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Abstract: A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed
for the detection and quantitation of karlotoxins in the selected reaction monitoring (SRM) mode. This
novel method was based upon the analysis of purified karlotoxins (KcTx-1, KmTx-2, 44-oxo-KmTx-2,
KmTx-5), one amphidinol (AM-18), and unpurified extracts of bulk cultures of the marine
dinoflagellate Karlodinium veneficum strain CCMP2936 from Delaware (Eastern USA), which produces
KmTx-1 and KmTx-3. The limit of detection of the SRM method for KmTx-2 was determined as 2.5 ng
on-column. Collision induced dissociation (CID) spectra of all putative karlotoxins were recorded
to present fragmentation patterns of each compound for their unambiguous identification. Bulk
cultures of K. veneficum strain K10 isolated from an embayment of the Ebro Delta, NW Mediterranean,
yielded five previously unreported putative karlotoxins with molecular masses 1280, 1298, 1332,
1356, and 1400 Da, and similar fragments to KmTx-5. Analysis of several isolates of K. veneficum
from the Ebro Delta revealed small-scale diversity in the karlotoxin spectrum in that one isolate
from Fangar Bay produced KmTx-5, whereas the five putative novel karlotoxins were found among
several isolates from nearby, but hydrographically distinct Alfacs Bay. Application of this LC-MS/MS
method represents an incremental advance in the determination of putative karlotoxins, particularly
in the absence of a complete spectrum of purified analytical standards of known specific potency.
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1. Introduction

Members of the marine dinoflagellate genus Karlodinium (formerly assigned to Gymnodinium
F. Stein) have long been implicated as the cause of fish kills and other marine faunal mortalities in
wild populations and coastal aquaculture systems around the world [1,2]. Taxonomic identification
among this naked (unarmored) dinoflagellate group has been complicated by their lack of thecal
plates for tabulation, relatively small size, and plastic morphology. Nevertheless, application of
molecular diagnostics has served to resolve many taxonomic inconsistencies, and helped to establish
stable species—now eight species defined within this genus. Among these, K. veneficum (synonym
Gymnodinium veneficum) is perhaps the most prominent and notorious species responsible for formation
of mass harmful blooms and associated fish kills [2–4]. This species tends to remain in the background
in low cell abundance (<103 mL−1), but occasionally becomes dominant, forming dense blooms with
devastating consequences for the health of marine fauna [5–7].

Several species of Karlodinium are reputed to produce potent ichthyotoxins associated with fish
and other faunal mortalities [2,5,6,8] but these taxonomic assignments are complicated by previous
inconsistencies in identification (see [2] for taxonomic synonyms) and high variability in toxigenicity
among strains within a species [9]. In any case, K. veneficum is known to produce a unique suite of
amphidinol-like polyketide toxins called karlotoxins (KmTxs) (Figure 1) [2]. Karlotoxins have been
reported to display a variety of deleterious effects on biological systems, including cellular lysis,
damage to fish gills, and immobilization of prey organisms [10]. The cytolytic activity of karlotoxins is
modulated by membrane sterol composition, which has been proposed as a mechanism for K. veneficum
to avoid autotoxicity [2]. In cell and tissue bioassays, karlotoxins exhibit potent hemolytic, cytotoxic,
and ichthyotoxic properties [4], whereas in nature, they appear to function as allelochemicals in
chemical defense against grazing and/or in prey acquisition [10–12].
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The current suite of fully characterized karlotoxins comprises seven analogs, with more than
half a dozen others assigned a tentative or provisional structure [2,13–15]. All analogs have a
hairpin-like structure with three distinct regions: a polyol arm that exhibits variable hydroxylation and
methylation; a hinge region containing two ether rings; and a lipophilic arm (Figure 2). The lipophilic
arm often includes conjugated trienes in amphidinols, but instead a terminal diene in karlotoxins,
which can be chlorinated, and gives these compounds their distinctive UV spectra. Among these
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karlotoxins, two analogs, KmTx-1 [5] and KmTx-2 [16], have been isolated and characterized in
sufficient quantities for evaluation of specific potency, e.g., in cell lysis assays, but this is not the case
for most of the other analogs. Unfortunately, the lack of a sensitive standardized analytical method
for identification and quantitation of karlotoxins has hampered the exploration of specific potency
of various analogs, research on allelochemical interactions, the development of alternative bioassay
methods, and evaluation of the implications of karlotoxins in seafood safety and regulation.

Standardized protocols are now in place for a number of phycotoxins, such as domoic acid, and
polyether toxins, such as spirolides, dinophysistoxins, pectenotoxins, and yessotoxins, based upon
liquid chromatography-tandem mass spectrometry (LC-MS/MS). In principle, a robust LC-MS/MS
method for karlotoxins should be possible if there is a unique common fragment that defines the
group and is detectible at reasonable natural toxin concentrations in dinoflagellate cultures, field
phytoplankton, and contaminated seafood or other affected species. As yet, there is no standard
chemical analysis for karlotoxins, in spite of an initial attempt [17]. The absence of commercially
available analytical standard for any karlotoxins is certainly a major constraint on method development.
In spite of this, significant progress can be made with purified (but uncertified) karlotoxins (e.g., KcTx-1,
KmTx-2, 44-oxo-KmTx-2, KmTx-5) and unpurified extracts of bulk cultures of K. veneficum strains. The
overarching objective of this work is to further the development of reliable standardized detection and
identification methods for karlotoxins for food safety and research.
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2. Results

2.1. Species Identification

Genetic analysis and sequence alignment clearly identified strain E11 as K. veneficum (Figure 3).
Among K. veneficum strains of this study there are three main geno-groups that can be distinguished
by a large insertion/deletion (indel) region (shown between bases 40 and 60 in Figure 3). Strain E11
fits within one geno-group. Further, there is one single nucleotide polymorphism (SNP) representing
a single base pair mutation at a specific SNP locus at position 119 in this alignment, at which a C/T
transition is unique to this strain, indicating a likely clonal origin. Karlodinium strains from the Ebro
Delta embayments from IRTA (Institut de Recerca i Tecnologia Agroalimentàries, Caldes de Montbui,
Spain) (Table 1) were also analyzed by using two species-specific PCR assays. These PCR assays
were not quantitative, but did allow for Karlodinium identification and differentiation of unknown
samples by comparison of the unknowns to known samples previously identified by sequencing,
and thereby matching the melt curve melting temperature (Tm) and conformation of the melt curve
profiles. Only two plankton samples collected from Alfacs Bay in 2000 had K. armiger present. All
other samples strains were proven to contain K. veneficum, but different geno-groups of this species
could be clearly differentiated.

Strain K10 from Alfacs Bay was previously identified, and had been isolated by the Institute of
Marine Sciences (Barcelona, Spain), as K. veneficum strain ICMB 265 (GenBank: nucleotide sequence
accession number jf906081); this was confirmed in the current assay. Similarly, strain CCMP2936
from Swann Keys, Selbyville, DE, USA was also in accordance with the molecular designation as
K. veneficum.
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Table 1. Strain designations, number of harvested cells for toxin analysis, molecular species
identification by quantitative PCR (qPCR) of rDNA gene, and geographical origin of Karlodinium strains.

Strain # Harvested Cells Species Identification Geographical Origin

E11 5.10 × 106 K. veneficum Fangar Bay, Ebro Delta (2012)
K10 1.79 × 108 K. veneficum Alfacs Bay, Ebro Delta (2007)

CCMP2936 1.28 × 108 K. veneficum Swann Keys, DE, USA (2006)
CCMP415 1.67 × 109 K. veneficum Norway (1985)

IRTA-SMM-12-23 6.35 × 107 K. veneficum Alfacs Bay, Ebro Delta (2012)
IRTA-SMM-12-01 8.36 × 108 K. veneficum Alfacs Bay, Ebro Delta (2012)

K0668 2.37 × 108 K. veneficum Alfacs Bay, Ebro Delta (2002)
IRTA-SMM-12-17 1.20 × 108 K. veneficum Alfacs Bay, Ebro Delta (2012)
IRTA-SMM-12-03 6.63 × 108 K. veneficum Alfacs Bay, Ebro Delta (2012)
IRTA-SMM-12-07 1.35 × 108 K. veneficum Alfacs Bay, Ebro Delta (2012)

K. armiger 1 * 6.24 × 107 K. armiger Alfacs Bay, Ebro Delta (2000)
K. armiger 2 * 4.45 × 107 K. armiger Alfacs Bay, Ebro Delta (2000)

* K. armiger strains were not tested for karmitoxin.
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2.2. New Karlotoxin Candidates

Precursor ion experiments on the typical KmTx fragments m/z 877, 895, and 937 did not reveal
other molecular masses in addition to those of KmTx-1 and KmTx-3 in strain CCMP2936. Collision
induced dissociation (CID) spectra of these two compounds were consistent with KmTx-1 and -3, which
have been previously identified in this strain [13]. Unexpectedly, the KmTx-2 reference solution proved
not to be pure, but to contain 44-oxo-KmTx-2 as a minor impurity, which almost co-eluted with KmTx-2
under the chromatographic conditions in this method. Under the applied electrospray ionization (ESI)
condition, no [M + H]+ ions of karlotoxins were formed, but sodium adducts instead. K. veneficum
strain K10 isolated from Alfacs Bay, NW Mediterranean Sea, contained five putative karlotoxins with
m/z 1303, 1321, 1355, 1379, and 1423, respectively. CID experiments on these compounds revealed
spectra with typical fragments found for karlotoxins (Figures 4 and 5); high resolution mass spectral
experiments revealed their elemental compositions, and clearly indicated that all five compounds
contained sulfur (Table 2). In continuation of the numbering of already described karlotoxins, these
five new compounds were named as new candidate karlotoxins: cand. KmTx-10 (m/z 1303), cand.
sulfo-KmTx-10 (m/z 1423), cand. KmTx-11 (m/z 1379), cand. KmTx-12 (m/z 1321), and cand. KmTx-13
(m/z 1355).
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cand. sulfo-KmTx-10.

Table 2. Exact masses, elemental composition, and error between theoretical and empirical masses.

Toxin m/z Observed Elemental Composition ±ppm

cand. KmTx-10 1303.733892 C62H117ClNaO22S 0.08
cand. KmTx-11 1379.748807 C64H121ClNaO25S 0.8

cand. sulfo-KmTx-10 1423.682504 C62H118ClNa2O26S2 0.4
cand. KmTx-12 1321.742175 C62H119ClNaO23S 1.0
cand. KmTx-13 1355.749870 C62H121ClNaO25S 0.2
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2.3. Karlotoxin Profiles

Karlodinium veneficum strain CCMP2936 originally isolated from the Atlantic US coast has been
reported to produce KmTx-1 and KmTx-3 [14], and the presence of these two karlotoxins was confirmed.
K. veneficum strain E11 isolated in Fangar Bay, Ebro Delta in 2012, produced KmTx-5 as the only known
or putative karlotoxin. In contrast, K. veneficum strain K10 from adjacent Alfacs Bay showed a complex
toxin profile comprising of the above mentioned five candidate karlotoxins, which have not been
detected before (Table 3). A combination of the toxin profiles of strain E11 and K10 was found in four
K. veneficum strains from Alfacs Bay, Ebro Delta, and consisted of the five novel candidate karlotoxins
plus KmTx-5. In strain CCMP415, isolated from Norwegian coastal waters in 1985, none of the analyzed
karlotoxins (Table 3) could be detected. The same applied to the two K. armiger strains isolated from
Alfacs Bay in 2000.

Table 3. Karlotoxin cell quotas (pg cell−1) expressed as KmTx-2 equivalents of twelve Karlodinium
strains investigated in this study (- means not detected).

Strain KmTx-1 KmTx-3 KmTx-5 Cand.
KmTx-10

Cand.
KmTx-12

Cand.
KmTx-13

Cand.
KmTx-11

Cand.
Sulfo-KmTx-10

E11 - - 0.21 - - - - -
K10 - - - 0.03 0.58 0.002 0.003 0.07

CCMP2936 7.9 2.5 - - - - - -
CCMP415 - - - - - - - -

IRTA-SMM-12-23 - - 0.05 0.08 1.2 0.10 0.02 0.5
IRTA-SMM-12-01 - - - - - - - -

K0668 - - 0.004 0.006 0.16 0.003 0.009 0.09
IRTA-SMM-12-17 - - 0.08 0.09 2.2 0.40 0.15 0.64
IRTA-SMM-12-03 - - - - - - - -
IRTA-SMM-12-07 - - 0.57 0.006 0.28 0.01 0.02 0.03

K. armiger 1 - - - - - - - -
K. armiger 2 - - - - - - - -
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2.4. Collision Induced Dissociation (CID) Spectra of Karlotoxins and Amphidinol-18 (AM-18)

CID spectra of KmTx-1, KmTx-2, 44-oxo-KmTx-2, and KmTx-3 are very similar (as shown in
Figure 6). The spectra of all four karlotoxins were characterized by the most abundant fragment
m/z 937 that dominated all four spectra. The second most abundant fragment among all four spectra
was m/z 877, which was least abundant in the spectrum of KmTx-3. In addition, all four spectra
showed the fragments m/z 835 and m/z 733 at lower abundances. A second group of related spectra
was formed by KmTx-5, cand. KmTx-12 and cand. KmTx-13 (Figure 5). These three spectra showed a
fragmentation pattern similar to KmTx-1 to -3, but the dominant fragment was down-shifted about
42 Da to m/z 895. KmTx-5, cand. KmTx-12 and cand. KmTx-13 additionally share the lower abundance
fragments m/z 877, m/z 691, m/z 677, and m/z 633.
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A third group of CID spectra is formed by cand. KmTx-10, cand. KmTx-11, and cand.
sulfo-KmTx-10 (Figure 4). These spectra are dominated by the fragment m/z 877, but also include m/z
1303 either as pseudo-molecular ion or as fragment. All three spectra share numerous lower mass
fragments, such as m/z 859, 817, 805, 673, 659, and 615.

AM-18 and KcTx-1 showed more complex CID spectra with more abundant fragments over a
wider mass range between m/z 600 and m/z 1200 (Figure 7).
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2.5. Selected Reaction Monitoring (SRM) Method for the Detection of Karlotoxins

A LC-MS/MS method in the SRM mode was developed that is capable of resolving and
identifying at least eleven defined and putative karlotoxins (KmTx-1, -2, -3, -5, 44-OH-KmTx-2,
KcTx-1, cand. KmTx-10, cand. KmTx-12, cand. KmTx-13, cand. KmTx-11, and cand. sulfo-KmTx-10)
and amphidinol-18 (Table 4). Two transitions for all compounds were selected for the SRM method (for
details see Material and Methods section): the most intensive transition as the ion trace for quantitation
and a second less abundant ion trace as qualitative control. This method was tested with different
Karlodinium strains, and was proven to be able to detect the toxin profiles reported above.

2.6. Karlotoxin Cell Quota Estimations

The limit of detection defined as signal-to-noise ratio = 3 for KmTx-2 in the SRM mode was
determined as 2.5 ng on-column, which corresponds to approximately 0.1 pg cell−1, based on a
biomass of 106 cells. Karlotoxin cell quotas of the analyzed strains were 2.5 pg cell−1, KmTx-3,
and 7.9 pg cell−1 KmTx-1 for the strain CCMP2936 (Table 3) from Swann Bay, DE, USA. In general,
karlotoxin cell quotas of the Mediterranean strains were one to two orders of magnitude lower, and
quantitatively more variable than strains from elsewhere, ranging from 0.004 pg cell−1 cand. KmTx-13
in strain K0668, to 2.2 pg cell−1 cand. KmTx-12 in strain IRTA-SMM-12-17, expressed as KmTx-2
equivalents. Significantly, strain E11 from Fangar Bay of the Ebro Delta only produced KmTx-5,
whereas all strains from Alfacs Bay, with exception of strain IRTA-SMM-12-07, produced less KmTx-5
on a cellular basis, but displayed a more complex toxin profile consisting of KmTx-5, cand. KmTx-10,
cand. KmTx-12, cand. KmTx-13, cand. KmTx-11, and cand. sulfo-KmTx-10, with cand. KmTx-12 and
cand. sulfo-KmTx-10 being the most abundant analogs (Table 3).

2.7. Hemolytic Activity of Cand. Sulfo-KmTx-10

Only cand. sulfo-KmTx-10 was purified (procedure in Supplemental [15]) in sufficient quantity
and quality to perform quantitative hemolytic activity assays. The new cand. sulfo-KmTx-10 exhibits
hemolytic activity against gilthead seabream (Sparus aurata) erythrocytes (Figure 8), with an 50%
inhibitory concentration (IC50) of 5245± 162 ng mL−1, which is much higher (i.e., less potent) compared
to pure KmTx-2 with an IC50 of 1988 ± 78 ng mL−1. This is consistent with the finding that sulfatation
of karlotoxin reduces its hemolytic activity [14].
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Figure 8. Comparative hemolytic potency for cand. sulfo-KmTx-10 (filled triangles) to KmTx-2 (filled
circles) and saponin (filled squares) using Gilthead seabream (Sparus aurata) erythrocytes. Note the
logarithmic scale for toxin amount. The fitted line is based on the Hill equation, and the HD50 (toxin
concentration giving 0.5 fractional hemolysis) estimates for these curves are presented in the legend to
the figure.

3. Discussion

3.1. Liquid Chromatography-Tandem Mass Spectrometry LC-MS/MS Method

The LC-MS/MS method developed in this study is based on the SRM mode, and allows for the
qualitative detection and quantification of the respective karlotoxins and one related amphidinol analog.
The method is based upon two transitions per analyte: the transition of the [M + Na]+ pseudo-molecular
ion (as sodium adducts were the most abundant pseudo-molecular ions, and [M + H]+ ions were
absent) to the most abundant fragment. In contrast to other dinoflagellate polyketides toxins, such
as okadaic acid/dinophysistoxins, pectenotoxins, azaspiracids, or spiroimines that are characterized
by several water losses from their pseudo-molecular ions, the most abundant fragments formed by
karlotoxins result from a cleavage of the C–C bond between C41 and C42 (Figure 2) [14]. This transition
is used for quantification. As water losses in CID spectra of karlotoxins are barely observed, the second
most abundant transition of each compound used as quality control also results from a C–C cleavage.
Two transitions per analyte based on carbon skeleton cleavages guarantee a highly specific detection
of karlotoxins. Furthermore, the retention time window of karlotoxins in this method, ranging from
9.1 to 10.3 min (Table 4), is rather narrow, and additionally facilitates the recognition of this toxin
class. The current method comprises and confirms only the selected available eleven karlotoxins and
one amphidinol, but it can be easily extended by addition of new transitions of other karlotoxins and
amphidinols of interest, if their CID spectra or fragmentation patterns are known. Fragmentation of
karlotoxins and amphidinols differs from most other polyketide marine phycotoxins, and requires
different ionization parameters in the ion source of the mass spectrometer, such as high fluxes of
nebulizer and auxiliary gases, in addition to high declustering potential and collision energy due
to the stability of sodium adducts. These parameters complicate the integration of karlotoxins and
amphidinols into other multi-methods for the screening of marine phycotoxins.
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Table 4. Names, Q1 and Q3 masses, retention times, and molecular weights of the toxins detected by
this method. Transitions (Q1 > Q3) in bold are the most abundant.

Toxin Q1 Mass (m/z) Q3 Mass (m/z) Retention Time
(min)

Molecular Weight
(g mol−1)

AM-18 1381.8
1381.8

1105.6
687.6 9.9 1358.8

KcTx-1 1339.8
1339.8

1121.7
719.6 9.7 1316.8

KmTx-1 1361.8
1361.8

937.6
877.6 10.2 1338.8

KmTx-2 1367.8
1367.8

937.6
877.6 10.0 1344.8

44-oxo-KmTx-2 1383.8
1383.8

937.6
877.6 10.0 1360.8

KmTx-3 1347.8
1347.8

937.6
877.6 10.3 1324.8

KmTx-5 1325.8
1325.8

895.6
691.5 10.1 1302.8

cand. KmTx-10 1303.8
1303.8

877.6
615.4 9.6 1280.7

cand. KmTx-12 1321.8
1321.8

895.6
633.4 9.8 1298.7

cand. KmTx-13 1355.8
1355.8

895.7
677.5 9.1 1332.7

cand. KmTx-11 1379.8
1379.8

877.6
615.4 9.9 1356.7

cand.
sulfo-KmTx-10

1423.8
1423.8

1303.8
877.6 9.8 1400.7

3.2. Quantitation and Method Potential and Limitation

Quantification of phycotoxins depends on the availability of calibration standards. Due to their
high molecular weight and complex chemical structures, there are no stable isotope labeled phycotoxins
available that could be used as internal standards for toxin quantification, which would be the most
accurate quantification method as it also accounts for possible matrix effects. As internal calibration
is not possible, calibration of phycotoxin containing samples is usually done by external calibrations
based upon analyte solutions with known concentrations. To the best of our knowledge, there are
no commercially available karlotoxin standards. For this reason, all karlotoxins of this study were
determined with respect to a calibration solution of KmTx-2 that was previously purified from a
K. veneficum culture [15], and all values are given as KmTx-2 equivalents, assuming a similar molecular
response between KmTx-2 and the karlotoxins of this study. This assumption is justified by the
fact that the fragments used for quantitation result from the same cleavage pattern in most cases.
The latter is not true for KcTx-1, AM-18, and cand. sulfo-KmTx-10, that show a slightly different
fragmentation pattern. For this reason, all values given as KmTx-2 equivalents are not accurate
determinations, but rather semi-quantitative estimates. In many cases, where analytical standards are
not available, estimates can be sufficient for many scientific purposes, such as determination of toxin
absence/presence, distribution in field samples or variation in profile, and quantitative composition in
lab experiments.

Karlotoxins and amphidinols, like other relatively high molecular weight polyketide phycotoxins,
such as yessotoxins, brevotoxins, paly-/ovatoxins, and ciguatoxins, do not easily ionize in the ion
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sources of mass spectrometers. In general, this results in a lower detection sensitivity in comparison
to other phycotoxins. The limit of detection (LOD) for KmTx-2 was determined as 2.5 ng on-column,
which corresponds to 0.1 pg cell−1 on a cellular basis, i.e., with 106 extracted cells. This LOD falls
in the range of estimated karlotoxin cell quotas (Table 3), and can be reduced by the use of more
biomass in the case of available cultures. The fact that one million cells are needed to reach the LOD
of this method, assuming an average toxin cell quota of 0.1 pg cell−1, argues against the possibility
of detecting karlotoxins in field samples with low or background concentrations of Karlodinium cells.
For example, in Fangar Bay, no high cell abundances were detected before 2010 [18], and in Alfacs
Bay, Karlodinium concentrations are generally below 10,000 cell L−1. Only on three occasions during
the period between 1990 and 2009 did the Karlodinium cell concentrations in Alfacs Bay exceed the
alert concentration of 2 × 105 cells L−1 set by the monitoring program of water quality for shellfish
growing areas in Catalonia [19], reaching maximum levels of almost 106 cells L−1 [20]. Accordingly,
no karlotoxins were detected by LC-MS/MS in field plankton samples taken during May to July in
2010 and 2011 from Alfacs and Fangar Bay [17], especially taking into account that the Mediterranean
strains mainly produced karlotoxins, which were unknown at that time. On the other hand, sampling
of karlotoxins by cumulative passive samplers, such as solid phase adsorption toxin tracking (SPATT)
resins [21], is expected to efficiently sample karlotoxins. Most current resins used for SPATTs selectively
adsorb lipophilic and high molecular weight organic compounds [22], and cumulatively retain these
compounds during time series field deployment, to above the respective LOD. The testing of SPATTs
for field sampling of karlotoxins has not been addressed in this study, but is pending for future work.

3.3. Characteristics of New Karlotoxins

It is noteworthy that all five novel putative karlotoxins of the Mediterranean strains of K. veneficum
contain sulfur, and are most likely sulfated karlotoxin variants (Table 2). This is quite obvious for
cand. sulfo-KmTx-10, which is a sulfated form of cand. KmTx-10 that eliminates NaHSO4 (120 Da)
to form m/z 1303 as most abundant fragment (Figure 4). Sulfatation has been previously observed
for other lipophilic polyketides, such as okadaic acid and dinophysistoxin-1, which are potent PP1
and PP2A protein phosphatase inhibitors, and it has been suggested that these less toxic sulfated
forms of the marine biotoxins might be biosynthetic precursors to prevent a self-intoxication of the
producing organism [23–25]. But amphidinols structurally closely related to karlotoxins (Figure 2),
were also reported to be sulfated [26]. According to their CID spectra, the five new putative karlotoxins
can be classified into two groups: one group of karlotoxins forming m/z 895 as the most abundant
fragment with cand. KmTx-12 and cand. KmTx-13 (Figure 5), and a second group with cand. KmTx-10,
cand. KmTx-11, and cand. sulfo-KmTx-10, with m/z 877 as most abundant fragment (Figure 4). The
two compounds with the fragment m/z 895 share this fragment with KmTx-5, suggesting that cand.
KmTx-12 and cand. KmTx-13 are close structural variants of KmTx-5. The fact that KmTx-5, cand.
KmTx-12, and cand. KmTx-13 yield fragment m/z 895, which is formed by the cleavage between C41
and C42 (Figure 2), and have some other smaller fragments in common, is clear evidence that all three
compounds are conserved in the C1–C41 region, and that all modifications have to be located in the
more lipophilic part of the molecule >C42. In contrast, the most abundant fragment of the second
group comprising cand. KmTx-10, cand. KmTx-11 and cand. sulfo-KmTx-10 is m/z 877 (Figure 4),
which is also formed by KmTx-5, cand. KmTx-12, and cand. KmTx-13 (Figure 5), by a water loss
of fragment m/z 895. Fragment m/z 895, even though not being the base peak, is also visible in the
CID spectrum of cand. KmTx-11, highlighting its similarity to KmTx-5, cand. KmTx-12, and cand.
KmTx-13. The shift of m/z 895 to the 18 Da lower fragment m/z 877 in cand. KmTx-10, cand. KmTx-11,
and cand. sulfo-KmTx-10, is probably due to change in substitution or chemistry in the C41–C42
region of the molecules, that favors an additional water loss resulting in m/z 877 over the intact
fragment m/z 895 in cand. KmTx-11, and complete suppression of m/z 895 in cand. KmTx-10 and
cand. sulfo-KmTx-10. These chemical features can only be verified by nuclear magnetic resonance
(NMR) spectroscopy of purified compounds in sufficiently high amounts, which were not available
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for this study. Nevertheless, the similarity of the CID spectra of the five novel compounds are strong
evidence that these new compounds belong to the class of karlotoxins.

3.4. Structural Variations of Karlotoxins, Similarities to Amphidinols and Function

The list of described karlotoxins now contains more than 20 variants, and further exploration
will likely reveal a much higher number of karlotoxin variants than currently known. The karlotoxin
profile of strain E11, consisting only of KmTx-5, initially described in a strain from Plymouth Sound,
England [2], compared with that of K10, comprising five novel karlotoxins (Table 3), indicates that there
are at least two K. veneficum toxin phenotypes in the northwestern Mediterranean, within a narrow
geographical range from embayments of the Ebro Delta. Other cultures from the Ebro Delta show a
combination of both toxin profiles, probably reflecting the fact that these K. veneficum cultures represent
mixtures of different geno-groups, and thus, may display a superposition of different toxin profiles.

High structural variation also has been observed within other groups of marine phycotoxins,
such as yessotoxins [27], spiroimines [28], and azaspiracids [29], and this is not surprising given the
high molecular weight of these polyketides. Even though the ecological function of many groups
of phycotoxins are not known, it can be assumed that chemical variability does not dramatically
affect the function of these molecules. The situation in the case of karlotoxins is somewhat clearer,
as these compounds have been shown to have lytic activity by non-selective permeabilization of
plasma membranes, leading to osmotic cell lysis [30]. This effect has been linked to ichthyotoxicity
of K. veneficum [31]. It is reasonable to assume that the fish killing effect is not the underlying
ecological function, but rather a side effect, as it has been shown that cell lysis caused by other marine
dinoflagellates, such as Alexandrium or Protoceratium, has a protective effect against their protistan
grazers, and may even reverse trophic relationships [32,33]. The fact that Alexandrium lytic compounds,
which unlike karlotoxins have not been fully identified, also act via unspecific permeabilization of
membranes [34], suggests that these large molecules with amphoteric properties [35] share structural
principles with karlotoxins. It has been proven that the production of karlotoxins in Karlodinium
acts as a defense against protistan predation [11] and parasitism [36]. This hypothesis is supported
by the fact that karlotoxins (unlike other phycotoxins) are excreted by Karlodinium [4,8], and their
amphoteric characteristic enables a certain water solubility provided by the more hydrophilic, highly
hydroxylated part of the molecules necessary for any ecological effect, and the lipophilic part is capable
of eliciting the lytic effect on membranes of other marine organisms. This structural feature is shared
with amphidinols that are structurally closely related to karlotoxins, and also consist of a highly
hydroxylated part and a more lipophilic end (Figure 2). This leads to the conclusion that the functional
principle of cell lysis of competitors or grazers is not constrained to Karlodinium, but constitutes a
rather general chemical weapon in the marine battle field.

There is also the hypothesis that karlotoxins evolved for prey capture [10]. If strains of K. veneficum
do not produce karlotoxin, they are unable to capture and ingest cryptophytes [10]. Many strains
isolated from the NW Mediterranean exhibit variable mixotrophy [37], which could be correlated with
toxin quota and congener.

Among the analyzed strains, CCMP415 (accession number AJ557026 in Figure 3) from the
Norwegian coast did not contain any of the karlotoxins detected by the SRM method developed
in this study. At this stage, it is difficult to interpret this negative result, as there are three alternative
explanations; the strain may (1) be toxigenic, but produce a different toxin profile, including novel
karlotoxins and/or those that are not included in the method; (2) have lost its toxicity, as it was isolated
into unialgal culture more than 30 years ago; or (3) be non-toxic, and not produce any karlotoxins.
Mixed populations of toxic and non-toxic dinoflagellates within one species have been observed in
Alexandrium [38].
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4. Materials and Methods

4.1. Isolation and Culturing of Karlodinium Strains

Isolation of K. veneficum strains from the Ebro Delta embayments, Alfacs (40.6200838◦ N,
0.6581678◦ E) and Fangar (40.7787678◦ N, 0.7492338◦ E), in the northwest Mediterranean Sea (Table 1)
was conducted from filtered (20 µm Nitex gauze) 1 L water samples. Aliquots of 20 µL of the
preliminary isolates were transferred into 200 µL 1/10 strength K-medium in individual wells of
96 well tissue culture plates (TPP, Trasadingen, Switzerland). Plates were incubated at 15 ◦C under
a photon flux density of approximately 50 µmol m−2 s−1 on a 16:8 h light/dark photocycle in a
controlled environment growth chamber (Model MIR 252, Sanyo Biomedical, Wood Dale, IL, USA).
The plates were regularly inspected for the presence of motile cells under a stereomicroscope (Olympus
SZH-ILLD; Olympus, Hamburg, Germany) with dark field illumination. From each well containing
rapidly growing Karlodinium-like cells, single cells were isolated under a stereomicroscope (M5A, Wild,
Heerbrugg, Switzerland) by micropipette, and transferred to fresh wells with the same medium and
incubated as described above. In some cases, cloning of individual cells was not successful, but the
culture was maintained as a mixture of Karlodinium spp. One clonal isolate, provisionally named E11,
was retained for further scale-up culture in plastic culture flasks under the defined culture conditions
described below. Observation and microscopic documentation of live cells (Figure 1) was carried out
with a compound microscope (Axiovert 2, Zeiss, Göttingen, Germany) equipped with differential
interference contrast optics.

For toxin analysis, strain E11 (Table 1) was grown in three replicate 65 mL culture flasks at 15 ◦C
under a photon flux density of 60 µmol m−2 s−1 on a 16:8 h light/dark photocycle. Growth was
determined from 1 mL samples, collected daily by counting cells in a Sedgewick-Rafter chamber after
fixation with Lugol’s iodine solution, and counting of >800 cells under an inverted microscope. Cells
were harvested in exponential growth phase, when the culture cell density reached approximately
3 × 104 cells mL−1.

The Karlodinium cultures grown at IRTA (CCMP415, IRTA-SMM-12-23, IRTA-SMM-12-01, K0668,
IRTA-SMM-12-17, IRTA-SMM-12-03, IRTA-SMM-12-07, K. armiger 1 and K. armiger 2; Table 1) were
maintained at 21 ◦C under a 12:12 h light/dark cycle, and ES growth medium [39] in glass bottles, and
were harvested at the exponential phase. An aliquot of 50 mL was preserved in Lugol’s iodine solution
for determination of cell abundance by microscopic counting. Cell density was determined by settling
Lugol’s iodine-fixed samples, and counting of >100 cells under an inverted microscope.

4.2. Molecular Techniques

4.2.1. DNA Extraction for Karlodinium Species Assignment

For DNA extraction of Karlodinium E11, and other cultured strains, 50 mL of an exponentially
growing culture at a density of 9.5 × 104 cells mL−1 (determined by microscopic counts as described
above) was harvested by centrifugation (Eppendorf 5810R, Hamburg, Germany; 3220× g for 10 min).
The pellet was transferred to a microtube, again centrifuged (Eppendorf 5415, 16,000× g, 5 min), and
stored frozen at −80 ◦C until DNA extraction. Genomic DNA was extracted with a DNeasy Plant Mini
Kit (Qiagen, Hamburg, Germany). In brief, pellets were re-suspended in 400 µL pre-heated (65 ◦C) AP1
lysis buffer (DNeasy; Qiagen), and transferred to 2 mL tubes with 300–500 µL acid washed glass beads
(80–200 µm) (Sigma-Aldrich, Munich, Germany), in which cells were disrupted with a Fast Prep tissue
homogenizer (2 × 20 s at 6.5 speed). Four microliters of RNase were transferred into tubes, and DNA
was extracted following the manufacturer´s protocol. Nucleic acid extractions from seawater samples
were prepared by a primary centrifugation step to collect all solids in a pellet; then, DNA was extracted
from the pellets, following previously published protocols [40]. Concentration of the resulting DNA
samples was then determined with Nano Drop, and 20 ng DNA was checked for degradation on a 1%
agarose gel.
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4.2.2. Polymerase Chain Reaction Template Amplification of Karlodinium spp. from the Mediterranean

Polymerase chain reaction (PCR) of the internal transcribed spacer (ITS) and large subunit (LSU)
region of the 28 S rDNA gene, was achieved with ITS primers ITSa and ITSb, and LSU primers DirF
and Dir2CR, respectively. The details of the respective primers are as follows: LSU-Primers [41] DIRF:
5′-ACC CGC TGA ATT TAA GCA TA-3′ (forward Pprimer) D2CR: 5′-CCT TGG TCC GTG TTT CAA
GA-3′ (reverse primer) ITS-Primers ITS a: 5′-CCA AGC TTC TAG ATC GTA ACA AGG (ACT)TC CGT
AGG T-3′ (forward primer) ITS b: 5′-CCT GCA GTC GAC A(GT)A TGC TTA A(AG)T TCA GC(AC)
GG-3′ (reverse primer). The PCR reactions were carried out with the following master mix: 16.3 µL
deionized water, 2.0 µL 10× HotMaster Taq buffer, 0.2 µL 10 µM forward primer, 0.2 µL 10 µM reverse
primer, 0.2 µL 10 µM dNTPs, 0.1 µL Taq polymerase and 1 µL DNA (10 ng µL−1). For PCR of the ITS
region, the thermal cycling of the mix was set up with an initial denaturation step at 94 ◦C for 4 min,
followed by 10 cycles at 94 ◦C for 50 s, 58 ◦C for 40 s, and at 70 ◦C for 1 min, thereafter followed by
30 cycles of 94 ◦C for 45 s, then 45 s at 50 ◦C and 1 min at 70 ◦C, and a final elongation step at 70 ◦C
for 5 min. For PCR amplification of the LSU, this treatment was modified as follows: one cycle of
denaturation for 2 min at 94 ◦C, 30 cycles at 94 ◦C for 30 s, then at 55 ◦C for 30 s, and at 65 ◦C for 2 min,
followed by a final elongation at 65 ◦C for 10 min.

Karlodinium-specific primers [42] were also utilized for differentiating amplicons obtained
from DNA extracts of bloom samples (seawater DNA extracts) by comparing melt curve profiles
of previously sequenced strains to the melt curves obtained from seawater extracts (Table 1).
Amplifications were performed in an ABI 7300 (Life Technologies, Carlsbad, CA, USA) in a 20 µL
volume containing 0.5 µM of each primer and 1× concentration of SYBR Green reaction mix (Ref#
4364344; Life Technologies).

4.2.3. Amplicon Preparation and Sequencing

Success of the PCR amplification for LSU and ITS was confirmed on 1% agarose gel. The PCR
products were then cleaned up with a MinElute PCR purification kit (Qiagen). The sequencing
reactions were carried out with 1 µL purified PCR product, 1.5 µL Big Dye buffer, 1 µL Big Dye, 6.5 µL
water, and 1 µL forward primer (1 µM) for the forward reaction, and 1 µL reverse primer (1 µM)
for the reverse reaction, respectively. Sequencing was followed by cleaning of the products with
CleanSeq–Beads (Beckmann Coulter, Brea, CA, USA) following manufacturer´s protocol, with elution
in 0.1 mM EDTA. Sequencing was carried out with an ABI Prism sequencer. Sequencing reactions
were carried out at 96 ◦C for 1 min, followed by 25 cycles at 96 ◦C for 10 s, at 50 ◦C for 5 s, and at 60 ◦C
for 4 min.

4.2.4. DNA Sequence Analysis and Molecular Taxonomic Assignment

Raw sequence data were analyzed (CLC genomic workbench v 6.0), and forward and reverse
sequences aligned to construct a consensus sequence. Reads matching to known K. veneficum sequences
were exported as fasta files. Fasta files were then aligned in BioEdit to confirm their association to
K. veneficum and the different geno-groups within the species.

4.3. Chemical Analysis

4.3.1. Harvest of Karlodinium Cells and Extraction of Karlotoxins

A biomass of Karlodinium strains K10 and CCMP2936, equivalent to 150 × 106 and 128 × 106 cells,
respectively, was harvested by filtration (Whatman® glass microfiber filters, Grade GF/F, GE
Healthcare Life Sciences, Piscataway, NJ, USA) under low vacuum (<100 mm Hg). The filters with
retained cells were then extracted sequentially with methanol (50 mL) and acetone (50 mL). The
extraction process was ultrasonication-aided by an ultrasonic probe-type device (UP200S, Hielscher
Ultrasonics™; 200 W, 24 kHz, 4 min, Hielscher, Teltow, Germany). The sonication power was 50% of
full power, and the pulse control was set at 0.5. The sonicated suspensions were centrifuged (4000× g,
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10 min, 10 ◦C), the methanolic and acetonic supernatants were recovered and filtered (0.22 µm pore
size membrane filter) to remove debris. The methanolic and acetonic extracts of each strain were
combined and dried under a N2 stream.

All strains grown at IRTA were harvested by filtration (Whatman GF/F) under low vacuum. The
filters were maintained in 80% methanol at −20 ◦C until analysis.

A total of 150 mL of the strain E11 culture (corresponding to 5.1 × 106 cells) were harvested by
centrifugation (Eppendorf 5810R) at 3220× g for 10 min. All pellets were combined in a microtube,
again centrifuged (Eppendorf 5415, 16,000× g, 5 min), and stored frozen (−20 ◦C) until further
extraction. Archived cell pellets were later suspended in 0.5 mL methanol, and homogenized by
ultrasonication (Sonoplus HP 2070, Bandelin, Berlin, Germany) for 60 s (for 70 cycles at 90% power).
The homogenate was centrifuged for 3 min at 5900× g (Eppendorf 5415R) and the supernatant stored
at −20 ◦C until analysis.

4.3.2. Solid Phase Extraction (SPE) Clean-Up of Karlodinium Extracts

Methanolic extracts of all strains were diluted with deionized water to a final 20% methanol
concentration. SPE cartridges (6 mL, LC-18 Supelclean, Sigma-Aldrich, Deisenhofen, Germany) were
conditioned with 2 mL methanol, and subsequently equilibrated with 2 mL 50% aqueous methanol
and 2 mL deionized water. Samples were loaded onto the equilibrated SPE cartridges and cartridges
washed with 2 mL deionized water and 50% aqueous methanol. Karlotoxins were eluted with 2 mL 80%
methanol. Samples were dried in a gentle N2 stream, and dissolved in 500 µL methanol. Methanolic
extracts were passed through a spin-filter (0.45 µm, Ultrafree, Millipore, Eschborn, Germany) by
centrifugation for 2 min at 3300× g prior to karlotoxin analysis.

4.3.3. LC-MS/MS Precursor Ion Spectra

Concentrated extracts of Karlodinium strains K10, CCMP2936, the K. veneficum isolate E11 from
Fangar Bay, and the KmTx-2 standard solution were run in three precursor ion experiments with typical
KmTx fragments, to determine the possible presence of other KmTx-related compounds. Precursor ion
experiments were performed on a triple quadrupole mass spectrometer (API 4000 QTrap, AB Sciex,
Darmstadt, Germany) equipped with a Turbo lon Spray interface, coupled to a liquid chromatograph
(model 1100, Agilent, Waldbronn, Germany). The liquid chromatograph includes a solvent reservoir,
in-line degasser (G1379A), binary pump (G1311A), refrigerated autosampler (G1329A/G1330B), and
temperature-controlled column oven (G1316A). Separation of lipophilic toxins was performed after
injection of 10 µL sample by reversed-phase chromatography on a C8 phase. The analytical column
(50 × 2 mm) was packed with 3 µm Hypersil BDS 120 Å (Phenomenex, Aschaffenburg, Germany) and
maintained at 20 ◦C. The flow rate was 0.2 mL min−1, and gradient elution was performed with two
eluants, where eluant A was water and eluent B was acetonitrile/water (95:5 v/v), both containing
2.0 mM ammonium formate and 50 mM formic acid. Initial conditions were 8 min column equilibration
with 5% B, followed by a linear gradient to 100% B in 8 min, and isocratic elution until 15 min with
100% B. The system was then returned to initial conditions (total run time: 23 min). Precursors of the
fragments m/z 877, m/z 895, and m/z 937 were scanned in the positive ion mode from m/z 1150 to
1500. Mass spectrometric parameters are detailed in Table 5.

4.3.4. LC-MS/MS Collision Induced Dissociation (CID) Spectra

Collision induced dissociation (CID) product ion spectra were recorded for the [M + Na]+

adduct ions of all available compounds: amphidinol-18 (AM-18), karlotoxin-1 (KmTx-1), KmTx-2,
44-oxo-KmTx-2, KmTx-3, KmTx-5, Karlodinium conicum toxin-1 (KcTx-1), cand. KmTx-10, cand.
KmTx-11, cand. KmTx-12, cand. KmTx-13, and cand. sulfo-KmTx-10. CID spectra were recorded on
the same instrument in the enhanced product ion (EPI) modus in the mass range from m/z 500 to 1430,
and in positive ionization and unit resolution mode. Mass spectrometric parameters are detailed in
Table 5.
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Table 5. Mass spectrometric parameters for the detection of karlotoxins in the precursor ion mode,
collision induced dissociation mode and selected reaction monitoring mode of the API 4000 QTrap
triple quadrupole instrument (AB Sciex, Darmstadt, Germany).

Parameter Precursor Ion
Scan

Collision Induced
Dissociation (CID)

Selected Reaction
Monitoring (SRM)

Curtain gas 20 psi 20 psi 20 psi
Collision activated dissociation (CAD) high high high

Ion spray voltage 5500 V 5500 V 5500 V
Temperature 550 ◦C 550 ◦C 550 ◦C

Nebulizer gas 30 psi 30 psi 30 psi
Auxiliary gas 60 psi 60 psi 60 psi

Interface heater on on on
Declustering potential 151 V 151 V 151 V

Entrance potential 10 V - 10 V
Collision energy 80 V 100 V 100 V

Collision energy spread - 10 V -
Exit potential 26 V - 26 V

4.3.5. LC-MS/MS Selected Reaction Monitoring (SRM)

LC conditions were as described above. The two most abundant fragments of each compound
were selected to develop a selected reaction monitoring (SRM) method. SRM experiments were
performed on the same instrument as above in the positive ion mode. The transitions used, and their
respective toxins, are listed in Table 4. Two transitions for each compound were selected in order
to increase specificity of this method. Dwell times of 10 ms were used for each transition. Mass
spectrometric parameters are detailed in Table 5.

Samples were calibrated against an external KmTx-2 standard solution (23 ng µL−1), and all
karlotoxin values were expressed as KmTx-2 equivalents, assuming a similar molecular response
among all karlotoxin variants.

4.3.6. High Resolution Mass Spectroscopy

One milliliter of the K. veneficum K10 methanolic raw extract was diluted with 4 mL water to
achieve a methanol concentration not higher than 20%. This solution was purified by SPE, as described
above. The eluate was dried in a N2 stream, and dissolved in 600 µL methanol.

High resolution mass spectra were acquired with a Solarix XR Fourier transform ion cyclotron
resonance mass spectrometer (FT-ICR-MS; Bruker Daltonik GmbH, Bremen, Germany) equipped with
a 12 T refrigerated actively shielded superconducting magnet (Bruker Biospin, Wissembourg, France),
a dual ion source, and Paracell analyzer cell [43]. The samples were ionized by electrospray ionization
in positive ion mode. Sample solutions were continuously infused using a syringe at a flow rate of
2 µL min−1. The detection mass range was set to m/z 150−3000. Ion accumulation time for each scan
was set to 0.05 s. Several scans were added for the final mass spectrum. Data sets were acquired with
8 MW data points, yielding a resolving power of 900,000 at m/z 400. Spectra were zero-filled to process
size of 16 M data points before sine apodization. Mass spectra were calibrated with NaTFA clusters
using a linear calibration. A 0.1 mg mL−1 solution of NaTFA in 50% methanol was used to generate
the clusters. Ion accumulation time was set to several seconds for MS/MS experiments for improved
S/N of the fragment mass peaks. The quadrupole isolation window was set to between 3 and 6 Da,
and collision energy to 50 eV.

4.4. Hemolytic Assay

Gilthead seabream (Sparus aurata) erythrocytes were extracted from the caudal vein and the blood
washed three times with three volumes (per mL) of buffer of packed erythrocytes, using the incubation
buffer described below (minus CaCl2). Following the third wash, the cells were resuspended in 3 mL
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of buffer per mL of packed cells. The resuspended cells were diluted 1:20 in buffer (pH 7.5; 150 mM
NaCl, 3.2 mM KCl, 1.25 mM MgSO4, 12.2 mM Tris Base, and 3.75 mM CaCl2) and 200 µL of diluted,
washed erythrocytes were incubated for 1 h at 25 ◦C in the presence of purified cand. sulfo-KmTx-10,
serially diluted in methanol for testing. After incubation, remaining intact erythrocytes were pelleted
by centrifugation, and the optical density (OD) at 540 nm was read with a Molecular Devices Vmax
(Sunnyvale, CA, USA) microtiter plate spectrophotometer. Saponin (0 to 20 µg) from Quillaja bark
(Sigma-Aldrich, S-4521, St Louis, MO, USA) was used as a positive control. The dose response curves
[Fractional Hemolysis vs. log (µg mL−1 of karlotoxin)] were fitted to the Hill equation with a nonlinear
regression model (Igor 6.02, Wavemetrics, Lake Oswego, OR, USA):

fractional hemolysis = base hemolysis + (maximal hemolysis − base hemolysis)/
[1+ (toxin giving 50% hemolysis) rate of hemolysis (1)

In all cases, convergence to defined parameters was observed.
Known aliquots of the purified toxins were placed onto a tared aluminum weigh boat in triplicate,

dried at 60 ◦C overnight, and weighed the following day on a microgram balance (Mettler UMT2,
Columbus, OH, USA). Cand. sulfo-KmTx-10 was also serially diluted in methanol for testing. Known
dilutions of cand. sulfo-KmTx-10 were then mixed with water (25 µL toxin + 50 µL water), and 5,
10, and 50 µL injections of each sample were run in triplicate to determine the UV and MS response
factors of the material tested.

5. Conclusions

This work presents a SRM method for the qualitative and quantitative determination of targeted
karlotoxins and amphidinol-18 with a detection limit of 2.5 ng KmTx-2 on-column. The method can be
expanded by transitions of further karlotoxins and amphidinols for specific needs. During experiments
with several Karlodinium veneficum strains from the western Mediterranean Sea, five novel putative
karlotoxins were found and integrated into the SRM method. Toxin analysis of available K. veneficum
strains showed a high chemical variability of karlotoxins within a field population, but apparently also
among geographically distinct populations.

All of prior work suggests that toxin production in K. veneficum strains is genetically determined,
but cellular toxin quotas are highly variable [9]. The majority of strains show a karlotoxin from
detection limit to the pg cell−1 range, although nontoxic strains also have been isolated. These results
suggest that under certain growth conditions, different strains will respond differently in terms of
quantitative toxin production, but expressed toxin patterns are stable during the growth cycle.
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