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Abstract9

In this paper previously unpublished field data from 25 ha of permanent sampling plots (PSPs)10

in Sabah, Malaysia, in four different forest reserves are analysed for mortality rates and basal11

area development. Field data of an observation length of nine to 20 years were available. These12

data then form the basis of several benchmark tests for the evaluation of the individual-oriented13

tropical rain forest growth model Formind . A new version of the Formind is presented. The14

model in its version Formind1.1 includes enhanced submodels for mortality and tree growth. The15

model evaluation is focused on the model components for tree growth, competition and mortality.16

Data for tree recruitment were not available. Results show a good agreement between simulation17

and field data for the main output variables basal area and stem number indicating a reasonable18

behaviour of the model components we focused on. Furthermore the results show that differences19

in site conditions influence tree growth and mortality. Site characteristics should be included in20

the model in the future.21
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1 Introduction1

Evaluation of forest growth models is an important procedure of model development. Vanclay and2

Skovsgaard (1997) discussed range and importance of model evaluation. An evaluation of tropical rain3

forest models is difficult due to a lack of adequate field data. Besides a comparison of model output in4

a steady state with primary rain forest data (e.g. Bossel and Krieger, 1994; Huth et al., 1994, 1998;5

Kürpick et al., 1997; Köhler and Huth 1998a, 1998b) few permanent sampling plot data exist which6

are suitable for testing rain forest growth models. The field data used in this paper were not available7

to the authors in times of model development and can therefore serve for testing of model results.8

Because those field data are used here for elaborating parameter values of mortality, the can not be9

seen as fully independent, but semi-independent.10

The data used in the following were collected in the forest reserves Garinono, Gunung Rara, Segaliud11

Lokan and Sepilok in Sabah, Malaysia by the Forestry Department. Analysis in terms of site and12

stand characteristics, mortality and recruitment data are unpublished and only available in several13

research reports (Ong and Kleine, 1995; Köhler, 1998). Details of the field data used here are therefore14

documented in this paper. Especially mortality rates are analysed as a function of time and different15

plant functional types (PFTs).16

Comparison of simulation results and field data from permanent sampling plots (PSPs) is important17

especially when models are used for estimation of long term trends of forest growth with or without18

anthropogene influences as forest management (Huth et al., 1994, 1998; Riswan and Hartanti, 1995)19

or climate change (Pastor and Post, 1988; Overpeck et al., 1990; Shugart, 1998).20

The simulation model investigated in this study is the tropical rain forest growth model Formind.21

Formind was developed following an individual-oriented approach (Huston et al., 1988; Judson, 1994;22

Liu and Ashton, 1995; Uchmanski and Grimm, 1996) and used to validate the approach of the more23

aggregated process-based model Formix3 (Huth et al., 1998). One important feature of both models24

is the use of species grouping into PFTs. A detailed model description and some results of Formind25

have already been presented in Köhler and Huth (1998a, 1998b). Several submodels (tree growth,26

competition, mortality) of Formind were modified in the meantime due to new available datasets,27

research activities and model analysis. These improvements are documented in the following.28

2 Area description29

The permanent sampling plots (PSPs) investigated in this study were established and inventorised30

by the Forest Research Centre and Forestry Department Sabah, Malaysia. They are all located in31

the lowland dipterocarp rain forest of Sabah, Malaysia. The PSPs located in different forest reserves32

across Sabah sum up to a forest area of 25 ha (see Table 1). The data set of Segaliud Lokan is split33

into two parts because of differing observation times within the forest reserve. The number of PSPs34

in the different locations varies from one to eleven ha, observation time from nine to 20 years with35

recordings in intervals between 1 and 5 years. Elevation is below 100 m, only Gunung Rara is located36

in a higher region (200 m - 600 m). Site quality was analysed by Ong and Kleine (1995) on the basis37

of landform and parent material. The site quality of Gunung Rara differs significantly from that of38

the other reserves.39

Each PSP covers an area of 100 m × 100 m, subdivided into 25 patches of 20 m × 20 m, which are40

further split up into 4 sub-patches of 10 m × 10 m. Within these sub-patches no further information41

about tree location were recorded. Trees with a diameter at breast height (dbh) ≥ 10 cm are labelled.42

In regular inventories the dbh of all labelled trees were recorded including ingrowing small trees. Death43

of labelled trees was also recorded.44

Display Table 1 around here.
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3 Methods1

3.1 The rain forest growth model Formind1.12

The Formind model was developed for the simulation of tropical rain forest in Malaysia (see Köhler3

and Huth, 1998a, 1998b for further details). It is a successor of the Formix3 model (Appanah et al.,4

1990; Bossel and Krieger, 1991, 1994; Huth et al., 1994, 1998). As main processes the model includes5

tree growth, competition, mortality and regeneration (last is not included in this version because of a6

lack of field data). In the following we will explain the approach used in version Formind1.1.7

Species grouping and spatial structure: Tropical forest stands are usually composed of a large number8

of species. For the purpose of investigating forest dynamics it is useful to classify species into a small9

number of plant functional types (PFTs). Different concepts for PFTs were proposed (Swaine and10

Whitmore, 1988; Poker, 1993). We use three growth characteristics for grouping (potential height,11

light demands for growth and regeneration) and derive four PFTs for the dipterocarp lowland rain12

forests of Malaysia (Table 2, for details see Köhler and Huth, 1998b). A fifth PFT for bushes and13

small plants with heights below 1.3 m, which was used in former simulations (Köhler and Huth,14

1998b) is not necessary here, because PSP inventories were focused on trees with a dbh ≥ 10 cm. For15

simulations a forest stand area of one hectare is divided into smaller patches. The model follows the16

gap-model approach (Botkin, 1972, 1993; Shugart, 1984) to modelling tree competition by describing17

tree interaction on patches. These patches have the size typical of treefall-gaps as they are naturally18

created by dying larger trees (20 m × 20 m), which is the same patch size as in the PSP inventories. In19

contrast to most gap-models (an exception is the ZELIG model by Smith and Urban, 1988; Urban et20

al., 1991) we aim at picturing the shifting forest stand mosaic and we therefore simultaneously simulate21

several patches explicitly in their neighbouring location within the stand. The patches themselves are22

pictured as homogeneous.23

Display Table 2 around here.

Individual tree growth: Within a single patch the model calculates the development of a forest stand24

based on cohorts of trees of the same PFT. Such a cohort is characterised by the number of trees and25

by the size of one representative tree. Using allometric relations, the size of a tree can equivalently26

be expressed in terms of its above-ground biomass, height, or diameter at breast height. The crown27

projection area is calculated from stem diameter via the proportionality of stem diameter and crown28

diameter (Rollet, 1978; Whitmore, 1984; Poker, 1993). These relationships between components of29

tree size (diameter, height and crown dimensions) are based on average field data, and are important30

simplifications that makes the model tractable, but they may reduce its accuracy. Emergent trees31

might have a crown projection area bigger than the patch size. Their crowns are then assumed to32

reach into the neighbouring four patches. Crown length is a function of tree height (Richards, 1952;33

Burgess, 1961; Poker, 1993). With these relations the distribution of individual tree crowns in the34

canopy can be calculated. Assuming a fixed leaf area index (LAI) of individual trees the leaf area35

distribution in the canopy can be calculated. The growth of the individual tree is based on a carbon36

balance. Calculations include photoproduction of the trees and assimilate losses due to respiration37

and renewal. Photoproduction is calculated from the tree’s leaf area and its specific productivity. The38

latter depends on the local irradiance for each tree (Monsi and Saeki, 1953; Thornley, 1976). Within a39

patch light attenuation downwards in the canopy is calculated with respect to the absorption of higher40

located tree crowns. The dependence of specific photosynthetic productivity on irradiance is modelled41

using a Michaelis-Menten-type light response curve parametrised for each PFT (Eschenbach et al.,42

1998). Assimilate losses are estimated in relation to tree biomass (Kira, 1978; Yoda, 1983). Losses43

are composed of renewal of roots, above-ground litter fall and of respiration of woody tree organs and44

of leaves. Respiration is considered a function of tree size and PFT (Ditzer, 1999). A water balance45

is not included in the model. The calculation of tree growth is performed in annual time steps.46

Competition: Competition is modelled in terms of competition for light as described above and com-47

petition for space as described below concerning mortality.48
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Mortality: Mortality is modelled on an annual basis. In the current version it does not depend on1

any other processes such as diameter increment. The mortality rates used for the simulations in this2

study are directly obtained from the analysis of PSP-data. The model includes an additional crowding3

mortality for trees in dense patches (crowns do not have enough space). In this case trees die to such4

an extent that crowding does not occur anymore. Because of the short length of simulations (≤ 205

years) we do not include processes of falling trees and the creation of canopy gaps by these trees.6

Regeneration: The Formind model includes also a submodel for regeneration. Seedling establishment7

was not measured in the PSPs. Estimation of recruitment rates as an alternative to the use of field8

data is not considered, because uncertainties included in the estimation will lower the quality of the9

evaluation. Therefore all tests are done without considering regeneration.10

Model parametrisation: A detailed description of literature sources of the parameter values used for11

the lowland dipterocarp rain forests of Sabah, Malaysia, is presented in Köhler and Huth, 1998b.12

Table 3 contains the parametrisation used in the test undertaken for this paper. Values of parameters13

in Table 3 are similar to those used in previous studies (Köhler and Huth, 1998a, 1998b) with the14

exception of mortality rates (see Table 4), and the probability W of dying trees to fall.15

Display Table 3 and Table 4 around here.

Initialisation: From the stem-diameter distribution of the first enumeration of each PSP trees are16

aggregated into different cohorts regarding their PFT, diameter (in diameter classes with a width of17

5cm) and location in the stand (in 20 m × 20 m patches).18

3.2 Benchmark tests19

As outlined by Vanclay and Skovsgaard (1997) a comparison of simulated data with field data not20

used for model development is an appropriate method for evaluation of forest growth models called21

benchmark test. Basal area and stem number were chosen for comparison of simulation results with22

field data because these variables can directly be derived from the PSP inventory data. For each PSP23

a simulation with Formind1.1 was performed over the same time period as data were available. In24

cases where data of more than one hectare were available data were averaged after simulation. Two25

different kinds of comparison were undertaken. First, basal area and stem number for different PFTs26

at the end of the simulations were compared with those measured in the PSPs. Second, temporal27

development of basal area and stem number over simulated/observed time was analysed.28

We represent results in the following way:29

xsimulated(tend)
xmeasured(tend)

= f(xmeasured(tend),PFT,FR) and
xsimulated

xmeasured
= f(t,PFT,FR), (1)

30

with x: basal area or stem number, tend: last year of inventory/simulation, FR: forest reserve, t: time31

and PFT: plant functional type.32

4 Results33

4.1 Permanent sampling plot analysis34

The structure and stocking of the PSPs varies widely as seen in Table 5. Where the stocking of35

Segaliud Lokan2 and Gunung Rara is low (basal area (BA) of 12.0 and 17.4 m2 ha−1 respectively) the36

relative fraction of pioneer species (PFT 3) is high indicating that these stands were heavily disturbed37

by logging. In contrast, PSPs in Segaliud Lokan1, Garinono and Sepilok are well stocked (BA = 31.3,38

28.3 and 24.6 m2 ha−1 respectively) with a lower fraction of pioneer species. Thus the data represent39

a wide range of forest stocking.40

Display Table 5 around here.
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Annual mortality rates m were calculated in the following way (Manokaran and Swaine, 1994):1

m = (loge n0 − loge n1)/t, where n0 is the number of trees at the first enumeration, n1 is the2

number of trees at the second enumeration t years later without considering any new trees growing in3

between the two enumerations.4

Mortality rates differ widely for different forest reserves. Table 4 lists average mortality rates for5

different PFTs over the whole time of observation. Average values range from 0.24 % y−1 in Gunung6

Rara to 6.34 % y−1 in Segaliud Lokan2. Mortality rates of pioneer species (PFT 3) are with the7

exception of Gunung Rara generally higher than of non-pioneer species (e.g. Segaliud Lokan1: m =8

5.10 % y−1 for PFT 1, m = 12.03 % y−1 for PFT 3). The time development of the average mortality9

rates (Fig. 1) shows high fluctuations in most forest reserves. Especially in Gunung Rara, Segaliud10

Lokan2 and Sepilok there is a constant increase in mortality rate to the end of the observation period.11

In Segaliud Lokan2 a very high increase of the mortality rate was analysed (m = 0 % y−1 for eight12

years, m = 36 % y−1 in the last year). Trends like this can not be explained with the present version13

of the model which is based on constant mortality rates and therefore the last three years of data in14

Segaliud Lokan2 are not considered in our tests.15

Display Fig. 1 around here.

4.2 Evaluation of Formind1.116

In the simulation studies shown in this article we concentrate on the comparison of results with the17

data from the permanent sampling plots. Other tests like the long term tendency of mature forest18

stands incl. species composition were performed in Köhler and Huth (1998b).19

The results of the benchmark tests following Eq. 1 are documented in Fig. 2. First we analyse the20

results for the basal area, then the findings for the stem numbers.21

Display Fig. 2 around here.

Basal area (Fig. 2A&B):22

Simulations show a good agreement with the field observations. The deviation of simulation results23

range between 0 % and 30 %, in only one case 50 %. There is no PFT where our simulations show24

a trend of permanent over- or underestimation. PFT 1 seems to be the most critical PFT with the25

highest deviation of nearly 50%. The highest deviation was observed for the forest reserve Gunung26

Rara, which seems not to be simulated accurately with this version of the model. PFTs which have a27

basal area below 5 m2 ha−1 tend to be simulated with lower values than measured. The total basal28

areas are matching the measured values more precisely in stands with a higher stand basal area. Again29

the highest variation is found in the Gunung Rara simulation.30

Deviations in total basal area plotted against simulation/observation time show that nearly all forest31

reserves stabilise within the simulation time at an acceptable error range (± 20%) with the exception32

of Gunung Rara. Sepilok and Garinono come closer to measured values the longer we simulate.33

Stem number (Fig. 2C&D):34

Stem number can be simulated more precisely than basal area (maximum deviation: 25 %). This35

is a result of the mortality rates used in the simulation which were derived from the observations36

in the PSPs. The deviation of the total stem number after total simulated/observed time is in all37

forest reserves below 6 %. There is a tendency of underestimating stem number in simulations. Again38

deviation in plots with a higher stem number is smaller, highest deviation occurs from PFT 3, which39

represent the pioneer species.40

The deviation in total stem number plotted against simulation/observation time indicates always an41

underestimation of simulated stem number. The deviation is stabilising with longer simulation time42

for Sepilok from 10 % to nearly 0 %.43

Results in stem number and basal area have to be analysed together. Development of stem number is44

considered as a result of the simulated mortality processes, but the development of basal area is the45
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product of mortality, growth and competition processes in their interaction in a forest stand.1

5 Discussion2

5.1 Mortality rates3

Typical values of the average tree mortality rates in primary tropical rain forests are 1-2 % of stem num-4

ber per year (Putz and Milton, 1982; Lang and Knight, 1983; Swaine et al., 1987a, 1987b; Manokaran5

and Swaine, 1994; Milton et al., 1994; Phillips and Gentry, 1994; Condit, 1995, 1998; Condit et al.,6

1995) with a significant higher mortality rate for pioneer species (Primack and Lee, 1991; Manokaran7

and Swaine, 1994). Manokaran and Swaine (1994) analysed mortality rates in secondary tropical rain8

forest and find no significant differences. The fact, that all our analysed average mortality rates do9

not fall in this range has to be discussed.10

We did not consider ingrowth of trees after the first enumeration for the reason of evaluating our11

model without recruitment. This was also done assuming that the mortality rate for small trees with12

a dbh around 10cm does not differ from average mortality. The increasing mortality with time in13

three forest reserves indicates, that older trees might die faster than the average rate. However the14

typical fluctuations in mortality as seen in Garinono show no trend at all. Another reason for mortality15

increase might be an eight month long drought with no rainfall at all in the years 1982/83 in parts of16

Sabah (Leighton and Wirawon, 1986; Richards, 1996).17

Gunung Rara’s very low mortality of 0.25 % y−1 over ten years seems to be unrealistic. As mentioned18

earlier this forest reserves lies on poor sites and in higher elevation, and one might expect a mortality19

rate even higher than average. It might be that within the process of enumeration tree labels of20

dying trees were used several times leading to an underestimation of mortality rates. Mortality rate21

in Segaliud Lokan2, which was zero over eight years, seems reasonable, because of the small area of22

only 1 ha. On this scale extreme values might occur. Pioneer species show higher mortality rates as23

expected.24

Even if the mortality rates are questionable in comparison with literature, they are a result of the data25

analysis of the PSPs and it is reasonable to use them as parameter values for simulations performed26

for benchmark testing.27

5.2 Model Evaluation28

The model in the here documented version is more complex in terms of competition and tree growth29

processes than most other rain forest growth model known to the authors (e.g. Kohyama, 1993; Ong30

and Kleine, 1995; Kürpick et al., 1997; Huth et al., 1998; Liu and Ashton, 1998). An exception is31

Chave (1999), who simulates spatial explicit tree positions for a rain forest in French Guiana. However32

one might find models for temperate forests (e.g. Bugmann, 1996) or even monocultures (e.g. Bossel,33

1996), which enhance certain features not included in Formind (e.g. soil properties, nutrient circles,34

weather, daily resolution, climate gradients). One might therefore think the model itself is simpler35

than todays forest growth models. For that reason we like to highlight the general differences in36

complexity between growth models for temperate and tropical forests and problems arising with a37

more detailed model structure. Beside the very high number of tree species in the tropics (over 40038

per hectare in Sabah) the unavailable data on those processes gives us very few arguments on how to39

parametrise them.40

The spatial resolution used in the inventories (each PSP plot has an area of 1 ha divided in 25 patches41

of 20 m × 20 m) and in the model is the same. For that reason competition processes for light and42

space are simulated as accurate as possible in Formind . However nature is not as homogeneous in tree43

distribution as we assume in the model. Shading processes might therefore have a more significant44
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influence on individual tree growth. The aggregation of field inventory data into diameter classes1

with a width of 5cm as done in the initialisation results in slight overestimation of basal area at the2

beginning of the simulations (time = 0 a) as seen in Fig. 2.3

The renunciation of using the recruitment submodel has only a small influence on the simulated stand4

dynamic, if short time scales are considered as in this paper. With the approximation of an upper5

diameter increment of 1 cm y−1 for non-pioneer species without light competition (Ong and Kleine,6

1995; Huth et al., 1998) ingrowing trees with a dbh of 10 cm will not exceed a dbh of 30 cm within 207

years. In all competition processes trees are only influencing other trees of approximately the same size8

or smaller. The ingrowth would, if activated, not effect the growth of the big trees in stand simulation9

and would therefore lead to only small differences in the simulated stand development. Because PSPs10

data were analysed without recruitment as well (only trees labelled during first enumeration were11

considered further), accuracy of the comparison should not be weakened.12

Considering mortality without the process of falling trees influences only the spatial distribution of13

tree mortality. Because mortality effects of gap creating falling tree are implicitly included in the field14

data, average mortality is parametrised correctly. Locally high mortality rates would effect recruitment15

pattern in this area, but may be ignored due to inactive recruitment submodel.16

Applying the model with four of the five PFT, as indicated in the model description, has no effects17

on model results. As only trees with a dbh ≥ 10 cm are considered in the results, these fifth PFT18

would not change simulated basal area or stem number directly, trees of the fifth PFT have a maximum19

diameter of 2 cm. Only consequences might be indirect competition effects on small ingrowing saplings20

of other PFTs.21

The fixed geometric relations between different variables like tree height and crown length in the model22

do not allow the trees to adapt crown structures to their specific individual environment. Crowns might23

overlap with those of neighbouring trees in dense patches. Therefore crowding mortality is needed as a24

regulating process. This is an additional mortality which leads to a constant underestimation of stem25

numbers. Simulations without this regulation end with higher deviation in basal area from measured26

data. The process of crowding mortality covers only a small part of the total mortality (0.05-0.25 %27

out of 2-5 %) but is important for a realistic simulation of basal area.28

The simulations for Gunung Rara fit worst with field data. These deviations might be caused by the29

higher elevation and poor site conditions in Gunung Rara. Conditions found in Gunung Rara fall30

out of the present application range of Formind1.1. However with a more detailed description of31

individual tree growth as a function of site conditions Formind has the potential to simulate stands32

like Gunung Rara with similar accuracy as the other forest reserves.33

To exclude data of the last years in Segaliud Lokan2 form further testing was reasoned with the small34

spatial scale of only 2 ha and the large temporal differences in mortality rates (0.0 % y−1 for first years35

and rates between 20 and 40% y−1 in the last years). We think errors in field measurements might be36

one reasons for the unexpected data. Additionally, as our main objective in this benchmark testing37

was to validate our growth model an assumed average mortality for the whole observation time �= 0.038

% y−1 in Segaliud Lokan2 would cover tree growth effects.39

The good agreement between simulation and field data are first hints that Formind1.1 is an adequate40

tool to simulate the growth of tropical rain forest not only on a short time scale of some decades but41

also for long time forest development. Results over simulation periods of 100 years and more were42

already published in Köhler and Huth (1998a, 1998b).43

Given the wide variation in calculated mortality rates, one might ask how save is it to use an average44

or published rate to predict forest development. With a sensitivity analysis, which highlights the45

influences of different parameters, the importance of mortality and acceptable parameter ranges can46

be analysed (Huth et al., 1998). Investigations show, that mortality is important for model behaviour,47

but parameter values might vary reasonable without changing results in general. Thus, to use more48

general independent data for benchmark testing, might influence the accuracy only slightly.49
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Because of the variety of different stockings represented in the PSPs the tests show that Formind1.11

is applicable within good site conditions on every possible level of forest degradation. Tests shown2

in this paper together with results for the simulation of primary forest (Köhler and Huth 1998a,3

1998b) evaluate it as an accurate tool for estimating the effects of logging operations on tropical forest4

ecosystems (future work).5

6 Conclusion6

Beside Ong and Kleine (1995) and Liu and Ashton (1998), which all used data from permanent7

sampling plots to parametrise their models a detailed comparison of growth data with model results8

was not performed so far. A comparison is limited to the quality and observation period of available9

data sets and therefore the case study in this paper is limited to time periods up to twenty years10

without considerations of regeneration. However, for the development of models, which estimate long11

term tendencies in tropical rain forests with and without antropogeneous influences even those limited12

data are of importance for model evaluation. Thus, the benchmark tests gave us indications, where13

the limits of model application are. Only with this knowledge an application of forest growth models14

to questions of management practise becomes viable.15
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Ökologie u. Naturschutz 3, 217-225.20

Judson, O.P., 1994. The rise of the individual-based model in ecology. TREE 9, 9-14.21

Kira, T., 1978. Community architecture and organic matter dynamics in tropical lowland rain22

forests of Southeast Asia with special reference to Pasoh Forest, West-Malaysia. In: Tomlinson,23

P.B., Zimmermann, M.H. (Eds.), Tropical Trees as Living Systems. Proceedings, 4th Cabot24

Symposium, Harvard Forest, University Press, Cambridge, Mass., pp 26-30.25
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Köhler, P., Huth, A., 1998a. An individual based rain forest model - concepts and simulation28

results. In: Kastner-Maresch,A., Kurth, W., Sonntag, M., Breckling, B. (Eds.), Individual-based29

structural and functional models in ecology. Bayreuther Forum Ökologie, Vol. 52, Bayreuther30
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Figure 1: Mortality rates as function of time in permanent sampling plots (PSPs) in different locations
(Garinono, Gunung Rara, Segaliud Lokan and Sepilok) in Sabah. Detailed information about PSPs in
Table 1. Doted Line: Average mortality rate between first and last enumeration. Circles: Mortality
rate between actual and previous enumeration. Circles also describe when enumerations took place.
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Figure 2: Benchmark tests. Relative variation in basal area BA (A, B) and stem number N (C,
D) of simulation against field data. A, C: Final variation after maximum simulation time (= length
of observation) as a function of field measurement in last enumeration. For each of the permanent
sampling plots (PSPs) data for each plant functional type PFT 1-4 and sum are plotted. B, D:
Variation as function of simulation/observation time. Plotted are total basal areas and total stem
numbers for PSPs in Garinono, Gunung Rara, Segaliud Lokan and Sepilok. For information on PSPs
see Table 1.
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Table 1: Information about permanent sampling plots (PSPs) located in different forest reserves in
Sabah, Malaysia. A: size of PSPs [ha]; B: number of trees at first enumeration; C: time of observation;
D: length of observation [y]; E: number of enumerations; F: time between two enumerations [y]; G:
time between last logging and first inventory [y]; H: site quality.

Location A B C D E F G H Elevation [m]

Garinono 2 871 1973-1982 9 10 1 45 good 40-80
Gunung Rara 11 4978 1981-1990 9 7 1-2 11-12 poor 200-600
Segaliud Lokan1 7 4258 1982-1992 10 3 5 25 good 40-100
Segaliud Lokan2 1 365 1972-1985 13 8 1-2 8 good 40-100
Sepilok 4 2218 1973-1993 20 5 5 19 good 20-50

Table 2: Characteristics of the aggregated plant functional types (PFTs) of lowland dipterocarp rain
forest of Sabah, Malaysia.

PFT Maximum
heights

Light demand Species composition

1 >36 m shade tolerant emerging species mainly dipterocarps
2 25-36 m shade tolerant climax species dipterocarps and non-dipterocarps
3 15-25 m light demanding pioneer species mainly Macaranga spp. and Anto-

cephalus chinensis
4 ≤15 m shade tolerant understorey species non-dipterocarps
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Table 3: Parametrisation for a dipterocarp lowland rain forest in Sabah, Malaysia, used by the For-
mind1.1 model. Parameters concerning mortality are depending on the location and can be found
in Table 4. Names are identical to those used in the detailed model description in Köhler and Huth
(1998b). Index j indicates that parameter values differ for different plant functional types.

Name Description Unit Plant functional type
1 2 3 4

a0j Coefficient of height-diameter relationa [m] 2.94 2.30 1.97 3.11
a1j Coefficient of height-diameter relation [m cm−1] 0.42 0.42 0.39 0.30
a2j Coefficient of height-diameter relation [m cm−2] -0.002 -0.002 -0.002 -0.001
ρj Wood density [todm m−3] 0.62 0.57 0.37 0.71
hMj Maximum potential height [m] 55 36 25 15
PMj Maximum photo-productivity [

mgCO2
dm2·h ] 10.9 11.6 29.1 18.8

αj Slope of light response curve [mgCO2 ·m2

dm2·h·W ] 0.36 0.20 0.20 0.30

τj Fraction of stemwood to total biomass [-] 0.7
sj Crown-to-stem-diameter-ratio [-] 25
L̃AIj Leaf area index of single tree [-] 2
RPj Respiration (biomass losses relative to

above ground biomass)
[y−1] 0.16

I0 Light intensity above canopy [W m−2] 335
k Light extinction coefficient [-] 0.7
W Probability for a dying tree to fall [-] 0.0

aHeight-diameter relation: h = a0j + a1j · d + a2j · d2.

Table 4: Average mortality rate m [% y−1] for different plant functional types calculated from per-
manent sampling plot data in different locations and used as parameter values for simulations. For
Segaliud Lokan2 we only used the data recorded between 1972-1982 and the parameter values used in
simulations therefore differ from the average value.

Location average Plant Functional Type
1 2 3 4

Garinono 2.59 2.40 0.62 3.86 2.54
Gunung Rara 0.24 0.31 0.26 0.12 0.16
Segaliud Lokan1 5.10 4.48 2.89 12.03 3.46
Segaliud Lokan2 (6.34) 0.0 0.0 0.0 0.0
Sepilok 5.09 5.49 3.76 5.89 2.58
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Table 5: Basal area (BA) and stem number of all species (Nall) and the different plant functional types
(N1, N2, N3, N4) at the beginning of observation for trees with d≥10cm in different forest reserves.

Location BA Nall N1 N2 N3 N4

[m2 ha−1] [ha−1] [ha−1] [ha−1] [ha−1] [ha−1]

Garinono 28.3 435.5 288.0 27.5 95.5 24.5
Gunung Rara 17.4 450.4 205.9 21.6 168.6 56.0
Segaliud Lokan1 31.3 608.3 422.4 41.0 95.1 45.4
Segaliud Lokan2 12.0 365.0 133.0 10.0 199.0 22.0
Sepilok 24.6 554.5 462.0 44.0 16.3 28.5


