

# Large ensembles of uncoupled and coupled model experiments on the influence of Arctic sea ice decline on mid-latitude weather and climate

Tido Semmler Thomas Jung Lukrecia Stulic Natalia Tilinina Camila Campos



## Question



- What happens to the weather and climate of the Northern mid-latitudes if the Arctic sea ice changes faster than anticipated?
- Idealized model studies which only consider the influence of the Arctic sea ice and keep the influence of midlatitudes and tropics as small as possible





- Atmosphere-only relaxation experiments (14 days) > poster session, P100
- Idealized atmosphere-only experiments with reduced sea ice thickness (15 days, some 90 days)
- Idealized coupled experiments with initially reduced sea ice thickness (1 year)
- Idealized coupled experiments with modified albedo, lead closing parameter, longwave radiation (150 years) ➤ poster session, P102



### Winter temperature profile response





Sea ice area







## **Short coupled experiments**



### Surface air temperature response (K)

Strongest response in autumn (15K), peak in November (19K) over the Central Arctic.

Summer (JAS)

### Autumn (OND)

#### Winter (JFM)









#### Semmler et al. (2016b)

# **Short coupled experiments**



**MSLP response** (hPa)

Baroclinic response in autumn, barotropic in winter.

Autumn (OND)



-2.0 -1.5 -1.0 -0.5 -0.1 0.1 0.5 1.0 1.5 2.0

Z500 response (m)





-30 -25 -20 -15 -10 -5 -1 1 5 10 15 20 25 30

### Winter (JFM)

Semmler et al. (2016b)

# **Short coupled experiments**



Synoptic activity OND (m)

Less synoptic activity but stronger Eady growth rate in Arctic

### Eady growth rate between 850 and 500 hPa OND (1/d)

Semmler et al. (2016b)





0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 **CTL-RED** 



-10.0-8.0 -6.0 -4.0 -2.0 -0.5 0.5 2.0 4.0 6.0 8.0 10.0



-0.030 -0.020 -0.010 -0.005 0.005 0.010 0.020 0.030



- Reduced sea ice increases temperature mainly in Arctic boundary layer
- Reduced westerly flow especially over Eurasian sector along with some cooling
- Less synoptic activity but stronger Eady growth rate in the Arctic (vertical stability decrease not as relevant as vertical wind shear decrease)
- Southward atmospheric storm track shift
- Encouraging: results consistent between different methods and different time scales

