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Pristine populations of habitat-
forming gorgonian species on the 
Antarctic continental shelf
Stefano Ambroso1, Janire Salazar1, Rebeca Zapata-Guardiola1, Luisa Federwisch2,3, Claudio 
Richter2,3, Josep Maria Gili1 & Nuria Teixidó4,5

Declines in the abundance of long-lived and habitat-forming species on continental shelves have 
attracted particular attention given their importance to ecosystem structure and function of marine 
habitats. The study of undisturbed habitats defined as “pristine areas” is essential in creating a frame 
of reference for natural habitats free of human interference. Gorgonian species are one of the key 
structure-forming taxa in benthic communities on the Antarctic continental shelf. Current knowledge of 
the diversity, distribution and demography of this group is relatively limited in Antarctica. To overcome 
this lack of information we present original data on pristine and remote populations of gorgonians from 
the Weddell Sea, some of which display the largest colony sizes ever recorded in Antarctica. We assessed 
the distribution patterns of seven gorgonian species, a morphogroup and a family in front of the 
Filchner Ronne Ice Shelf (Weddell Sea) by means of quantitative analysis of video transects. Analysis of 
these videos showed a total of 3140 colonies of gorgonians with the highest abundance in the southern 
section and a significantly clumped distribution. This study contributes to the general knowledge of 
pristine areas of the continental shelf and identifies the eastern Weddell Sea as a hotspot for habitat-
forming species.

The current state of the oceans is very different from what it was in the past1,2. Actually, most marine ecosys-
tems are affected by climate change (e.g. ocean warming, acidification, sea level rise)3–5 and other multiple 
human-derived threats (e.g. overfishing, pollution, habitat destruction)6–8 which threaten marine global biodi-
versity and modify oceanic environments5 to the point of being considered “unnatural oceans”9 nearly devoid of 
“pristine” areas10. Such pristine areas are minimally affected by major human threats, thus providing a unique 
opportunity to better understand how marine ecosystems are structured and behave11,12. They are also essen-
tial to study the effects of climate change on benthic communities13, particularly on the Antarctic continental 
shelf where one can find still relatively undisturbed environments14,15. The potential impact of trawling activity 
has also become a major concern due to its extensive damage to continental shelves and deep cold-water coral 
reefs16,17. Although there is evidence of fishing activity as by-catch from longline fisheries in South Georgia18 and 
in the Ross Sea19, most of the Antarctic continental shelf has been little influenced by industrial fishing20. The 
lack of terrigenous sediments21, the relative constancy of its physical conditions22,23 and the relative absence of 
human-derived impacts5, make the Antarctic continental shelf a highly favourable environment for the develop-
ment of high-density benthic megafauna communities.

In the last few decades, studies carried out on the continental shelf of the northeastern Weddell Sea have gen-
erated key insights on the diversity24,25, the degree of heterogeneity26,27, and the impact of iceberg scouring28–30. 
Iceberg scouring constitutes one of the major natural disturbances for high-Antarctic shelf fauna and it is increas-
ingly apparent that iceberg scouring events may be altered by iceberg calving associated with regional atmos-
pheric warming31,32. The estimated rate of disturbance of the Antarctic continental shelf by grounding icebergs 
is approximately 5%26, although still considerably less than the 53% attributable to trawling in other continental 
shelves33.
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Gorgonians are among the main structural species of many benthic communities across all latitudes and 
depths, from shallow sublittoral habitats to continental shelves and deep seas34–36. Hence, the Commission for 
the Conservation of Antarctic Marine Living Resources (CCAMLR) has recognized gorgonians as a Vulnerable 
Marine Ecosystems (VME) indicator taxon37. These organisms contribute to the structure of benthic communi-
ties adding three-dimensional complexity to the habitat38,39. During the last decade, knowledge about diversity, 
distribution, ecology and state of conservation of gorgonian populations on the continental shelf has significantly 
increased in the Mediterranean Sea40,41, the Pacific Ocean42,43 and the Atlantic Ocean44. In Antarctica, most of the 
studies of this group of organisms have focused on taxonomy45,46, trophic ecology47,48, growth rates49,50 and repro-
ductive ecology51,52. However, despite the high abundance of gorgonians in some locations of the Weddell Sea and 
their ecological role in Antarctic benthic communities30,53, there is still an important lack of knowledge on their 
ecological characteristics such as spatial distribution, abundance and demographic processes54.

Non-destructive sampling techniques like video-equipped towed gear, Remotely Operated Vehicles (ROVs) or 
manned submersibles are commonly used to study coastal areas55, deep reefs of cold-water corals56, seamounts57, 
and mesophotic areas58 to assess biodiversity patterns, characterize communities, evaluate spatial and temporal 
changes, and assess benthic ecosystem health status59,60. Although the majority of studies on Antarctic benthos 
have been carried out using semi-quantitative techniques like Agassiz and bottom trawls61,62, non-destructive 
image methodology has also been commonly used in the high Antarctic to provide quantitative information 
on the distributional patterns of benthic megafauna communities over large spatial and bathymetrical doma
ins28,53,58,63–65.

Knowledge of demographic processes and spatial distribution patterns is a prerequisite to understand their 
role in benthic communities and provide basic information on their underlying dynamics and resilience, as well 
as to facilitate their management and conservation66,67. The major aim of the present study was to assess the health 
status of Antarctic gorgonian assemblages in a pristine and remote area in the southernmost part of the Weddell 
Sea continental shelf. Specifically, (1) we characterized the diversity and the abundance of gorgonians group; (2) 
explored their distribution patterns, and (3) assessed their population size structure. This study attempts to be a 
benchmark for the investigation of continental shelf habitats modified by anthropogenic pressure and to contrib-
ute to the general knowledge of pristine areas with habitat-forming species.

Results
Abundance of gorgonian populations. A total of 3140 colonies (1402 in the north and 1738 in the south), 
comprising seven gorgonian species (Ainigmaptilon sp., Dasystenella acanthina, Fannyella rossii, Fannyella spi-
nosa, Thouarella sp.1, Thouarella sp.2, and Thouarella variabilis), an unbranched morphogroup (which included 
specimens from the genus Onogorgia, Armadillogorgia, Primnoella and Arntzia) and the family Isididae, were 
counted along six transects (Supplementary Table S1), occurring with a frequency of 64.4% in 1836 sampling 
units of 1 m2. Based on our count data, we estimated more than 46000 and more than 97000 colonies for the 
north and the south region, respectively. Overall, Thouarella sp.1 was the most abundant (n = 597 total colonies 
across all transects) and the second most frequent species representing 19% of observed colonies present in 20% 
of the sampling units. Thouarella sp.2 was the second most abundant (n = 572), but the most frequent (20%) 
species. The family Isididae (n = 535, 17.8%), Fannyella rossii (n = 474, 17.5%) and Thouarella variabilis (n = 438, 
15.4%) were the third, fourth and fifth most abundant and frequent species, respectively. The unbranched group 
(n = 280) was more abundant than Dasystenella acanthina (n = 189), but less frequent (5.4% and 7.5%, respec-
tively). The other species accounted for less than 2% of the observed colonies, occurring in less than 3% of the 
sampling units. Generally, abundance of the gorgonians differed between the two study sections, being lower in 
the northern part. Only Isididae (n = 277) and Dasystenella acanthina (n = 87) abundance showed high values in 
the northern stations (Fig. 1).

Spatial distribution. Ripley’s K analysis revealed a significantly clumped distribution of the family Isididae, 
Thouarella sp.1 and Thouarella sp.2 colonies at all scales (from 1 m2 to whole transect). Thouarella variabilis 
showed a clumped distribution in the north, but a random distribution in the south. An opposite result for spatial 
distribution was found for Dasystenella acanthina, Fannyella rossii and Unbranched (Fig. 2). Gorgonian abun-
dances varied markedly among the various stations (F5,1179 = 53.3, p < 0.001) (Fig. 3). In stn. 49, the Unbranched 
morphogroup was the group of gorgonians with the highest abundance (47 col/m2) and mean density of 7.3 ± 11.5 
col/m2, while the least abundant species were Fannyella spinosa and Ainigmaptillon sp., with highest abundance of 
20 and 19 col/m2 and mean density of 1.3 ± 0.6 and 1.2 ± 0.4 col/m2, respectively (Fig. 3).

Population size structure. The size-frequency distributions of the 7 species populations were unimodal 
(Fig. 4). Most of the gorgonian populations were positively skewed, indicating an asymmetrical distribution of 
size frequency and a high proportion of small colonies (0–10 cm) (Fig. 4 and Supplementary Table S2). In con-
trast, the two populations of the Unbranched morphogroup were not skewed, being dominated by medium-sized 
colonies (10–20 cm in the south and 50–60 cm in the north) (Fig. 4 and Supplementary Table S2). Most of the 
northern populations showed no significant kurtosis while in the south all the gorgonian populations, except 
Unbranched, showed significant kurtosis (Supplementary Table S2). Finally, in both studied areas, all gorgonian 
populations displayed the same size class distributions (Fig. 4).

Population structure. The structure of gorgonian populations gradually differed in both areas, with signif-
icant differences between north and south (F1,1183 = 65.06, p < 0.001) (Fig. 5).

The SIMPER analysis showed an average similarity in species composition which ranged from 17.89% to 
31.68% (Supplementary Table S3). The number of species contributing up to 90% of the similarity was the same 
in the two sections (Supplementary Table S3). Thouarella sp.1 contributed most (25.14%) to the similarity in the 
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northern transects, while the family Isididae was especially relevant in the southern transects (22.43% of contri-
bution). Focusing on taxa dissimilarities, the family Isididae was the most important contributing with 17% of the 
average dissimilarity between north and south.

Discussion
This study focused on previously unknown extensive gorgonian assemblages in the southeastern Weddell Sea. 
Our results indicate that this region is a hotspot for gorgonian diversity in terms of both number of species and 
their abundance. The diversity of the studied gorgonian assemblages was similar to those reported on subtropi-
cal68, Mediterranean shelf41 and other Antarctic coastal areas69. Seven different species, a gorgonian morphogroup 

Figure 1. Composition, distribution and abundance of gorgonian species. The pie charts display the percentage 
of gorgonian taxa at each transect (n = number of colonies per transect). The size of the pie charts represents 
the abundance of the gorgonians. The histogram shows the abundance of gorgonian species per region (north: 
stations 128, 136, 170; south 49, 81, 86). Map of Antarctica was downloaded from http://www.ibcso.org/data.
html100. The figure was generated with QGIS Version 2.12 http://www.qgis.org/it/site/.
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and a gorgonian family Isididae were observed to dwell between 250 and 350 m depth within the study area 
(Fig. 1), in agreement with previous findings in coastal areas of the Antarctic Peninsula69. On the other hand, gor-
gonian density observed in these multi-specific assemblages clearly exceeds (by ten-fold; 47 colonies/m2) those 
reported for other Antarctic and Arctic shelf areas70,71 (Supplementary Table S4). These high density values were 
similar to those found in temperate72,73 and tropical74,75 coastal assemblages (Supplementary Table S4). Despite 
extreme environmental conditions and the general theory that species richness decreases with increasing latitude, 

Figure 2. L-function (Ripley’s K) for the most abundant species. Values below 95% confidence interval (dotted 
lines) indicate a statistically significant clumped distribution of colonies; values within the confidence interval 
indicate a random distribution; values above the confidence interval indicate a statistically significant over-
dispersed distribution (n = number of colonies).
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it is also generally accepted that this theory is not strictly true and varies with species in the Southern Ocean76,77. 
In addition, benthic biomass in some Antarctic areas is larger than in temperate and subtropical areas78. Such 
dense three-dimensional communities cover large sections of the Antarctic continental shelf as well as the 
Mediterranean Sea41 and deep undisturbed North Atlantic coral banks44. Fannyella rossii and the three species of 
genus Thouarella showed high abundances in each video transect (Supplementary Table S1). This highlights the 
unique abundance of these Antarctic gorgonian species45. Of additional note is their high density, with maximum 

Figure 3. Density plots. Densities of the most abundant species are plotted at each station (n = number of 
colonies). Substrate type is indicated as black (coarse sediment), dark grey (intermediate sediment) and light 
grey (fine sediment).
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values of 6 ind/m2 for Fannyella rossii and 10 ind/m2 for Thouarella sp.1 in the southern section (Supplementary 
Table S1).

All populations in this study were represented by many small colonies with a positively skewed colony size dis-
tribution (Fig. 4). The size structure of a population results from the action of biotic and abiotic factors and from 
the type, intensity, and frequency of disturbance to which individuals are exposed79,80. Positively skewed size fre-
quency distribution implies that a population is in a healthy state and growing, since it includes an abundance of 
juveniles81,82. On the contrary, a negative skewness indicates a lack of recent recruitment and therefore it implies a 
risk of population decline81,83. Population size structure of all Thouarella and Fannyella species was mostly asym-
metrical with many small colonies (Fig. 4), suggesting high recruitment rates82. The size structure also reflects the 

Figure 4. Size-frequency distribution of gorgonian populations (n = number of colonies).
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growth and the development of each individual within the population, as well as past recruitment and mass mor-
tality events. Unfortunately, due to their inaccessibility, only a few studies of gorgonian population size structure 
have been done on continental shelves41. Unbranched individuals seem to grow slowly and older without being 
replaced (low recruitment) with few small colonies (sexual juveniles) and dominance of large-sized individuals41.

As a rule of thumb, because of their slow growth rate84,85 and reproduction type, gorgonians are especially 
vulnerable to iceberg scouring86,87, making their recovery very slow17. All gorgonian species described in this 
study reproduce by internal brooding. This means that the settlement of the larvae occurs at short distances 
from the parents88 explaining the patchy distribution along all video transects. Some gorgonian species such as 
Ainigmaptillon antarcticum and Primnoisis antarctica, which are internal brooders, are also pioneer taxa appear-
ing during the first stage of recolonization after iceberg scouring events with patchy distribution86,87.

The high diversity and abundance of gorgonian assemblages on the Antarctic continental shelf, and the vast 
area covered by high densities of genus Thouarella are probably related to the low iceberg scouring pressure 
and oceanographic-ice conditions. Constant hydrodynamic conditions that increase particle suspension in the 
near-bottom water layers may also imply enhanced food availability for gorgonians on the continental shelf89. 
Strong currents are advantageous to the establishment of this group of organisms supplying them with food and 
continuously keeping them completely clear of sediment90,91. Moreover, based on our findings of high abundance 
and large sizes in the southern section of our study area, we hypothesize that it is little affected by iceberg scour-
ing, thereby favouring the establishment of well-developed pristine gorgonian populations.

Reduced abundance of long-lived and habitat-forming species from the deep sea and continental shelves in 
shallow sublittoral habitats have attracted particular attention, given their disproportionate importance to eco-
system structure and function, and the social value of marine habitats14. Yet, factors responsible for such decline 
are mainly overexploitation and habitat destruction by bottom trawling and by-catch fishing92. Evidence of fishing 
activities with Thouarella spp. as by-catch has been reported in South Georgia18. Moreover, specimens from the 
genus Primnoa and the family Isididae from longline fisheries were found in the Ross Sea19. To our knowledge, 
our results are the first to show pristine populations of gorgonians with the highest abundance and largest size 
ever recorded on the Antarctic continental shelf. These populations are far more mature and better preserved than 
any other known population in Antarctica. Clearly, more research is needed to determine the locations of such 
refuges and to devise strategies to protect such gorgonian populations as well as the many other species interact-
ing with them. The study of these pristine gorgonian populations may also provide basic knowledge on how other 
continental shelf and upper slope communities may have thrived in the decades before bottom trawling fishing 
ensued.

Methods
Study area. The study area was sampled as part of the multidisciplinary PS82 (ANT XXIX/9) expedition on 
board R/V Polarstern from December 19, 2013, to March 5, 201493. It is located in front of the Filchner Ronne Ice 
Shelf in the southernmost part of the Weddell Sea; a region poorly investigated due to the heavy sea ice condi-
tions93. The small amount of data available from this area has made it an area of special relevance to better under-
stand oceanographic conditions and to gain new insights into biodiversity patterns in this remote and pristine 
region94. The study area was divided into a south and a north section due to Brunt Ice Shelf, which may produce 
different oceanographic conditions93.

ROV sampling procedure. In order to study the composition and distribution of gorgonians, an 
inspection-class ROV (Remotely Operated Vehicle, Ocean Modules V8 Sii) was deployed at six stations in the 

Figure 5. Non-metric multidimensional scaling (nMDS) ordination plot of abundance of gorgonian species 
in the south and north region of the SE Weddell Sea. Analysis performed on Bray-Curtis dissimilarities for 
abundance (colonies/m2). Each point represents a subsample of 200 m length for each station.
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area of the Filchner Trough (Supplementary Table S5). Three random stations (stn. 49, stn. 81, stn. 86) were 
recorded in the southern part of the continental shelf and three random stations (stn. 128, stn. 136, stn. 170) in 
its northern part closer to the shelf break. The ROV was equipped with a High Definition (HD) video camera 
(Kongsberg oe14–502) looking forward in an angle of 40–45° and two parallel lasers providing a reference scale 
of 4 cm on the video (see Knust and Schröder 201493 for more details on the ROV procedure). The ROV video 
material is available from the data publisher PANGEA at www.pangea.de (see Table S5 for DOIs).

Species identification. In order to confirm the taxonomic identification of the species observed in the 
videos, colonies of gorgonians were collected with an Agassiz Trawl (AGT) after the ROV deployments. Colonies 
were fixed and preserved in 10% formalin until analysed in the laboratory (see Supplementary Table S6 for taxo-
nomic remarks on the identification of some groups of species). We identified 7 gorgonian species belonging to 
the family Primnoidae (Ainigmaptilon sp., Dasystenella acanthina, Fannyella rossii, Fannyella spinosa, Thouarella 
sp.1, Thouarella sp.2, and Thouarella variabilis), an unbranched morphogroup (flagelliform colonies with polyps 
distributed in whorls along the main stem of the colony), which included specimens of the genera Onogorgia, 
Armadillogorgia, Primnoella and Arntzia, and a bamboo coral group of the Family Isididae, (Supplementary 
Figures S1 and S2).

Video analysis. Quantitative video analysis was performed using the software SONY XDCAM Viewer. Every 
gorgonian observed within a width of 0.3 m (based on the laser beams) along each video transect was identified 
with a distance from the beginning of the transect according to the ROV’s ultra-short baseline (USBL) position 
data.

Spatial distribution and size structure. We examined the species composition and quantified the fre-
quency as the relative proportion of each species present for each sampling unit of the transect and the abundance 
as the total number of colonies across all the transects (see below). The most abundant species of gorgonians were 
used to compare their abundance, spatial distribution and size class in both the north and south areas. These 
results were displayed in density plots, obtained by transforming each transect into a string of contiguous quad-
rats of 1 m2 (0.3 × 3.33 m) and counting the number of colonies of each species only inside each quadrat. A total 
of 1836 useful sampling units were obtained from the 6 transects.

The significance of the deviation from a random distribution was analysed with the one-dimensional version 
of Ripley’s K-function second-order spatial statistic95,96. When the sample statistic is found within the bounds of 
the confidence interval at any point, it indicates complete spatial randomness; a significant positive deviation of 
the sample statistic indicates over-dispersion of the colonies, whereas a significant negative deviation indicates a 
clumped distribution67.

To study population size structure, the maximum height of each observed gorgonian colony was measured 
using the Macnification 2.0.1 software on still images extracted from recorded footage97. The distance between 
the two laser beams was used to calibrate extracted images and measurements were performed on still images 
in which the laser beams were in the same plane as the colony base to reduce the error due to the perspective55. 
Based on previous studies, colony size class was defined for each 10 cm55,82. We considered as young colonies the 
smallest colonies that could be distinguished using the video analysis (2–5 cm in height)80. Size structure was also 
analysed in terms of descriptive statistics using distribution parameters such as skewness and kurtosis. Skewness 
is a measure of the symmetry of a distribution using its mean, reflecting the proportion of small versus large col-
onies in a gorgonian population; if skewness is significant the distribution is asymmetric. Kurtosis is a measure 
of the peakedness of a distribution near its central mode. A significant kurtosis value indicates longer tails than 
would be expected for a normal distribution, and therefore a particular colony size prevails in the population. 
Only transects with more than 40 colonies were studied for population size structure in order to generate mean-
ingful skewness and kurtosis estimates.

Population size structure and density data from other areas of the continental shelf. To 
compare our data with that of other gorgonian populations dwelling on the continental shelf of other seas, 
we compiled data on maximum abundance, mean density and maximum height from previous studies using 
ROV observations. Overall, we compiled population structure data for 36 taxa and 12 different study areas 
(Supplementary Table S4).

Assemblage structure. A non-metric multi-dimensional scaling (nMDS) ordination analysis was per-
formed based on the Bray–Curtis similarity measure using square-root-transformed abundance data. For vis-
ualization purposes, data are presented for each 200 m length. Furthermore, a similarity percentage procedure 
analysis, SIMPER98, was performed to identify the relative contribution of each species to average similarities 
between areas. A non-parametric analysis of variance, PERMANOVA99, was applied using Bray-Curtis dis-
tance for the multivariate analyses. Statistical analyses were computed using the program Primer v6 with the 
PERMANOVA + add-on package.
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