grainsize (Carson et al., 1998).  

Fig 2.4: Satellite images of the partially ice-covered southern Mackenzie Shelf in 2016. The image 

on the left was taken on the 19th of May. The image on the right-hand side, featuring a tremendous 

sediment plume covering large parts of the Mackenzie Shelf, was taken on the 4th of June (image: 

worldview.earthdata.nasa.gov) 

 

 

About 95 % of the total supplied sediment to the Mackenzie Shelf is contributed by the 

Mackenzie River, whereas a substantial amount of the sediment is supplied before ice break-up 

and most of the sediment during freshet in May and June (Hill et al., 1991). Fig. 2.4 shows 

satellite images of the sediment plume of the Mackenzie River in May and June 2016. Most of 

the hydrocarbons in the Mackenzie Delta are retrieved from the Devonian Canol formation 
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located in the lower Mackenzie River valley (Yunker et al., 2002). Deposits from the Canol 

formation contain immature bitumens, shales and coals.  

Smaller rivers, like the Babbage River (Fig. 2.1), also contribute to the total supplied amount 

of sediment in the southern Beaufort Sea. Reported by Lewis and Forbes (1975) and Hill et al. 

(1991) (investigated in 1975 and 1976) the Babbage River supplies 0.35 Mt of sediment per 

year to the Mackenzie Shelf and Herschel Basin. Together with other smaller rivers of the 

surrounding area, like Firth and Malcolm River, the annual sediment supply to the Beaufort 

Shelf is estimated to be 1.45 Mt (Hill et al., 1991) and 0.02 Mt of POC (Macdonald et al., 1998). 

After Yunker et al. (2002), geochemical investigations exclude occurrence of petroleum-

derived hydrocarbons in these smaller rivers.  

Petroleum derived biomarkers are an additional potential source input to Herschel Basin. Wells 

like the Adlartok Well and the Immiugak Well, eastern of Herschel Island, as well as the 

Amauligak Well northeastern of the Mackenzie Shelf were investigated by Curiale (1991) and 

Snowdon et al. (2004). Oil spill of these wells can potentially alter the biomarker composition 

of sediments in Herschel Basin.  

Additional terrigenous sediment can be supplied by coastal bluffs of the YCP. Major features 

of the Canadian Beaufort Sea coast are steep coastal cliffs, partially containing significant 

amounts of ground-ice, spits and barriers, as well as deltas of coastal plain rivers (Lewis and 

Forbes, 1975). The amount of sediment supplied by the YCP is 2.46 Mt per year (Hill et al., 

1991) and 0.04 Mt of POC (Couture, 2010). The combined sediment load descending from 

these potential sources results in a sedimentation rate of 0.33 cm/a and a total deposition of 

720,000 tons of sediment in Herschel Basin every year (Pfalz, 2017).  

 

The pathway of terrigenous sediment issued mainly by the Mackenzie River can be influenced 

by a variety of factors. One of the factors with minor impact would be the tidal current in the 

southern Beaufort Sea. The range of the spring tide in this area amounts only 0.5 m (Huggett et 

al., 1975; Hill et al., 1991).  

North-westerly and easterly winds have strong influence on the net sediment transport by 

directing of surface currents. The net sediment transport on the Beaufort Shelf is towards the 

east (Huggett et al., 1975; Hill et al., 1991). The report by Huggett et al. (1975) provides a broad 

background about the prevailing currents and the tidal situation on the Beaufort Shelf.  

A potential influence on sedimentation in Herschel Basin is controlled by a coastal longshore 

current moving eastwards through “Workboat Passage” towards the Mackenzie Delta (Pelletier 

et al., 1984). This longshore current was discussed as an important pathway for SPM from Firth 
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and Malcolm River (Pelletier et al., 1984; Lantuit and Pollard, 2008), as well as for eroded 

deposits from the unglaciated YCP.  

The Beaufort Gyre dominates clockwise movement of sea-ice and surface waters offshore but 

to a lesser extent influences circulation and sedimentation on the Beaufort Shelf (Carmack and 

Macdonald, 2002). The main coastal longshore currents of the study area are presented in Fig. 

2.1 (Pelletier et al., 1984). 

 

3. Material & Methods 

3.1. Yukon Coast soil/sediment samples 

 

All soil and sediment samples have been collected within the scope of the COPER project 

(Coastal permafrost erosion, organic carbon and nutrient release in the Arctic nearshore zone). 

Aim of the project, which started in 2005, is to characterise sediment and OC transport in the 

Beaufort Sea, with a focus on the coastal erosion occurring on Herschel Island and the 

surrounding area. Character and velocity of the coastal erosion on Herschel Island is assessed 

by several methodical approaches (Fig. 3.1). Samples which were used in this thesis were taken 

during 2006, 2009, 2015 and 2016 YC (Yukon Coast) expeditions.  

Fig. 3.1: Scheme of the methodical approach to assess the coastal permafrost erosion occurring on 

Herschel Island (image: AWI.de) 
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3.1.1. Herschel Island 

3.1.1.1. Retrogressive thaw slump D 

 

Soil samples collected on Herschel Island originate from two different outcrops (Table 3.1; Fig. 

2.2). Five soil samples were taken from a large retrogressive thaw slump (RTS) at the 

southeastern coast of Herschel Island. Terminology of the so called “Thaw slump D” or “Slump 

D” varied from the 2009 to the 2015 expedition. Hence the differing sample ID “TSD” or 

“SlpD” depending on the time when the sample was taken. TSD, as this RTS is going to be 

called from now on, is the largest RTS on Herschel Island with a width of over 500 m (Lantuit 

et al., 2012b) and exposure of massive ground ice bodies (Fritz et al., 2011).  

Two samples originating from TSD were sampled in 2006, whereas the other three were 

sampled in 2015. Fig. 3.2 shows the exact origin of the samples Slp15-PF-BIO01 until BIO03 

in an outcrop of TSD. Additionally, the image shows glaciotectonic deformation which resulted 

from deformation by ice-thrusting of the LIS (Fritz et al., 2011).  

Sample SlpD15-PF-BIO01 had a dark brownish colour with a substantial amount of plant 

residues and differed significantly from the samples SlpD15-PF-BIO02 and BIO03, which 

contained a sandy sediment fraction and, by optical judgment, distinctively lower TOC 

contents. All three samples showed a significant ice-rich composition. Both samples taken in 

the 2009 expedition showed very similar sediment properties as SlpD15-PF-BIO02 and BIO03.  

Fig. 3.2: Glaciotectonic deformation in deposits of thaw slump D, showing origin of SlpD15-PF-

BIO01 until BIO03 (image: G. Tanski/AWI) 
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3.1.1.2. Collinson Head/Retrogressive thaw slump B 

 

The three samples labelled with the addition “Col” (Table 3.1) originate from a RTS located at 

Collinson Head (Fig. 2.2). Collinson Head marks the easternmost extent of Herschel Island. 

This study site will be referred to as TSB from now on. TSB is one of the smaller RTS on 

Herschel Island. Nevertheless, it also features up to 20 m thick ice bodies in its headwall and a 

width of about 150 m. TSB has firstly been reported after 1970, illustrating fast development 

of these erosional structures. Lantuit and Pollard (2005) reported an eroded sediment loss of 

22300 m3 between 1970 and 2004. High pore water salinities of samples from this deposit 

indicate a marine origin and hence support the theory of origin proposed by Bouchard (1974).  

All three samples from the TSB study site, derived from the 2009 YC expedition, had 

resembling sediment properties compared to the four described samples taken from the TSD 

study site. 

 

 

Table 3.1: Summary of the soil samples from Herschel Island and the 

Komakuk Beach study site 

 

study site sample ID TOC [%] latitude longitude

TSB YC06-Col-2/1 1.5 69.571 138.867
YC06-Col-2/26 0.6
YC06-Col-2/27 0.8

TSD TSD06-04-04 1.2 69.570 139.020
TSD06-04-09 1.5
SlpD15-PF-BIO01 14.7
SlpD15-PF-BIO02 1.2
SlpD15-PF-BIO03 1.8

Komakuk YC09-PF-KOM-01-07 0.4 69.590 140.510
YC09-PF-KOM-02-09 0.7
YC15-KOM-PF-BIO01 7.8 69.596 140.507
YC15-KOM-PF-BIO02 1.8

 YC15-KOM-PF-BIO03 0.9
YC15-KOM-PF-BIO04 0.4
YC15-KOM-PF-BIO05 12.6

�1



 

 16 

3.1.2. Komakuk Beach/Yukon Coastal Plain 

 

As reference of the unglaciated YCP westwards of Herschel Island, several soil samples from 

two study sites on Komakuk Beach were taken into account (Table 3.1). Komakuk Beach is 

located 60 kilometres to the west of Herschel Island (Fig. 2.1) close to the Alaskan border on 

the unglaciated part of the YCP (Fritz et al., 2012). The study site of the in 2015 collected soil 

samples featured an approximately 2.5 m high slope (Fig. 3.3). A profile of five samples was 

taken from this outcrop. Sample YC15-PF-BIO05 was taken from the top of the outcrop, out of 

the active layer. Sample YC15-PF-BIO01, taken directly below the active layer had an organic 

rich, peaty sediment distribution. Both samples contained high amounts of plant residues. 

YC09-PF-KOM-1-07 and YC09-PF-KOM-2-09 were sampled in the 2009 expedition and 

descend from the base of a second outcrop on Komakuk Beach. Both samples taken in the 2009 

YC expedition showed a dark yellow, silty sediment distribution. The two samples exhibited 

high pore water salinities and might be of brackish or marine origin. All seven samples from 

the Komakuk Beach study site had a very ice-rich composition.  

Fig. 3.3: Coastal outcrop located on Komakuk Beach featuring YC15-PF-KOM-BIO01 until 

BIO04 in consecutive order from top to bottom and the active layer sample YC15-PF-KOM-

BIO05 (image: A. Irrgang/AWI) 
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3.1.3. Yukon Coast 2016 spring sediment samples 

 

Table 3.2: All analysed sediment samples from Herschel Basin with the respective 

coordinates for study site 

 

 

study site sample ID sediment depth 
[m]

water depth 
[m] TOC [%] latitude longitude

Lc 1 PG 2303-1/2-1 0.94 38.3 1.0 69.51306 138.89503
PG 2303-1/2-2 1.94 1.7
PG 2303-1/3-1 3.08 0.9
PG 2303-1/3-2 4.08 1.1
PG 2303-1/3-3 4.98 1.3
PG 2303-1/4-1 5.74 1.3
PG 2303-1/4-2 6.74 1.3
PG 2303-1/4-3 7.54 1.2
PG 2303-1/5-1 8.05 1.1
PG 2303-1/5-2 9.05 1.3
PG 2303-1/5-3 9.78 1.4
PG 2303-1/6-1 10.46 1.4
PG 2303-1/6-2 11.47 1.4
PG 2303-1/6-3 12.26 1.5
PG2303-7/0-1 surface 1.3
PG2303-7/1-2 0.01 1.0

Lc 2 PG2302-1/0-1 surface 29.5 1.5 69.54604 138.92073
PG2302-1/1-2 0.01 1.3

Lc 3 PG2305-1/0-1 surface 9.2 1.1 69.56749 138.93628
PG2305-1/1-2 0.01 1.1

Lc 5 PG2307-1/0-1 surface 23.7 1.4 69.49263 138.95309
PG2307-1/1-2 0.01 1.4

Sc 7 PG2308-1/0-1 surface 36.7 1.1 69.54073 138.91689
PG2308-1/1-2 0.01 1.0

Sc 11 PG2312-1/0-1 surface 15.0 0.4 69.55621 138.92415
PG2312-1/1-2 0.01 1.0

Sc 12 PG2313-1/0-1 surface ~ 5 2.1 69.57433 138.93907
PG2313-1/1-2 0.01 1.2

Sc 13 PG2315-1/0-1 surface 50.3 1.5 69.50405 138.91635
PG2315-1/1-2 0.01 0.9

Sc 14 PG2316-1/0-1 surface 43.0 1.4 69.49689 138.93561
PG2316-1/1-2 0.01 1.0

Sc 19 PG2318-1/0-1 surface 15.0 1.3 69.4914 138.95892
PG2318-1/1-2 0.01 1.0

�1
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All analysed sediment samples have been obtained during the Yukon Coast 2016 spring (YC16 

spring) expedition conducted by the COPER team of the AWI. The expedition was scheduled 

from the mid of April to the mid of May. Aim of the expedition was to track the pathway of 

coastally eroded deposits and OC from Herschel Island in the nearshore area and, furthermore, 

to confine the regional sea-level history and to obtain a high-resolution Holocene climate 

record.  

Gravity cores have been taken along two cross-cutting transects in Herschel Basin (Fig. 2.2). 

Transect A progresses from Pauline Cove (Fig. 2.2) towards the centre of Herschel Basin. 

Transect B is located parallel to the coast of Herschel Island progressing from the YCP towards 

the sample location of Lc 1 (Fig. 2.2). Gravity cores have been taken to obtain the undisturbed 

sediment surface, using a gravity corer (UWITEC corp.) with 60 cm PVC liners (6 cm 

diameter). In total 17 short cores have been taken from throughout both transects. For obtaining 

longer sediment cores we used a piston corer (UWITEC corp.) operated via a tripod (Wagner, 

2003). During the coring process, the tripod (Fig. 3.4) was mounted on the approximately 1.60 

m thick sea ice.  

Fig. 3.4: The sediment core PG 2303 is retrieved from the the Lc 1 sample location (image: B. 

Biskaborn/AWI) 
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3.1.3.1. Surface sediment samples, Herschel Basin 

 

From the 17 gravity cores taken in April to May 2016, ten have been used in this thesis (Table 

3.2; Fig. 2.2) Samples were retrieved from the first and the second centimetre of the ten gravity 

cores. All surface sediment samples are about equally distributed over transect A and B, to 

obtain a widespread overview over the geochemistry of Herschel Basin (Fig. 2.2). Sediment 

properties of the gravity core samples were similar as of the PG 2303 core (see paragraph 

3.1.3.2.). Gravity cores located closer to the shore of Herschel Island contained fine sandy 

sediment layers at irregular intervals. Some surface sediment samples occasionally contained 

ice-rafted pebbles.  

 

3.1.3.2. Sediment core PG 2303, Herschel Basin 

 

The sediment core PG 2303 was taken at the transection of transect A and transect B at a water 

depth of 38.3 m (69°30´47.0´´N; 138°53´42.1´´W). PG 2303-1/2-6 (Periglacial 2303-1/2-6; 

study site Lc 1), from now on just referred to as PG 2303, has a total length of 12.29 m. 14 

samples throughout PG 2303 were analysed in this thesis (Table 3.2). The age-depth model 

(Fig. 3.5) was taken from the master thesis of Gregor Pfalz (2017). Radiocarbon results of this 

age model were analysed on several specimens of Nuculana sp.. The sedimentation rate of PG 

2303 shows an almost linear progression throughout the entire sediment core (0.33 cm/a). The 

sediment core bottom at 12.29 mbsf has a deposition age of about 4.35 ka BP.  

Fig. 3.5: Age-depth model of PG 2303 by Pfalz (2017). The depth is indicated in cm 
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Colour and grainsize of PG 2303 featured almost no change throughout the entire core. PG 

2303 had a brown-greyish to greyish-black colour. From time to time the sediment core 

exhibited fine fissures and cavities of gas inclusion (Pfalz, 2017). Smears of black organic-rich 

material, which emitted a slight sulfidic smell, were distributed over some parts of PG 2303. 

The whole core showed no evidence for stratification. Grain size analyses conducted by Pfalz 

(2017) revealed marginal variation throughout the entire core. Grain size of PG 2303 can be 

described as “silt” or “clayey silt”.  

 

3.2. Preparation of biomarker samples 

3.2.1. Sample extraction 

 

All sample preparations and biomarker analyses were conducted in the organic geochemistry 

laboratories at the AWI in Bremerhaven.  

All 49 soil and sediment samples were extracted and processed according to established 

standard procedures of the organic geochemistry group at the AWI (Meyer et al., 2016). All 

samples were ultrasonically extracted three times for ten minutes each, using 25 ml of a 9:1 

(vol/vol) dichloromethane (DCM) and methanol (MeOH) solvent mixture for every run. After 

each run the samples were centrifuged and the supernatant decanted. Each total lipid extract 

(TLE) was concentrated by evaporation with a rotary evaporator and transferred into 4 ml glass 

vials.  

To reconstruct potential error propagation, a laboratory internal sediment standard was used 

additionally with every sediment extraction and analysed in every sequence.  

 

3.2.2. Saponification 

 

All samples were saponified (modified after Sakata et al. (2008)), using approximately 1.5 ml 

of a 0.1 M potassium hydroxide (KOH; 5.67 g/l) solution diluted in MeOH and H20 (9:1; 

vol/vol). Samples were saponified to isolate fatty acids from the lipid extract. The fatty acid 

containing fraction was not used in this thesis. After the saponification, TLE’s were heated for 

two hours at 80 °C. Neutral lipids (e.g., hydrocarbons and alcohols) were extracted from the 

saponified solution through liquid-liquid-extraction. Hydrocarbons and alcohols were separated 

by adding n-hexane. Each liquid-liquid-extraction was repeated three to four times.  
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3.2.3. Silica gel column chromatography 

 

Individual biomarker compound classes of each neutral-lipid fraction were isolated by applying 

a simple column chromatography modified after Eglinton and Hamilton (1967). Different 

fractions were separated through a self-built silica gel column (4 cm of dry silica gel, pre-

combusted at 450 °C). The first fraction, containing the saturated n-alkanes and hopanoid 

compounds, was eluted with n-hexane. The second and third fraction, which contained PAH’s 

(polycyclic aromatic hydrocarbon; eluted with n-hexane and DCM; 9:1; vol/vol) and ketones 

(eluted with n-hexane and DCM; 2:1; vol/vol), were not used in this thesis. A fourth fraction 

containing polar components, such as the required GDGT’s, was eluted with MeOH. Each 

fraction was eluted with 3.5 ml of the respective solvent mixture. After isolation, both fractions 

were concentrated by evaporation under a steady stream of dry N2.  

The original intention of analysing PAH biomarkers was impeded, as preliminary analyses 

revealed a contamination of the surface sediment samples. Tests showed that the contamination 

was most likely caused through sample storage and transport in Whirl-Pak bags.  

 

3.2.4. Processing of GDGT fractions 

 

Prior to the analyses of the GDGT’s, polar fractions were filtered over 0.45 µm pore size 

hydrophilic PTFE syringe filters, using a solvent mixture of n-hexane and isopropanol (99:1; 

vol/vol). The filtration was repeated three times using about 100 µl of the solvent mixture for 

each filtration process. Purpose of this measure was to remove remaining particles which are a 

potential threat to the HPLC.  

The filtered polar fractions were eventually weighed to determine GDGT concentrations for 

each sample. According to the weight, every sample was individually diluted for analyses on 

the HPLC.  

 

3.3. Biomarker analysis 

3.3.1. GC-MS analysis  

 

Hopanoid compounds were analysed on an Agilent 6850 gas chromatograph (GC) -system 

(with Agilent J&W DB-1MS column; length 30 m; diameter 250 µm) connected to an Agilent 

5975C VL MSD quadrupole mass spectrometer using helium as carrier gas.  
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Hopanoid fractions were analysed in selected ion monitoring (SIM) mode for increased 

sensitivity and diluted with n-hexane. The initial temperature of the oven was set to 60 °C for 

three minutes. Subsequently the oven was heated to 150 °C with a rate of 20 °C per minute and 

to 320 °C at a rate of four °C per minute. This temperature was maintained for 15 minutes.  

Hopanoids were identified by comparing selected ion chromatograms with the key fragment of 

the ion at m/z = 191, with published data of Wenger and Isaksen (2002) (Fig. 3.6).  

Quantification of hopanoid biomarkers was achieved by using a single point calibration. An 

external standard containing 2.71 ng/µl (diluted in n-hexane) of a C3017b(H), 21b(H)-Hopane 

was repeatedly analysed with every sequence. Calculated concentrations should be considered 

as semi-quantitative. Quantified results of hopanes, n-alkanes and fractional abundances of the 

GDGT’s are listed on the Open Access library PANGAEA.  

The error between analysed C3017β(H), 21β(H)-Hopane peak areas was determined with two 

independent series of sequences. For the first series of the analysed hopane standard, including 

eight samples, peak areas deviated by 31.8 %. The second error of 24.1 % was determined with 

ten analysed hopane standards. Both values result in a mean of 28.0 %.  

Fig. 3.6: Chromatogram showing hopanoid compounds of SlpD15-PF-BIO03 (m/z 191). Hopanoid 

compounds were identified after Wenger and Isaksen (2002) 

 

 



 

 23 

The relative state of degradation of the hopanoid composition in a sample can be assessed with 

the Hopanoid-Index (Ep. 1). With depletion of the thermally labile C31ββ Hopane and relative 

enrichment of the C3117α, 21β-Homohopane (22S) and C3117α, 21β-Homohopane (22R) and 

subsequently C3117β, 21α-Moretane, the degradation of each sample can be assessed (compare 

paragraph 1.3.1. concerning diagenesis of bacteriohopanetetrol (Peters et al., 2005)).  

 

Hopanoid − Index = 	
C/0ββ

C/0ββ + C/0αβS + C/0αβR + C/0βαS + R
 

 

 

 

3.3.2. GC-FID analysis 

 

n-alkane (normal alkanes) biomarkers were analysed via gas chromatography coupled to a 

flame ionization detector (FID). Helium was used as carrier gas. The used device was an Agilent 

7890A GC system, equipped with an Agilent J&W DB-5ms column (length 60 m; diameter 

250 µm). n-alkane containing fractions were injected with n-hexane. C14 – C36 n-alkanes, 

pristane and phytane, were identified and quantified. For identification of the n-alkane 

homologue series the retention time of the compounds were compared to an external alkane 

standard (C10 – C40, odd and even n-alkanes plus pristane and phytane, 2 ng/µl). The alkane 

standard was included twice with every sequence.  

n-alkanes were quantified against the external alkane standard. C14 – C36 n-alkanes plus pristane 

and phytane of the external n-alkane standards were quantified and averaged for each sequence. 

Identified n-alkane compounds were quantified with a single point calibration of the external 

n-alkane standard. The averaged error of all quantified standard compounds is 7.83 %. This 

value was calculated via the standard deviation (SD) of averaged n-alkane standard peak areas 

from four individual sequences.  

 

 

 

 

 

 

(1) 
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(2) 

The distribution of odd over even numbered alkanes, represented by the carbon preference 

index (CPI; Cooper and Bray, 1963; Marzi et al., 1993; Simoneit, 1977), can be used as a source 

indication for lipid composition. The CPI, stated in Eq. 2, was modified after Jeng (2006). CPI 

values > 1 indicate a terrestrial n-alkanes source (Eglinton and Hamilton, 1967). Whereas more 

balanced ratios between odd and even numbered n-alkanes can indicate thermal maturity and 

petrogenic origin of the lipid composition (Bray and Evans, 1961; Simoneit, 1984).  

 

CPI =
1
2
𝑛C:/ + 𝑛C:; + 𝑛C:< + 𝑛C:= + 𝑛C/0
𝑛C:: + 𝑛C:> + 𝑛C:? + 𝑛C:@ + 𝑛C/A

+
𝑛C:/ + 𝑛C:; + 𝑛C:< + 𝑛C:= + 𝑛C/0
𝑛C:> + 𝑛C:? + 𝑛C:@ + 𝑛C/A + 𝑛C/:

 

 

The terrestrial aquatic ratio (TAR; ep. 3) (Bourbonniere and Meyers, 1996) assesses the relative 

contribution of terrestrial and aquatic distribution of n-alkanes. With increasing ratio of long-

chain n-alkanes from epicuticular waxes (C27, C29 and C31 n-alkanes) over short-chain n-alkanes 

produced by algal communities (C15, C17 and C19 n-alkanes) the TAR ratio increases.  

 

TAR = 	
𝑛C:< + 𝑛C:= + 𝑛C/0
𝑛C0; + 𝑛C0< + 𝑛C0=

 

 

Sphagnum-derived OM from peat deposits can be assessed via various n-alkane Sphagnum 

proxies.  

Due to the characteristic occurrence of C23 and also C25 n-alkanes, Sphagnum contribution in 

terrestrial OM can be assessed with the C23/(C23 + C29) n-alkane ratio (Nichols et al., 2006; van 

Dongen et al., 2008) and the C25/(C25 + C29) n-alkane ratio (Vonk et al., 2015).  

n-alkane distributions will be used to distinguish between different sources that supply Herschel 

Basin with sediment. Findings within n-alkane distributions will be compared with other indices 

to reinforce results. 

Standard deviations for all stated CPI, TAR and C23:C29 ratios were determined by analysis of 

the laboratory internal sediment standards. The calculated standard deviation for the CPI is 0.06 

(1.28 %). Results of the TAR had a standard deviation of 4.63 (17.43 %), whereas the ratio of 

the C23 n-alkane versus the C29 n-alkane showed a standard deviation of 0.015 (6.48 %).  

 

 

 

 

(3) 
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3.3.3. HPLC analysis 

 

GDGT’s were analysed by high-performance liquid chromatography (HPLC) coupled with an 

atmospheric pressure chemical ionization (APCI) interface connected to a single quadrupole 

mass spectrometer (MS). The used devices were an Agilent 1200 series HPLC system and an 

Agilent 6120 single quadrupole MS. For separating individual GDGT compounds, a Prevail 

Cyano column (Grace, 3 µm, 150 mm x 2.1 mm), maintained at 30 °C, was used. The used 

method was modified after Hopmans et al. (2000). Depending on the weight of the polar 

fraction, sample injection varied between 5, 10 or 20 µl (99:1; n-hexane:isopropanol; vol:vol). 

After sample injection and five minutes isocratic elution with the mobile phase A (n-

hexane/isopropanol/chloroform; 98:1:1; vol:vol) at a flow rate of 0.2 ml/min, the proportion of 

the mobile phase B (n-hexane/isopropanol/chloroform; 89:10:1; vol:vol) was linearly increased 

up to 10 % within 20 minutes. Subsequently, mobile phase B was linearly increased to 100 % 

within ten minutes. This state was kept for seven minutes, before cleaning the column in 

backflush mode for five minutes at a flow rate of 0.6 ml/min. Before analysis of the following 

sample, the column was re-equilibrated with mobile phase A at a flow rate of 0.2 ml/min for 

ten minutes.  

GDGT compounds were detected via positive-ion APCI-MS and SIM of the (M+H)+ ions 

(Schouten et al., 2007a). The APCI spray-chamber conditions were set as described hereafter. 

The nebulizer pressure was set to 50 psi at a vaporizer temperature of 350 °C. The flow of N2 

drying gas was 5 l/min at 350 °C. Capillary voltage was set to -4 kV and corona current to +5 

µA.  

For TEX/BIT analyses, the MS-detector was set to SIM for the following (M+H)+ ions: m/z 

1302.3 (GDGT 0), 1300.3 (GDGT 1), 1298.3 (GDGT 2), 1296.3 (GDGT 3), 1292.3 (GDGT 4 

+ 4´ / crenarchaeol + regio-isomer), 1050 (GDGT III), 1036 (GDGT II), 1022 (GDGT I) and 

744 (C46 standard), with a dwell time of 67 ms per ion.  

The GDGT distribution of each sample is stated as fractional abundance. Fractional abundances 

were calculated with the respective peak areas of each GDGT.  

 

The branched and isoprenoid tetraether (BIT) index can be used to assess the fate of soil organic 

carbon in aquatic environments (Hopmans et al., 2004). The BIT index quantifies the relative 

abundance of branched GDGT’s (Sinninghe Damsté et al., 2000) and crenarchaeol (Sinninghe 

Damsté et al., 2002). Crenarchaeol is always found in marine settings, but can occur in 

lacustrine environments as well (Powers et al., 2004; Schouten et al., 2000) and has furthermore 
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been detected in peat deposits (Weijers et al., 2004; Weijers et al., 2006b). Nevertheless, 

concentrations of crenarchaeol in soils remain at a comparable low constant level (Ochsenreiter 

et al., 2003), hence large interference on BIT values are not to be expected. Branched GDGT’s 

are mostly synthesised by anaerobic bacteria living in soil and peat (Weijers et al., 2006a; 

Weijers et al., 2009) and can therefore be used to trace terrestrial produced OM in aquatic 

systems.  

 

BIT	index = 	
I + II + III

I + II + III + GDGT	4  

 

The roman numbers in equation 4 refer to the three branched GDGTs, GDGT I (m/z 1022), 

GDGT II (m/z 1036) and GDGT III (m/z 1050). GDGT 4 refers to crenarchaeol without the 

associated regio-isomer. BIT values can vary between 0 and 1. A BIT values of 1 equals 100 

% abundance of branched GDGT compounds.  

The standard deviation of the BIT index was also determined via the laboratory internal 

sediment standard. The resulting standard deviation of seven analysed sediment standards for 

the BIT index was 0.04 (5.29 %).  

 

3.4. Preparation and analysis of radiocarbon samples 

 

Each bulk organic radiocarbon sample was prepared and analysed in the laboratories of the 

AWI in Bremerhaven. Radiocarbon dating was conducted to assess the influence of various 

potential sediment suppliers on the bulk radiocarbon composition of sediments in Herschel 

Basin.  

In total 46 soil and sediment samples were prepared for accelerator mass spectrometry (AMS). 

Each sample was weighed into a silver capsule to equally obtain about 1 mg of carbon, 

according to the samples associated TOC value. This guideline was strictly adhered to remain 

within the measurability of the used AGE 3 system (see paragraph 3.4.2.).  

Samples PG 2303-1/5-1, 6-1 and 6-2 were not radiocarbon dated, as they failed to graphitise on 

the AGE 3 system.  
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3.4.1. Acidification 

 

For removal of inorganic carbon and to reduce contamination effects (Kirner et al., 1995), 

samples designated for AMS analysis were treated after an acidification protocol. Beforehand 

the actual acidification, all samples were wetted with 2 drops of ethanol. Subsequently, after 

heating the samples up to 60 °C, the samples were treated with 6 N hydrochloric acid (HCl) in 

three steps (Step 1: 4 drops; step 2: 3 drops; step 3: 2 drops of 6 N HCl). In between each step 

the protocol prescribed 20 minutes of latency. The treated samples were dried overnight at 60 

°C to assure there were no residues of HCl remaining.  

 

3.4.2. Graphitisation  

 

All samples were analysed on an AGE 3 system (Automated Graphitization System) by Ionplus 

(Wacker et al., 2010b). The AGE 3 combines sample combustion, an elemental analyser (EA) 

and graphitisation in one fully automated system.  

Prior to the graphitisation process, decarbonated samples were packed into tin capsules. 

Samples were combusted with helium as carrier gas. The resulting gasses were 

chromatographically separated and CO2 collected in a zeolite trap. After creating a pressure 

gradient by heating the zeolite trap to 450 °C, the CO2 is released into a reactor to start the 

graphitisation. Post reaction and pressure stabilisation, the sample is immediately pressed into 

graphite targets to prevent interaction with air (Wacker et al., 2010b).  

 

3.4.3. Accelerator mass spectrometry 

 

Graphite targets were analysed on a Mini Carbon Dating System (MICADAS; Ionplus) (Synal 

et al., 2007). The MICADAS system is the smallest AMS spectrometer of its kind.  

The obtained error of all analysed bulk soil and sediment samples is attached in Table 4.1. The 

uncertainty was determined from the counting statistic of analysed samples and blanks (Wacker 

et al., 2010a). Variance of blank analyses determined sample contamination and contamination 

through the ion source of the MICADAS system. A standard error of 0.5 % was assigned to 

each 14C result.  
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Results of AMS analyses include radiocarbon ages and fraction modern values (F14C). F14C 

expresses the deviation of the 14C/12C ratio of the sample, with an applied correction for 

fractionation, to the 14C/12C ratio of a modern carbon standard (Stuiver and Polach, 1977; 

Reimer et al., 2004).  

 

t = 	−8033	×	ln	 F0>C  

 

F14C values of radiocarbon values taken from the literature were calculated after Stuiver and 

Polach (1977) (Eq. 5), with t as the 14C age of the respective sample and the Libby half-life of 

5568 years for consistence (mean life 8033 years). In Stuiver and Polach (1977), F14C is referred 

to as ASN/AON.  

 

4. Results 

4.1. TOC values 

 

Previously obtained TOC values, analysed on different devices at AWI Potsdam and AWI 

Bremerhaven, could not be reproduced during the graphitisation process. During the 

graphitisation process, unusually low CO2 concentrations were detected indicating inaccuracy 

of previously analysed TOC values of some samples. All TOC values were therefore coherently 

determined with the, to the AGE 3 system coupled EA (Table 3.1 and 3.2).  

The precision of the TOC measurements was determined by quantification of the oxalic acid 

(Ox-2) standard (Stuiver and Polach, 1977; Wacker et al., 2010b). The error of analysed Ox-2 

standards, calculated with the associated standard deviation, is 1.6 %. Calculations for sample 

PG 2303-1/6-3 resulted in a standard deviation of 0.1 for an averaged TOC content of 1.5 %. 

This value was determined with three incoherent analyses of PG 2303-1/6-3.  

 

4.2. Hopane triterpenes 

 

The most abundant hopanoid compounds in the surface sediment samples from Herschel Basin 

are diploptene, C29αβ and C30αβ (Fig. 5.1). Other abundant hopanoid compounds are C31αβS 

and C31αβR as well as C31ββ hopanes.  

Values calculated with the Hopanoid-Index (Eq. 1) of all analysed samples range between 0.21 

and 0.52. The individual result of each sample is illustrated in Fig. 4.1. The average Hopanoid-
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Index of samples from Herschel Island is 0.35 (SD = 0.07), not including SlpD15-PF-BIO01 

(Hopanoid-Index = 0.52) as this samples value deviates distinctively from the stated average 

composition. The average value of samples combined for all samples from both Komakuk 

Beach study sites is 0.38 (SD = 0.08; except YC15-KOM-PF-BIO02).  

Analysed surface sediment samples show an average value of 0.45 (SD = 0.03), similar as the 

average results of PG 2303 samples (0.46 (SD = 0.04); Fig. 5.7).  

The relative composition of C2917α, 21β-30-Norhopane, C3017α, 21β-Hopane and diploptene 

(17β, 21β-Hop-22(29)-ene) of all soil and sediment samples is presented in Fig. 5.1. Soil 

samples retrieved from outcrops on Herschel Island show high abundance of the diagenetic 

hopanes C29αβ and C30αβ, apart from sample SlpD15-PF-BIO01. This particular sample has a 

different hopanoid distribution with diploptene as the most abundant hopanoid compound (Fig. 

5.1).  

The hopanoid distribution of samples retrieved from the Komakuk Beach study sites show 

strong variation within Fig. 5.1. YC09-PF-KOM-01-07 and YC09-PF-KOM-02-09 feature a 

similar distribution compared to samples retrieved from Herschel Island, whereas YC15-PF-

KOM-BIO01, YC15-PF-KOM-BIO03 and YC15-PF-KOM-BIO05 feature high abundance of 

diploptene, similar as SlpD15-PF-BIO01.  

Hopanoid biomarkers of sediment samples shown in Fig. 5.1 indicate an intermediate 

composition of the three hopanoid compounds. Diploptene concentrations of the surface 

samples range between 3.49 and 14.50 ng/g TOC. The results are shown in Fig. 4.3.  

Fig. 4.1: Correlation of the Hopanoid-Index and the diploptene ratio (diploptene/(diploptene + 

C29αβ + C30αβ)). Surface sediment samples are differently colored and assigned according to their 

location in Herschel Basin 
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4.3. n-alkanes 

 

CPI results of all samples retrieved from Herschel Island have a mean value of 4.3 with a 

standard deviation of 2.7. TAR calculations of the same eight samples show a wide range of 

results from 1.7 to 53.5. The TAR value of 53.5 was calculated with n-alkane compounds of 

SlpD15-PF-BIO01. CPI results of the remaining seven samples from Herschel Island have a 

standard deviation of 1.9. Calculations of the C23:C29 ratio of all eight samples from Herschel 

Island produced a mean value of 0.30 with standard deviation of 0.09 (Fig. 4.2).  

Samples from the Komakuk Beach study site show a CPI mean of 9.3 (SD = 3.7). The TAR 

mean of samples from Komakuk Beach is 22.4 (SD = 9.8). The ratio of the C23 n-alkane to the 

C29 n-alkane show a mean value of 0.25 (SD = 0.12; Fig. 4.2). n-alkane results of samples from 

Komakuk Beach display strong variation in all calculated values.  

CPI values of the surface sediment samples are presented in Fig. 4.3. All values show closely 

resembling values with a mean of 4.5 (SD = 0.6). C23:C29 ratios display a very low variance 

with a mean of 0.29 (SD = 0.01). The mean result of the TAR of all surface sediment samples 

is 7.4 (SD = 2.1; Fig. 4.2).  

The downcore variation of CPI and the C23:C29 ratio in PG 2303 is illustrated in Fig. 5.7. n-

alkane results of PG 2303 are also presented in Fig. 4.2. CPI results of PG 2303 show a mean 

of 4.4 (SD = 0.5). The mean value of the TAR, calculated with the 14 PG 2303 samples, is 3.2 

(SD = 3.2). C23:C29 ratios show a similar mean as the surface sediment samples from Herschel 

Basin (mean = 0.31; SD = 0.02).  

Fig. 5.3 comprises four saturate fraction chromatograms of the samples PG 2302-1/1-2 (Lc 2 

study site), PG 2303-7/1-2 (Lc 1), PG 2303-1/2-2 (Lc 1), SlpD15-PF-BIO01. These four 

chromatograms, linked to the respective position in Fig. 5.3, display UCM’s of varying 

development. The chromatograms are showing the homologue series of the n-alkanes.  
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Fig. 4.2: A: C23:C29 ratio plotted against the TAR, showing 

a coherence in all analysed samples and samples from 

Yunker et al. (1992). Literature data comprises Mackenzie 

River SPM (red and purple diamonds) and soil samples 

from the glaciated YCP (brown rectangles); B: C23:C29 

results plotted against results of the BIT index; C: 

Correlation between TAR and CPI values; D: C23:C29 

ratios plotted against the CPI indicate a similar 

distribution as shown in plot A 
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4.4. GDGT’s 

 

Soil samples from Herschel Island show a mean BIT value of 0.88 (SD = 0.17; Fig. 4.2). 

Calculated BIT values of the samples YC06-Col-2/26 and YC06-Col-2/27 from the TSB study 

site display relatively low values of 0.51 and 0.75 respectively.  

The five soil samples from the outcrop on Komakuk Beach (Fig. 3.3) feature highest BIT values 

with a mean of 0.97 (SD = 0.07). Both samples taken in the 2009 YC expedition show lower 

BIT values of 0.75 (YC09-KOM-PF-2-07) and 0.61 (YC09-KOM-PF-2-09).  

BIT calculations of the surface sediment samples from Herschel Basin resulted in a mean of 

0.78 (SD = 0.04). Fig. 4.4 shows BIT values of the surface sediment samples distributed over 

Herschel Basin.  

BIT values of the sediment core PG 2303 show a mean of 0.76 (SD = 0.03; Fig. 4.2). The 

downcore evolution of BIT values analysed on the 14 samples of PG 2303 is presented in Fig. 

5.7.  

 

4.5. Geochronology 

 

Table 4.1: Radiocarbon results of all analysed soil and sediment samples (continued on page 34). 

Soil δ13C data was obtained from Dr. Michael Fritz/AWI 

 

 

 

study site sample ID
14C age           
[ka BP]

14C error    
[± yr BP] F14C

 F14C 
error [%] δ13C [‰] 

TSB YC06-Col-2/1 32.89 459 0.02 5.72 -26.30
YC06-Col-2/26 26.95 259 0.04 3.22 -26.30
YC06-Col-2/27 27.60 271 0.03 3.37 -25.80

TSD TSD06-04-04 30.99 394 0.02 1.58 -26.40
TSD06-04-09 19.28 127 0.09 4.90 -26.50
SlpD15-PF-BIO01 9.76 72 0.30 0.90 -26.98
SlpD15-PF-BIO02 22.30 77 0.06 0.96 -26.17
SlpD15-PF-BIO03 16.55 113 0.13 1.40 -26.54

Komakuk YC09-PF-KOM-01-07 20.72 155 0.08 1.93 -25.12
YC09-PF-KOM-02-09 18.18 128 0.10 1.59 -25.70
YC15-KOM-PF-BIO01 8.30 67 0.36 0.84 -27.69
YC15-KOM-PF-BIO02 8.38 81 0.35 1.01 -27.65
YC15-KOM-PF-BIO03 10.69 123 0.26 1.53 -27.73
YC15-KOM-PF-BIO04 16.26 238 0.13 2.96 -28.42
YC15-KOM-PF-BIO05 8.00 67 0.37 0.83 -27.92
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Results of AMS radiocarbon dating are given in Table 4.1. The δ13C data was received from 

the master thesis of Pfalz (2017) and from Dr. Michael Fritz (AWI Potsdam).  

Soil samples from Herschel Island show strong variations in radiocarbon org. ages with a mean 

value of 23.29 ka BP (SD = 7.83 ka BP). Especially SlpD15-PF-BIO01 is noticeable with a 

radiocarbon age of 9.76 ka BP. F14C results of all soil samples from Herschel Island, except 

SlpD15-PF-BIO01 (F14C = 0.30), show a mean of 0.06 (SD = 0.04). δ13C values of all eight 

samples from Herschel Island have a mean value of -26.37 ‰ (SD = 0.34 ‰).  

Radiocarbon ages from the soil profile on the Komakuk study site show increasing values from 

top to bottom. The obtained ages for the five soil samples range from 8.00 to 16.26 ka BP from 

top to bottom. The two additional samples descending from the Komakuk Beach study site, 

taken from the base of a second outcrop, exhibit radiocarbon ages of 18.18 and 20.72 ka BP. 

Associated F14C results of all seven samples from Komakuk Beach range from 0.08 to 0.37. 

The δ13C results display a mean of -27.18 ‰ (SD = 1.25 ‰).  

Radiocarbon results of the first centimetre of all surface sediment samples feature a mean of 

11.78 ka BP (SD = 1.67 ka BP). The mean value of the second centimetre of the surface 

sediment samples is 11.95 ka BP (SD = 1.99 ka BP). Data of samples from both transects show 

a slight overall trend of increasing values towards the basin centre. This trend can be observed 

in both, the first and the second centimetre of the gravity cores (Fig. 4.4). Associated mean F14C 

values of the first centimetre of the surface samples are 0.25 (SD = 0.07) and 0.22 (SD = 0.04) 

for the second centimetre of all surface samples. All surface sediment samples show very close 

resembling δ13C results with a mean of -26.13 ‰ (SD = 0.25 ‰).  

Bulk organic 14C results of PG 2303 display an overall increase from top to bottom and an 

overall decrease in F14C results. The values range from 6.71 ka BP to 16.10 ka BP (Table 4.1). 

F14C values vary from 0.43 to 0.13. The δ13C mean of associated sediment samples is -25.95 

‰ (SD = 0.10 ‰).  
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Table 4.1: continued 

 

 

 

 

 

 

study site sample ID
14C age           
[ka BP]

14C error    
[± yr BP] F14C

 F14C 
error [%] δ13C [‰]

Lc 1 PG 2303-1/2-1 10.78 56 0.26 0.70 -25.83
PG 2303-1/2-2 6.71 64 0.43 0.80 -26.00
PG 2303-1/3-1 11.58 59 0.24 0.73 -25.93
PG 2303-1/3-2 12.81 61 0.20 0.76 -26.11
PG 2303-1/3-3 13.95 92 0.18 1.15 -25.88
PG 2303-1/4-1 13.45 62 0.19 0.77 -25.99
PG 2303-1/4-2 14.23 64 0.17 0.80 -25.89
PG 2303-1/4-3 14.44 95 0.17 1.19 -25.99
PG 2303-1/5-1 13.74 63 0.18 0.78 -25.96
PG 2303-1/5-3 14.37 93 0.17 1.16 -25.96
PG 2303-1/6-3 16.10 103 0.14 1.28 -25.74
PG 2303-7/0-1 14.02 58 0.18 0.72 -26.20
PG 2303-7/1-2 13.02 56 0.20 0.70 -26.20

Lc 2 PG 2302-1/0-1 12.04 81 0.38 0.85 -26.60
PG 2302-1/1-2 7.86 68 0.22 1.01 -26.20

Lc 3 PG 2305-1/0-1 12.98 57 0.20 0.70 -25.90
PG 2305-1/1-2 13.08 56 0.20 0.70 -25.90

Lc 5 PG 2307-1/0-1 9.12 52 0.32 0.65 -26.40
PG 2307-1/1-2 12.08 55 0.22 0.68 -26.40

Sc 7 PG 2308-1/0-1 9.40 54 0.31 0.67 -26.20
PG 2308-1/1-2 9.80 53 0.30 0.66 -26.40

Sc 11 PG 2312-1/0-1 13.15 59 0.20 0.74 -25.90
PG 2312-1/1-2 13.90 58 0.18 0.73 -25.90

Sc 12 PG 2313-1/0-1 11.88 56 0.23 0.70 -25.46
PG 2313-1/1-2 13.11 56 0.20 0.70 -25.89

Sc 13 PG 2315-1/0-1 13.27 56 0.19 0.70 -26.20
PG 2315-1/1-2 13.35 56 0.19 0.70 -26.20

Sc 14 PG 2316-1/0-1 11.42 54 0.24 0.67 -26.10
PG 2316-1/1-2 13.16 57 0.19 0.71 -26.10

Sc 19 PG 2318-1/0-1 10.54 53 0.27 0.66 -26.20
PG 2318-1/1-2 10.10 53 0.28 0.66 -26.20

�1
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Fig. 4.3: A: Diploptene concentrations in ng/g TOC of all surface sediment samples. The image on 

the left shows the first centimetre of the surface samples, the image on the right-hand side the 

second centimetre respectively; B: CPI results of the surface sediment samples (left: first cm; 

right: second cm). Results shown in Fig. 4.3 A and B have been extrapolated for better 

comprehension 
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Fig. 4.4: A: BIT values of the surface sediment samples distributed over Herschel Basin (left: first 

cm; right: second cm); B: Radiocarbon ages of all surface sediments are illustrated in ka BP (left: 

first cm; right: second cm). Results shown in Fig. 4.4 A and B have been extrapolated for better 

comprehension 
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5. Discussion 
 

The ratios and quantified results of the following sections were calculated with absolute values. 

Values given in the text and tables, as well as in the appendix, have been rounded for 

comprehensive reasons.  

Samples from Komakuk Beach cannot be unambiguously distinguished from peat and SPM of 

the glaciated part of the YC, the Mackenzie River or from deposits on Herschel Island. Results 

of samples from the Komakuk Beach study site will therefore be neglected in the discussion.  

Sample SlpD15-PF-BIO01 will be preemptively excluded from further interpretations. 

Radiocarbon results of this sample exhibited a post-glacial value of 9.76 ka BP, which could 

have been caused through cryoturbation, but it is possible that the sample was confused during 

analysis or field work.  

 

5.1. Biomarker signature of sediment contributors to Herschel Basin 

 

The in Fig. 5.1 shown results are complemented with literature data from Yunker et al. (1992). 

The dataset comprises biomarker concentrations of SPM in the Mackenzie River Delta (Stn 1, 

Stn 0) and three samples from peat deposits along the glaciated YCP. Fig. 2.1 shows the sample 

locations of Stn 1 and Stn 0. Study sites of the three peat deposits are shown in Fig. 2.1. SPM 

samples of Stn 1 were retrieved during freshet of 1987 (April 11th, May 5th, May 30th) by the 

Institute of Ocean Sciences in British Columbia (Macdonald et al., 1988a; Macdonald et al., 

1988b). Stn 0 was sampled at September 6th of the same year.  

The dataset comprises hopanoid and n-alkane biomarker results (Table 5.1). GDGT 

concentrations are unfortunately missing in the dataset, as the samples were retrieved before 

these lipids gained the attention of the scientific community (Schouten et al., 2000; Sinninghe 

Damsté et al., 2000).  

The relative composition of the diagenetic hopanes, C2917α, 21β-30-Norhopane and C3017α, 

21β-Hopane, besides diploptene (17β, 21β-Hop-22(29)-ene) from the Mackenzie River Delta 

and peat deposits at King and Sabine Point is shown in Fig. 5.1. SPM data taken from Stn 1 

sampled during freshet features high diploptene abundance and depletion of diagenetic 

hopanes. SPM data of Stn 0 sampled in September 1987 features an intermediate composition 

of these three hopanoid biomarkers. Results of the three peat deposits display a distinct 

predominance of diploptene. 
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Table 5.1: n-alkane and hopane biomarker data after Yunker et al. (1992). The data comprises 

Mackenzie River SPM and soil samples from three outcrops along the glaciated YCP  

 

 

n-alkane results for samples derived from Yunker et al. (1992) are summarised in Table 5.1 and 

illustrated in Fig. 4.2. SPM from the Mackenzie River exhibit the lowest CPI and TAR values 

of all considered samples with a mean CPI of 2.1 and a mean TAR of 2.0. The mean value of 

the C23:C29 ratio for these four SPM samples is 0.44, indicating a potential influence of 

Sphagnum derived n-alkanes through erosion of peat deposits within the drainage area of the 

Mackenzie River.  

Samples from peat outcrops at King and Sabine Point display a high mean CPI of 8.3 and a 

high mean TAR of 54.0. Both indices display very high variance. The mean C23:C29 ratio 

respectively shows a very low mean of 0.15. Peat deposits are not necessarily associated with 

high abundances of Sphagnum species. High abundance of odd long-chained alkanes in the 

observed peat deposits may indicate a primary gymnosperm plant source (Bush and McInerney, 

2013) and relative absence of Sphagnum species, which would also explain high TAR ratios 

and relatively speaking low degradation of OM in these samples. Statements about the relative 

degree of degradation of a sample are only valid within the discussed dataset.  

Samples shown in Fig. 5.1 align on a distinct trend determined by the relative abundance of 

both diagenetic hopanes and diploptene. The trend develops with decreasing abundance of 

diploptene and increasing abundance of both diagenetic hopanes, whereas C2917α, 21β-30-

Norhopane shows a greater increase in abundance compared to C3017α, 21β-Hopane. 

According to Fig. 4.1 this trend shows a clear correlation with results of the Hopanoid-Index. 

With decreasing abundance of diploptene in contrast to the relative increase of both diagenetic 

hopanes, calculated values of the Hopanoid-Index decrease.  

Diploptene 29αβ 30αβ CPI C23:C29 ratio TAR

Mackenzie River 
SPM

[ng/l] [ng/l] [ng/l]

Stn 1
11th April 13.00 0.07 0.13 1.7 0.42 1.5
5th May 5.50 0.31 0.55 2.5 0.49 2.5
30th May 85.00 15.00 22.00 1.7 0.38 2.8
Stn 0
6th September 30 10 23 2.4 0.48 1.3
peat samples [ng/g] [ng/g] [ng/g]
Sabine Pt. 12300 6.50 7.60 12.1 0.07 124.4
King/Sabine Pt. 5150 1070 37 9.1 0.22 18.4
King Pt. 36000 11  3.6 0.16 19.3
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Fig. 5.1: Relative abundance between C2917α, 21β-30-Norhopane, C3017α, 21β-Hopane and 

diploptene (17β, 21β-Hop-22(29)-ene) of all analysed samples, SPM data from the Mackenzie 

River, and additional peat samples from the YCP located in between Herschel Island and the 

Mackenzie River (Yunker et al., 1992). The ternary plot features a linear regression between the 

Herschel and the Mackenzie endmember of the hopanoid endmember model. Brown and red 

plumes encompass the samples used for the calculation of each endmember. The scaling roughly 

suggests the sediment supply in Herschel Basin  

 

 

Yunker et al. (1993) stated, that diploptene is mainly produced by bacterial production in peat 

deposits of the Mackenzie River catchment. As the Mackenzie River is the main contributor of 

sediment in the southern Beaufort Sea (Forbes, 1981), diploptene is assumed to be mostly 

supplied by SPM of the Mackenzie River. Yunker et al. (1993) reports high diploptene 

concentrations in SPM samples from the Mackenzie River retrieved before freshet. With 

increasing sediment load during freshet, Yunker et al. (1993) reported a decrease of diploptene 
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in analysed SPM. Samples collected on April 11th and May 5th 1987 show the highest relative 

abundance of diploptene , whereas SPM sampled in September of 1987 features a decrease of 

diploptene and a relative increase of petrogenic material (Fig. 5.1), presumably derived from 

the Devonian Canol formation (Yunker et al., 2002).  

Findings from Yunker et al. (1993) are in accordance with the observed hopanoid distribution 

illustrated in Fig. 5.1. Except for SlpD15-PF-BIO01, samples from Herschel Island feature low 

diploptene to C2917α, 21β-30-Norhopane and C3017α, 21β-Hopane ratios and more advanced 

degradation (compare Fig. 4.1).  

Fig. 5.3 features various saturate fraction chromatograms of samples from throughout the 

observed trend. UCM’s visible in these n-alkane chromatograms show a coherence with the 

observed hopanoid distribution. Samples with a high relative abundance of diploptene clearly 

show no or only minor development of UCM’s. Chromatograms with a high relative abundance 

of both diagenetic hopanes respectively show well developed UCM’s instead. n-alkane 

chromatograms of all samples from Herschel Island, except of SlpD15-PF-BIO01, exhibit well 

developed UCM’s.  

These coherences distinctively display, that deposits from Herschel Island are the main 

contributors of degraded OC to Herschel Basin. Moreover, the state of degradation can be 

related to the radiocarbon age of each sample. The older the bulk organic matter of a sample is, 

the more distinct is its degradation. Samples presented in Fig. 5.2 show an overall increase in 

bulk radiocarbon age with decreasing abundance of diploptene.  

Fig. 5.2: Correlation of radiocarbon data and the diploptene ratio. The two red diamonds show 

combined literature data after Guo et al. (2007) and Yunker et al. (1992) 
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However, the distribution of associated CPI values, shown in Fig. 4.2, does not support this 

statement. CPI values of SPM from the Mackenzie River indicate a more degraded biomarker 

composition as deposits on Herschel Island and presumably strong petrogenic input or 

enhanced microbial production of short-chain n-alkanes (Choi and Lee, 2013; Yunker et al., 

1993).  

Fig. 5.3: UCM’s observed in various saturate fraction chromatograms of soil and sediment 

samples from throughout the study area. The UCM’s differ in development according to their 

relative state of degradation and location in the ternary diagram 
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5.2. Spatial biomarker distribution in Herschel Basin 

5.2.1. Hopanoid endmember model 

Fig. 5.4: Results of the hopanoid endmember model in % sediment supply by deposits of Herschel 

Island (left: first cm; right: second cm). Data points have been extrapolated for better 

comprehension 

 

 

The relative composition of diploptene (17β, 21β-Hop-22(29)-ene) to C2917α, 21β-30-

Norhopane and C3017α, 21β-Hopane investigated in all analysed samples and additional data 

taken after Yunker et al. (1992) features a distinct trend (Fig. 5.1).  

To distinguish between various sediment input in Herschel Basin, a simple endmember model 

has been calculated. The model combines all four SPM samples of the Mackenzie River in 

combination with the three peat samples from the YCP and all samples from Herschel Island, 

with exception of SlpD15-PF-BIO01.  

The relative sediment contribution of the Mackenzie River compared to the sediment supply by 

eroding coastal bluffs along the glaciated YCP and by smaller rivers like the Babbage River, 

can only be estimated. The endmember model is not capable of distinguishing between these 

different sources. Equally for sediment supply from the unglaciated part of the YCP (e.g. 

Komakuk Beach) westwards of Herschel Island. The contribution of marine produced OM 

could also not be distinguished with this endmember model. Results of the master thesis by 

Pfalz (2017) showed that OC in Herschel Basin is mostly derived from various terrigenous 
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sources. Consequently, the endmember model only distinguishes between sediment input from 

Herschel Island, the Mackenzie River and peat deposits along the YCP.  

Values of the Herschel and the Mackenzie endmember were calculated as the mean ratio of 

diploptene versus C29αβ and C30αβ hopanes for all samples (diploptene/(diploptene + C29αβ + 

C30αβ)). Values of all sediment samples were calculated the same way. Results of both 

endmembers (Herschel endmember = 0.15 (SD = 0.10); Mackenzie endmember = 0.82 (SD = 

0.18)) were used for modelling a linear regression curve (Fig. 5.1). Results of the sediment 

samples are stated in percent relative to their proportional distribution on the constructed 

regression curve.  

Results of the surface sediment samples calculated with the hopanoid endmember model are 

shown in Fig. 5.4 and are summarised in Table 5.4. 100 % meaning all hopanoid compounds 

are retrieved from deposits on Herschel Island, whereas 0 % means that all hopanoid 

compounds are supplied by the Mackenzie River and respectively from coastal peat deposits 

along the YCP. Endmember results of PG 2303 are listed in Table 5.2.  

 

 

Table 5.2: Hopanoid endmember model results of PG 2303, calculated 

with the diploptene ratio 

 

 

Ratios of diploptene to C29αβ and C30αβ show a correlation with the calculated results of the 

Hopanoid-Index (Fig. 4.1). As these hopanoid compounds make up most of the hopane 

study site sample ID
Hopanoid 
endmember model % Herschel

Lc 1 PG 2303-1/2-1 0.41 61
PG 2303-1/2-2 0.73 13
PG 2303-1/3-1 0.51 46
PG 2303-1/3-2 0.48 50
PG 2303-1/3-3 0.47 52
PG 2303-1/4-1 0.48 51
PG 2303-1/4-2 0.45 55
PG 2303-1/4-3 0.47 52
PG 2303-1/5-1 0.45 55
PG 2303-1/5-2 0.51 46
PG 2303-1/5-3 0.53 43
PG 2303-1/6-1 0.46 54
PG 2303-1/6-2 0.44 57
PG 2303-1/6-3 0.58 36

�1
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triterpenes in the samples from Herschel Island and as well in SPM of the Mackenzie River the 

endmember model can be used to characterize hopanoid derivation in Herschel Basin.  

Fig. 5.4 shows the percental sediment distribution along transect A and transect B. As a general 

observation transect A shows overall a stronger contribution of the Herschel endmember as 

transect B. This can be recognized in both, the first and the second cm of the surface sediment 

samples. Transect B features a pattern of increasing values towards the basin centre in both 

maps. Samples from study sites (Sc 19, Lc 5) adjacent to the YCP clearly show hopanoid 

distributions with higher influence of the Mackenzie endmember. Transect A features a less 

distinctive pattern in its hopanoid distribution. Samples from the Sc 12, Lc 3 and Sc 11 coring 

locations feature a seemingly strong influence by eroded material from Herschel Island apart 

of one exception. Samples from the Lc 2 and Sc 7 coring locations show relatively high 

influence by the Mackenzie endmember in both maps. The reason, for transect A not showing 

a clear pattern of decreasing influence of the Herschel endmember with increasing distance to 

the Islands shore, is unclear. A possible explanation could be that the area of investigation is at 

a too small-scale to develop a distinct trend.  

Overall, calculations of the hopanoid endmember model indicate a predominant influence of 

the Herschel endmember. The mean calculated value for all ten samples is 63 % for the first 

and 66 % for the second centimetre (Table 5.4).  

 

Diploptene concentrations in the surface sediment samples coincide with findings by Yunker 

et al. (1993). Yunker et al. (1993) stated that most of the hopanoid biomarkers in the sediments 

of the Mackenzie Shelf are derived by SPM of the Mackenzie River, as long as SPM loadings 

remain at a high level. Investigations in Herschel Basin have shown, that hopane distribution 

in the sediments of the basin is clearly controlled by the sediment supply of the Mackenzie 

River supporting the statement of Yunker et al. (1993). Fig. 4.3 shows the absolute 

concentration of diploptene in each surface sediment sample. With stronger contribution by the 

Mackenzie endmember, diploptene concentrations feature a clear similar pattern and a relative 

increase.  

 

The spatial distribution of n-alkanes in the surface sediment samples shows a similar pattern 

with results of the endmember model. Samples with higher CPI ratios (Fig. 4.2; CPI > 4.3) 

clearly feature a stronger influence of the Mackenzie endmember. Surface sediment samples 

showing a strong influence by the Herschel endmember display CPI values similar as the mean 

CPI value (3.41) of samples from Herschel Island. Similar observations coincide with the TAR 
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ratio and the endmember model, as the CPI and the TAR index display a direct correlation (Fig. 

4.2). High TAR ratios coincide with enhanced influence of the Mackenzie endmember.  

Surface sediment samples with a strong influence of the Mackenzie endmember exceed the 

mean CPI value of SPM from the Mackenzie River and rather resembles the values investigated 

in samples of King and Sabine Point. This leads to the conclusion, that erosion of coastal bluffs 

along the YCP might supply a significant amount of sediment to Herschel Basin. CPI results 

shown in Fig. 4.2 do not imply discharge of mature petroleum derived biomarkers into Herschel 

Basin. Curiale (1991) also stated the absence of biomarker input from petroleum reservoirs on 

the Mackenzie Shelf.  

C23:C29 ratios of all surface samples show no significant influence by Sphagnum enriched peat 

deposits. Moreover, analyses of peat deposits along the YCP (Yunker et al., 1992) revealed 

noticeable low C23:C29 ratios. Coinciding with observed CPI and TAR distribution in the 

surface sediment samples from Herschel Basin (Fig. 4.2), low C23:C29 ratios indicate significant 

sediment supply by coastal erosion along the glaciated YCP. Considering the relatively high 

C23:C29 ratios in SPM of the Mackenzie River, coastal erosion of peat deposits along the 

glaciated YCP might be the prevailing portion of the Mackenzie endmember and as well the 

main driver for diploptene derivation in Herschel Basin.  

 

Observed BIT distribution in the surface sediments of Herschel Basin (Fig. 4.4) resembles 

results of the hopanoid endmember model.  

Surface sediment samples showing a strong resemblance with the Herschel endmember exhibit 

BIT values of about 0.75. These GDGT compositions may result from high abundance of 

crenarchaeol in some samples from Herschel Island, rather than by aquatic production of OM. 

The calculated BIT value of YC06-Col-2/26 is 0.51 and 0.75 for YC-Col-2/27 respectively. 

Bearing the geological history of the area in mind (paragraph 2.1.), it is likely that most of the 

crenarchaeol isoprenoid tetraether lipids in deposits on Herschel Island have an allochthonous 

origin. Using the BIT index to assess marine production of OM in Herschel Basin is therefore 

not possible.  

Surface sediment samples with enhanced influence of the Mackenzie endmember display, 

relatively to the mean BIT value of all surface sediments (0.78), higher values. Thus, indicating 

a stronger terrigenous background typical for riverine SPM (De Jonge et al., 2015).  

Minor contribution of marine OM to the BIT results of Herschel Basin cannot be assessed with 

GDGT data and needs further evaluation. Nevertheless, according to δ13C and C/N results of 



 

 46 

the master thesis by Pfalz (2017), marine OM only contributes with a small portion to the 

sediment budget of Herschel Basin.  

 

The mean radiocarbon age of the seven samples, which were used to calculate the endmember 

of Herschel Island, is about 25 ka BP. Results of these samples feature pre-glacial and glacial 

radiocarbon ages and are in accordance with results by Fritz et al. (2012).  

Radiocarbon values of riverine POC from the Mackenzie River indicate radiocarbon ages of 

7.84 ka BP and 6.01 ka BP during the summer of 2004 (Table 5.3; Guo et al., 2007).  

Radiocarbon results of the surface sediment samples are illustrated in Fig. 4.4. Investigated 

radiocarbon values reflect sediment supply by various sources and show a distinct similarity 

with the hopanoid endmember model (Fig. 5.1). Samples with relatively high radiocarbon 

values might indicate increased sediment supply by coastal erosion from Herschel Island. 

Conversely, samples with relatively young radiocarbon values can be attributed to enhanced 

sediment supply by SPM of the Mackenzie River.  

 

 

Table 5.3: Radiocarbon data of POC from the Mackenzie River (Guo et al., 2007) and for 

Herschel Basin (Pfalz, 2017) 

 

 

With accordance throughout n-alkane and GDGT biomarkers, as well as radiocarbon data of 

the surface sediment samples, the developed hopanoid endmember model can be considered as 

a rough estimation for the sediment supply in Herschel Basin and not just, as previously 

assumed, for hopanoid derivation. Hence, the hopanoid endmember model can be used to 

quantify OC input of various sources to the sediment budget of Herschel Basin.  

 

 

 

14C age           
[ka BP]

14C error    
[± yr BP] F14C

 F14C 
error [%] δ13C [‰] 

Mackenzie River 
POC

22th June 7.84 50 0.38 0.62 -28.90
31th August 6.01 40 0.47 0.50 -26.79

“reservoir effect“ 
Herschel Basin 1.10 100 0.87 1.24 -18 to -21

�1
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5.2.2. F14C endmember model 

 

A second endmember model has been compiled to confirm findings of the hopanoid 

endmember model, or, if differences occur, to discuss the possible origin of such.  

The F14C endmember model was established with δ13C and with F14C data. It consists of an 

endmember representing permafrost deposits on Herschel Island, one representing SPM 

derived through the Mackenzie River and an endmember for marine POC (Fig. 5.5). As bulk 

org. radiocarbon values of the surface sediment samples show a comparable distribution with 

the hopanoid endmember model, similar results of the F14C endmember model are to be 

expected.  

Fig. 5.5: The F14C endmember model. The marine POC endmember (blue diamond) and the F14C 

Mackenzie endmember (red diamond) combine data from the literature (Guo et al., 2007; Lamb 

et al., 2006; Pfalz, 2017; Yunker et al., 1992). F14C endmember results of the surface sediments 

are based on the linear regression between the F14C Mackenzie and the F14C Herschel endmember. 

The scaling represents correct values, as calculations have been accomplished two-dimensional 

under exclusion of the marine POC endmember 
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The calculation for the F14C endmember of Herschel Island is based on the same seven samples, 

which were used for the hopanoid endmember model. F14C values for the mentioned samples 

descending from Herschel Island are given in Table 4.1. The F14C Mackenzie endmember 

consists of POC radiocarbon data from the Mackenzie River. Two samples were included from 

Guo et al. (2007). The samples were taken on the 22th June and the 31th August 2004, about 200 

km upstream the Mackenzie River (67.46°N; 133.62°W) close to the community Tsiigehtchic 

(Table 5.3). The marine POC endmember was determined with the estimated reservoir effect 

of 1.1 ka BP for sediments in Herschel Basin, defined by Pfalz (2017) and δ13C by Lamb et al. 

(2006). According to Lamb et al. (2006) typical δ13C values of marine POC range between -18 

‰ and -21 ‰. F14C values of the marine and the F14C Mackenzie endmember are given in 

Table 5.3.  

Fig. 5.6: Correlation of results calculated with both endmember models. The values, stated in 

percent, indicate sediment supply by eroded OM from Herschel Island 

 

 

Distribution of the surface sediment samples shown in Fig. 5.5 exhibit strong influence by the 

F14C Herschel and the F14C Mackenzie endmember. Influence of the marine POC endmember 

is barely visible. δ13C and C/N results discussed by Pfalz (2017) clearly show that marine algae 

and phytoplankton only contribute a small amount to sediments in Herschel Basin. Results of 

the F14C endmember model have been calculated as two-dimensional model with negligence of 

the marine POC endmember. Averaged F14C values of the F14C Herschel endmember (F14C 

mean = 0.06; SD = 0.04) and the F14C Mackenzie endmember (F14C mean = 0.43; SD = 0.07) 

have been used to model a linear regression curve. Results of the surface sediment samples 
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were calculated like associated samples of the hopanoid endmember model and are stated in 

percent as well. Further quantification will also be conducted under negligence of the marine 

POC endmember.  

The calculated results of the F14C endmember model are given in Table 5.4. The mean value 

for the upper centimetre of all ten surface sediment samples shows that 47 % of the sediment 

at these sample locations is supplied by deposits from Herschel Island. The respective result, 

expressed in % sediment supply by deposits of Herschel Island, for the second centimetre is 56 

%. Both values indicate a more balanced sediment supply of the F14C Herschel and the F14C 

Mackenzie endmember as associated results calculated with the hopanoid endmember model.  

Due to unavailability of radiocarbon data, samples from the glaciated YCP could not be 

represented in this endmember model.  

As a result, the F14C endmember model only distinguishes between two sources of terrigenous 

OC – OC derived from Herschel Island and from the Mackenzie River. Expectably, results of 

this endmember model are presumptively less accurate as results of the hopanoid endmember 

model. Nevertheless, results of both independent endmember models show a surprisingly good 

correlation. Fig. 5.6 shows the resemblance of both endmember models in percental sediment 

supply by deposits from Herschel Island.  

 

 

Table 5.4: Summary of the hopanoid and the F14C endmember model for all surface sediments 

 

study site sample ID
Hopanoid 
endmember model % Herschel

F14C endmember 
model % Herschel

Lc 1 PG 2303-7/0-1 0.31 76 0.18 68
PG 2303-7/1-2 0.33 74 0.20 62

Lc 2 PG 2302-1/0-1 0.61 32 0.38 13
PG 2302-1/1-2 0.38 66 0.22 55

Lc 3 PG 2305-1/0-1 0.34 72 0.20 61
PG 2305-1/1-2 0.30 78 0.20 62

Lc 5 PG 2307-1/0-1 0.58 35 0.32 28
PG 2307-1/1-2 0.60 33 0.22 55

Sc 7 PG 2308-1/0-1 0.52 44 0.31 31
PG 2308-1/1-2 0.36 68 0.30 35

Sc 11 PG 2312-1/0-1 0.26 84 0.20 62
PG 2312-1/1-2 0.27 83 0.18 67

Sc 12 PG 2313-1/0-1 0.30 77 0.23 53
PG 2313-1/1-2 0.43 59 0.20 62

Sc 13 PG 2315-1/0-1 0.32 74 0.19 63
PG 2315-1/1-2 0.36 69 0.19 64

Sc 14 PG 2316-1/0-1 0.35 71 0.24 50
PG 2316-1/1-2 0.34 72 0.19 62

Sc 19 PG 2318-1/0-1 0.39 65 0.27 42
PG 2318-1/1-2 0.40 63 0.28 38

�1
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5.3. Quantification of OM from Herschel Island 

 

To quantify the amount of coastally eroded material from Herschel Island in the sediments of 

Herschel Basin, the sediment budget calculated by Pfalz (2017) was used. Pfalz (2017) 

calculated an average annual sedimentation rate of 0.33 cm/a for Herschel Basin. The average 

annual sediment deposition in Herschel Basin equals 720,000 tons, calculated with an averaged 

sediment density of 1,700 kg/m3 and a surface area of Herschel Basin of 127,000,000 m2. 

Assuming an average TOC content of 1.83 %, about 13,200 tons of OC will be deposited within 

Herschel Basin every year (Pfalz, 2017).  

Since the study sites Lc 3, Sc 11 and Sc 12 (Fig. 2.2) are not located within Herschel Basin, 

samples from these locations were not included in the final quantification of sediment supply 

in Herschel Basin. Also, as samples from the remaining seven study sites roughly cover a third 

of the surface area of Herschel Basin, I assume that 1/3 of the sediment budget of Herschel 

Basin can be quantified with results of the surface samples taken from the Lc 1, Lc 2, Lc 5, Sc7, 

Sc 13, Sc 14 and Sc 19 study sites. 1/3 of the surface area of Herschel Basin equals an average 

sediment budget of 240,000 tons and 4,400 tons of OC every year.  

Quantifications for both endmember models combine the first and the second cm of all surface 

sediment samples from the remaining seven study sites (Table 5.4). The mean percental value 

calculated with results of the hopanoid endmember model is 60 %. The corresponding value 

calculated with the F14C endmember model is 47 %. Overall, results of the hopanoid 

endmember model exceed those of the F14C endmember model. Calculated values are given in 

Table 5.5. According to the quantification of the hopanoid endmember model each year 

approximately 144,000 tons (2640 t/a of OC) of sediments from Herschel Island are deposited 

within the upper third of Herschel Basin. The associated value calculated with the F14C 

endmember model is 114,000 tons (2090 t/a of OC) of sediment every year.  

 

 

Table 5.6: Quantified results of sediments in Herschel Basin with origin of coastal erosion on 

Herschel Island 

Hopanoid endmember model F14C endmember model

sediment supply [Mt/a] 0.144 0.114

sediment supply [m3/a] 84792 66985

OC supply [t/a] 2640 2090

�1
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Calculations of both individual endmember models feature surprisingly similar results. Though, 

both endmember models contain various causes for potential uncertainty.  

Uncertainties may emerge as both endmember models are only based on seven samples from 

TSD and TSD, which is not enough to assess the heterogeneity of deposits from Herschel 

Island. The same holds true for the determination of the Mackenzie endmember and the F14C 

Mackenzie endmember.  

Future quantifications should consider determining between different depositional 

environments of Herschel Island. For instance, to separate between the basin centre and the 

periphery of Herschel Basin. These realms seem to host varying biomarker compositions, 

implying different sediment transport mechanisms yet unknown. With a higher sampling 

density, it would also be possible to estimate the sediment budget on the Yukon Coastal Shelf 

and the nearshore area around Herschel Island, among obtaining a higher resolution within 

Herschel Basin itself.  

However, the quantifications of the sedimentary budget of Herschel Basin, considering similar 

outcome of both individual endmember models, seems to be a valid first approach.  

 

5.4. Temporal changes of sedimentation 

 

Fig. 5.7: Hopane, n-alkane, GDGT and hopanoid endmember results of PG 2303 samples. The 

grey rectangle indicates a climate anomaly at approximately 650 yr BP 
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Biomarker results and results of the hopanoid endmember model for PG 2303 are summarised 

in Fig. 5.7. The hopanoid endmember model can roughly be used to quantify the sediment 

supply of Herschel Basin, assuming if sediment input by the Mackenzie River did not change 

essentially over the last 4 ka BP. Results of the hopanoid endmember model indicate a more or 

less stagnating distribution throughout most of the sediment core with a mean result of 48 %. 

With 76 % (PG 2303-7/0-1) and 74 % (PG 2303-7/1-2), associated results of both surface 

sediment samples from the same study site indicate an enhanced sediment supply by deposits 

from Herschel Island. Coinciding findings are also indicated in all biomarker indices and 

radiocarbon results.  

 

The highlighted area in Fig. 5.7 shows an anomaly at about 650 yr BP. The abrupt change is 

visible in all indicated data and suggests enhanced sediment supply by the Mackenzie River or 

the YCP. According to the hopanoid endmember model only 13 % of the respective sediment 

sample from study site Lc 1 is derived from Herschel Island. This anomaly is followed by a 

steep gap suggesting increased erosion of deposits from Herschel Island. Increased sediment 

supply by the Mackenzie River could be induced through a period of cooler climatic conditions. 

The study by O’Brien et al. (1995) reported on several climate periodicities during the Holocene 

corresponding with glacier advances in the St. Elias Mountains (southern Yukon Territory; 

Denton and Karlén, 1973). The most recent event corresponded with the timing of the Little Ice 

Age (LIA; ca. 1400 – 1850 AD; Campbell et al., 1998). Poor correspondence of the observed 

anomaly in PG 2303 and the timing of the LIA might be related to the estimated error of the 

reservoir age (± 100 yr), or to inaccuracy of the age-depth model. It is likewise possible, that 

the change in sedimentation has been caused by a regional climate event.  
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6. Conclusion 
 

The first question, if biomarker compositions could aid to distinguish between different sources 

of sediment deposited in Herschel Basin could partially be validated.  

Investigations on the hopanoid composition of sediments from Herschel Island concluded in 

very distinct findings. The hopanoid distribution of these deposits indicated minor occurrence 

of diploptene, which is mostly derived from bacterial production in peat deposits (Yunker et 

al., 1993). In this unique geological setting, diploptene is mostly derived from SPM of the 

Mackenzie River or coastal bluffs along the glaciated part of the YCP (Yunker et al., 1993).  

Sediments from the Komakuk Beach study site displayed a wide range of biomarker variability 

and could not be unambiguously distinguished from other sediment sources.  

 

The second question, regarding distinguishing OM input from various sources into Herschel 

Basin, was answered with the depiction of two individual endmember models. With both 

endmember models, different sediment sources in Herschel Basin could be distinguished, albeit 

contrasting findings between n-alkanes and hopanoid biomarkers. Both endmember models 

resulted in comparable findings.  

According to Hill et al. (1991), 95 % of the total sediment supply to the Mackenzie Shelf is 

contributed by SPM of the Mackenzie River. The biomarker composition of the surface 

sediment samples, however, suggested strong supply of eroded deposits from Herschel Island 

in Herschel Basin. Speaking for the northwestern area of Herschel Basin, coastally eroded 

material from Herschel Island represents the dominant sediment source. This dominance is even 

more distinct in the shallow nearshore zone at the east coast of Herschel Island.  

Hopanoid and n-alkane compositions further suggested high sediment contribution of coastal 

bluffs along the glaciated YCP in contrast to SPM supply by the Mackenzie River. Separating 

between the individual proportion of OM derived from the Mackenzie River and the glaciated 

YCP was however not possible.  

The minor contribution of marine OM in Herschel Basin could not be assessed. By including 

additional biomarker data, it could be possible to detect a compound of clear recent marine 

origin in the surface sediments of Herschel Basin.  

The main objective, of quantifying OM derived from deposits on Herschel Island in the 

sediments of Herschel Basin, was achieved. Findings of this thesis support the hypothesis stated 

in the master thesis of Pfalz (2017), that large amounts of OC are removed from the Arctic 

carbon cycle by reburial in Herschel Basin.  
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A detailed description, of the sedimentary change in Herschel Basin over the past 4 ka BP, was 

impeded by the poor resolution of PG 2303. Albeit, analyses on the sediment core resulted in 

the following conclusions. The biomarker composition in PG 2303 suggested an overall 

consistent sedimentation until approximately 1.00 ka BP. Between 1.00 to 0.65 ka BP the data 

suggests the beginning of a short cold period, which may be of regional or global extent. 

Quantifications with the hopanoid endmember model indicated enhanced riverine sediment 

supply during this period. Assignment to a specific climate event was not possible. 

Subsequently, endmember modelling on samples from the Lc 1 study site indicate increased 

sediment supply by deposits from Herschel Island from 0.65 ka BP until today, presumably 

induced by enhanced coastal erosion.  

 

Outlook 
 

For further assessment of the sedimentation in Herschel Basin, additional data should be 

consulted.  

Via coastal parallel currents (Pelletier et al., 1984) unknown amounts of SPM are guided 

through “Workboat Passage”. SPM samples from “Workboat Passage” at mainly westerly 

winds could help to distinguish and quantify OC derived from coastal bluffs along Komakuk 

Beach. Moreover, including SPM data from smaller rivers, adjacent to Herschel Basin, would 

be beneficial. A more detailed reconstruction of the climatic variability and the anthropogenic 

effect in the southern Beaufort Sea could be obtained through additional analyses of PG 2303 

and the associated gravity core. Especially a high resolution in the upper metre of PG 2303 

would increase understanding of the anthropogenic impact on the carbon cycle in the southern 

Beaufort Sea. Concluding, further assessment on the heterogeneity of deposits on Herschel 

Island, by including additional samples from retrogressive thaw slumps, would improve the 

accuracy of future quantifications of the sedimentation in Herschel Basin.  

 

The data discussed in this thesis is archived in the Open Access library PANGAEA 

(www.Pangaea.de).  
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