The Moisture Effect on ²²³Ra and ²²⁴Ra Measurements Using MnO₂-Cartridges

Mariele Lopes de Paiva¹ and Michiel Rutgers van der Loeff² ¹Federal University of Rio Grande, Rio Grande, Brazil

²Alfred Wegener Institute, Bremerhaven, Germany

Important processes in the ocean can be evaluated with radioactive nuclides, including radium isotopes. Radium is considered a relatively soluble element, and its isotopes (the quartet ²²³Ra, ²²⁴Ra, ²²⁶Ra and ²²⁸Ra) have been widely used as tracers of submarine groundwater discharge and sediment-water column exchange, as well as to estimate vertical and horizontal mixing rates in the open ocean [1]. The specific activity of radium isotopes in seawater is particularly low. The radiometric measurement of radium isotopes thus requires the collection of large volumes of seawater, especially for the short-lived isotopes, ²²³Ra and ²²⁴Ra. The most recent approach for quantifying radium isotopes in seawater has been developed in advance of the international GEOTRACES program, which is capable of filtering at flow rates more than eight times greater than the previous implemented pre-concentration methods [1]. However, as occurs with the fibers [2], the measurement of short lived radium isotopes by emanation method has its efficiency affected by MnO₂-coated cartridge surface

Methods

Two acrylic grooved cartridges (CUNO 3M; 7.5 cm length) standards were prepared with stock solutions of ²³²Th (with daughters ²²⁸Ra, ²²⁸Th, and ²²⁴Ra in equilibrium) and ²²⁷Ac (with ²²³Ra in equilibrium) [1]. After completely drying, an amount of water equivalent to 5 % of the cartridges weight was added to each of them in each step. After adjusting the water content, the cartridge-holders containing the MnO2cartridges were weighed (± 0.05 g), and the water contents of the 43.25 g (224 Ra) and 44.05 g (223 Ra) MnO₂-cartridges were calculated. The moistening processes continued until the Radium Delayed Coincidence Counter – RaDeCC [3] was visibly moistened (100 % of moisture). The relative count uncertainties averaged 4.4% for the ²²⁴Ra (Channel 220), and 7.1% for the ²²³Ra (Channel 219).

Emanation Efficiency on the 220 Channel

Emanation Efficiency on the 219 Channel

Figure 1. Count rate for of ²²⁴Ra MnO₂cartridge standard as a function of the water content.

Figure 2. Count rate for of ²²³Ra MnO₂cartridge standard as a function of the water content.

•For the 220 channel, the results show that the count rate (and therefore the emanation efficiency) variation occurs mainly between 0 to 15% of moisture (Fig.1).

•Under moisture conditions higher than 15%, the emanation efficiency seems to reach an optimum plateau until 100% of moisture.

•The optimum moisture condition of the MnO₂ cartridge found for 220 channel differs slightly from the ideal water content found for the ²²⁴Ra measurements using the MnO₂ acrylic fiber, which was from 30 to 100% [2].

•The count rate for the 219 channel reaches the optimum plateau under 5% of moisture, and when it is more than 50 % moistened, the emanation efficiency seems to decrease (Fig.2).

•The calibration of the 219 channel has been target of discussion, since its efficiency is always lower than the efficiency found for the 220 channel.

•[2] found a significant decrease in the effective ²²⁰Rn emanation efficiency for a water/fiber ratio lower than expected. They attributed this to the increase of continuity fiber-water-fiber, which would significantly increase the distance that ²²⁰Rn must diffuse to reach the helium stream.

•Different moisture conditions of the acrylic fibers were examined semi-quantitatively [4], searching for differences in the probability of detecting ²¹⁹Rn relative to ²²⁰Rn. It was concluded that the ²²⁰Rn and ²¹⁹Rn produced should have ample time to diffuse through the water film and enter the helium stream.

•Since the half-life of ²¹⁹Rn is shorter, this effect is possibly greater for the ²¹⁹Rn emanation efficiency under lower water/cartridge ratios, which could be a reason for the frequently observed lower efficiency of the 219 channel.

References

[1] Henderson et al. (2013) J. Radioanal. Nucl. Chem. **296**, 357 – 362. [2] Sun and Torgersen (1998) Mar. Chem. **61**, 163 – 171. [3] Moore and Arnold (1996) J. Geophys. Res. **101**, 321 – 329. [4] Moore and Cai (2013) Mar. Chem. **156**, 130 -137.

Acknowledgements

Paiva acknowledges support from Nippon Foundation, under the NF/POGO CofE program.